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Abstract—The inspection and maintenance of insulator equip-
ment has always adopted the traditional manual detection. It is
very significant to study the automatic Insulator defect detection
by drone inspection. However, in practical industrial applications,
the number of available defect insulator samples is limited. It
is difficult to construct a sufficient and high-quality dataset to
support the training of the object detection model. In this paper,
we propose a detection framework which combines the super-
resolution reconstruction and the object detection model. In our
model, we use the super-resolution reconstruction and traditional
data augmentation to amplify the amount of data and avoid
the overfitting caused by the small sample data. The model has
excellent performance on the training set which only contains 80
images, and achieves 61% mAP. We also show that the super-
resolution reconstruction can rich image texture features and is
more effective than some traditional data augmentation methods.

I. INTRODUCTION

Insulator equipment is an important part of the transmission
line in the power grid, and it also play a good insulation role
between the conductor, the cross bar and the tower. However,
the insulator is very prone to failures during the long-time
high-load operation and exposure to the natural environment,
such as self-explosion, damage, and dropped strings.

The traditional insulator defect detection usually adopts the
manual tower-to-tower inspection. With the rapid development
of computer vision, the use of image acquisition equipment
as a medium and deep learning technology for the defect
detection of insulator equipment will greatly improve the
detection efficiency and reduce the investment cost.

In this paper, using the insulator images taken by drone
to detect the defective areas where the insulator is ”self-
exposed”. However, in practical industrial applications, the
number of available defect samples is limited. This leads to
a difference between the distribution of the positive and the
negative samples, which also makes it difficult to develop
and deploy the traditional data-driven object detection models.
Thus, the Data Augmentation is used to extend the few-shot
dataset in a more efficient and controlled way. In addition
to the traditional data augmentation, we also use the super-
resolution reconstruction method. On the one hand, super-

resolution can effectively expand the few-shot dataset, on
the other hand, defective insulator is usually a small target
compared to aerial image taken by drone. Super-resolution
reconstruction makes up for the lack of pixel values well at
the insulator defects area.

Emperiments on electrical insulator defect detection in a
newly created dataset demonstrate that the proposed approach
is able to train on a small number of defected samples dataset
and also be applied to actual industrial detection.

II. RELATED WORK

A. Defect Detection

In recent years, deep learning have achieved good perfor-
mance in various visual tasks [1-2]. Deep neural networks
have shown excellent ability to extract image features. These
deep image features are definitely helpful for defect extraction.
Therefore, people have proposed several attempts to detect
defects using deep neural networks. Yuan ZC et al. [3]
proposed an improved segmentation network for the defect
detection of the glass cover of the mobile phone external
screen, and discussed the performance of adversarial network.
Mei et al. [4] proposed approach which reconstructing image
patches with convolutional denoising autoencoder networks at
different Gaussian pyramid levels and synthesizing detection
results from these different resolution channels. The effect
is very good on the images with strong repetitive textures
background such as cloth silk fabrics. However, the effect
on metal surfaces and processed parts surface data sets is
average or even poor. Feng C et al. [5] proposed a deep
active learning system based on ResNet to maximize the
performance. Xian Tao et al. [6] designed a new Cascaded
Automatic Encoder (CASAE) structure for segmenting and
locating defect. The cascading network combines a semantic
segmentation for pixel-wise prediction and a classifier based
on compact convolutional neural network (CNN).

B. Insulator Defect Detection

Liao Shenglong [7] firstly uses the local features of the
insulator for rough segmentation based on the active contour

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1725978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020



model segmentation, and then uses the spatial distribution
features of the insulator to detect the insulator. [8] proposed a
recognition method that combine the shape, color and texture
features of the insulator, perceives features from parallel lines
in different directions of the insulator image as candidate
regions of the insulator, and then expands from the candidate
region to adjacent regions, using color features to locate the
insulator. Finally, the average distance between the insulator
pieces is used to divide the area into blocks, and the broken
insulator is found by analyzing the texture features between the
blocks. With the rapid development of deep learning in achiev-
ing end-to-end object detection, it has become possible to
apply deep learning to the detection of insulator images. Chen
Qing et al. [9] based on the convolutional neural network,
first extracted the features of the insulator using the trained
model, and then input the features into the self-organizing
feature mapping network (SOM) for saliency detection. Miao
et al. [10] used the SSD model to identify ceramic insulators
and composite insulators from aerial images. Tao et al. [11]
proposed a deep convolutional neural network (CNN) cascade
architecture based on the regional proposal network(RPN),
which successfully detect the insulator defects.

C. Super-Resolution Reconstruction

The concept of SR first appeared in the field of optics.
In the field of optics, SR refers to the process of trying
to recover data outside the diffraction limit. Super-resolution
reconstruction[12-13] uses the low resolution image sequence
of the same scene to generate a high resolution image to
effectively overcome the deficiencies of the hardware. Tradi-
tional super resolution reconstruction algorithm mainly include
traditional interpolation amplification algorithms and learning-
based super resolution reconstruction algorithms. The algo-
rithm structure of traditional interpolation and amplification
algorithms such as bicubic interpolation[14], lanczos interpo-
lation, non-uniform interpolation[15-16], etc., is simple and
easy to implement, but the reconstruction effect is poor. The
learning-based super-resolution reconstruction usually have
higher accuracy such as neighborhood embedding[17], sparse
representation[18], regression learning [19], etc., but require a
lot of training resources.

The SR algorithm based on convolutional neural network
(CNN) has been widely used. Dong et al. [20,21] train
a three layers deep convolutional network and use bicubic
interpolation to reconstructed a low-resolution image. VDSR
[22] proposed by Kim J et al. is the first method to introduce
global residuals into SR. [23] proposed SRCNN which ap-
plied convolution layers on the pre-upscaled LR image. [24]
proposed a super-resolution generative adversarial networks
(SRGAN), which use deep residual network (ResNet) and
skip connection. It use the series-parallel combined dilated
convolution in the middle of the residual body to obtain
different sizes scale information, and finally generate high-
resolution reconstructed images.

III. PROPOSED METHOD

This paper proposes an insulator defect detection method
for few-shot dataset. It is mainly divided into two parts: the
first part uses super-resolution reconstruction to extends the
our few-shot dataset, and the second part is defect detection
using YOLO v3.

A. Super-Resolution Reconstruction

SRGAN is a generative adversarial networks (GAN) for
image super-resolution (SR) proposed by [24], which produces
a reconstructions with high probability of realistic images.
Our goal is to use a trained generator G to produce a high-
resolution image (SR) for a given low-resolution image (LR).

The generative model G is trained in order to fool the
differentiable discriminator D which is trained to distinguish
super-resolved images from real images. With the help of joint
learning, the generator can learn to create solutions that are
highly similar to real images and thus difficult to classify
by D. Minimizing pixel-wise error measurements, such as
the MSE, is chosen to compare the difference between the
original images and the super-resolved images. Specifically,
the generator network G uses residual blocks with identical
layout in ResNet. The network combine two convolutional
layers with small 3×3 kernels and 64 feature maps followed
by batch normalization layers and ParametricReLU as the
activation function. The SR images are produced by two
trained sub-pixel convolution layers which act as a generator.

Discriminator network D is trained to discriminate real
HR images from generated SR samples. It uses LeakyReLU
activation and contains eight convolutional layers with an
increasing number of 3 × 3 filter kernels, increasing by a factor
of 2 from 64 to 512 kernels as in the VGG network. Strided
convolutions are used to reduce the image resolution each time
the number of feature channels is doubled. The resulting 512
feature maps are followed by two dense layers and a final
sigmoid activation function to obtain a probability for sample
classification.

Our original data set contains 80 insulator images (OR) with
resolution of 1024x768. First, resize the original dataset into
a 256x192 low-resolution images (LR). Then use SRGAN
to generate photo-realistic high-resolution images (SR) with
high upscaling factors (4×). Finally, our new data set contains
the original data set (OR) and the reconstructed image (SR)
generated from the LR image. The example images that were
interpolated and superresolved with a 4× upscaling factor are
shown in Fig. 1.

SRGAN effectively alleviates the scarcity of defective sam-
ples, and can multiply enlarge our dataset through different
high upscaling factors. This method fundamentally solve the
contradiction between the small defect sample data and the
large capacity of the object detection models. The generated
SR images have high-quality at the defects. Under the premise
that the shape and texture features of the original images
have not changed significantly, appropriate noise is introduced
into the images. This makes the trained detection model have
strong robustness.
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Fig. 1. Compared illustration of super-resolution and bicubic interpolation. (a) are the original images. (b) are the high-resolution images which resize from
the low-resolution images (256x192). (c) are the super-resolution images which are reconstructed by SRGAN.

B. Defect Detection

In this paper, compared with the complex two-stage object
detection model, the single-stage model often has a more
lightweight network structure and fewer weights parame-
ters. Therefore, in order to avoid overfitting caused by the
small sample data during the training process, we chose
YOLOv3[25] as the object detection model in the single-stage
model. YOLOv3 [25] borrowed the idea of FPN [26] and se-
lect three features of different scales for merging, which makes
the deeper convolutional layers are able to extract semantic
features, but also retain the shallow features. Therefore, the
small target still retains some high-quality surface features
after passing through the continuously convolutional layers.
It allows the defect of the insulator to be better detected by
the network.

Similar to Section 3.A, in order to further solve the over-
fitting problem caused by a few-shot dataset, we use some
data augmentation technologies such as horizontally flipped,
translated, and randomly cropped on our synthesized dataset.

IV. EXPERIMENTS

A. Few-Shot Dataset

We capture 80 images of defective insulators with resolution
of 1024x768 by using a drone inspection to . Then according
to 3.1, down-sampling each image with downscaling factors
(4×), and using SRGAN to reconstruct LR images. The new
SR images are mixed with the original aerial images as our
new dataset. The final dataset contains three part. The first
part is the original image, the second part is the HR (high-
resolution) image which is directly resized from LR (low-
resolution) image by the BiCubic interpolation, the third part is
SR (super-resolution) image which is constructed by SRGAN.
Then some traditional data augmentation methods are used on

the images in training set. Every image is horizontally flipped,
randomly cropped and randomly translated. The dataset is
further expanded after the traditional data augmentation.

B. Metric

In this paper, mAP (mean Average Precision) is used as the
evaluation metric, that is, the average value of Precision under
different Recall values is calculated according to the PR curve.
Since the model only needs to detect one defect class, mAP
is equivalent to AP, as in (1).

AP =
1

11

∑
rε{0,0.1,...,1.0}

ρinterp(r) (1)

ρinterp(r) = max
r̂:r̂≥r

(r̂)

The accuracy rate represents the proportion of positive
examples in the examples divided into positive examples, as
in (2).

P =
TP

TP + FP
(2)

Recall rate is a measure of coverage. Multiple positive
examples of the metric are divided into positive examples,as
in (3).

recall =
TP

TP + FN
(3)

C. Experimental Details and Results

In the training phase, warmup is used to update the learning
rate. The learning rate increases linearly from a small value
until the specified epoch, and then decreases linearly. We
set the initial learning rate from 10−4 and the end learning
rate from 10−6. The first training stage which increases the
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learning rate continues 50 epochs and the second training
stage continues 100 epochs. We set training batchsize from 2
because the image resolution (1024 x 768) is large compare to
the memory of out GPUs (Nvidia 2080ti). For a mini batchsize,
Warmup updating strategy reduces the model overfitting of
mini-batch images in the initial stage of training, and keeps a
stable distribution through all convolutional layers.

In order to prove the effectiveness of our data augmentation
method, we designed three sets of experiments. The results
shown in Table I. The training set AUG-1 contains 80 original
images, and traditional data augmentation method (horizon-
tally flipped, randomly cropped and randomly translated) are
used on every image. The trained model is overfitting and
the AP on test set is only 0.29. The training set NOAUG-3
contains original images, HR images which are directly resized
from low-resolution images by the BiCubic interpolation and
the SR images which are reconstructed from low-resolution
images by SRGAN. The trained model without any traditional
data augmentation has 0.52 AP. The final training set AUG-3
performs traditional data augmentation on each image based
on NOAUG-3. The AP on AUG-3 is 9% higher than NOAUG-
3.

TABLE I
COMPARISON OF DIFFERENT DATA AUGMENTATION STRATEGIES

(AUG-3,NOAUG-3,AUG-1)

Training Set AP(Average Precision)

AUG-1 0.29

NOAUG-3 0.52

AUG-3 0.61

The AP of the final model on the test set is 61.11%, and
the test effect diagram is illustrated in Fig. 2.

Fig. 2. Defect detection results in the part of test set.

V. CONCLUSIONS

In this paper, considering the scarcity of defective insulator
samples, SRGAN is used to extend the dataset and enrich the
training samples. The serious overfitting problem caused by

the few-shot dataset in the training process is effectively solved
by combining HR and SR images. The experimental results on
the insulator defect dataset show that the effectiveness of the
combination of SRGAN and YOLOv3. The proposed methods
also can be applied to actual industrial detection.
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