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Abstract—Based on Relation Network, we propose a new
network structure that can adaptively adjust the number of
prototypes according to data distribution. Our method, called
the Adaptive Multi-prototype Relation Network(AMRN), aims at
extracting more reasonable prototype representation for different
data distribution in few-shot learning case. Instead of represent-
ing each class as a single prototype in the relational network,
we represent each class with one or more prototypes, and solve
the problem of embedding network with the relational network
connection, which can improving the classification accuracy in
few-shot learning. Besides, our method can easily extend to other
network structures, which is also a useful reference for other
metric learning approaches.

I. INTRODUCTION

Since the invention of deep neural networks [1], it has
become a trending topic and achieved great success in many
fields [2] [3] [4] [5]. However, the traditional deep learning
method still has notable limitations, especially in visual recog-
nition tasks [6] [7] [8], the deep neural network requires a
considerable amount of training samples and time [9] [10]
[11] [12] to build an effective model, and there will even be
an additional cost if annotating the training samples manually.
Moreover, it is challenging to collect enough data for training
in some fields, with insufficient samples, the trained deep
neural networks are troubled with the problem of overfitting
or underfitting [13] [14] [15] [16].

Non-parametric methods are suitable for small sample tasks,
and the most popular one is the nearest neighbor meth-
ods. Nearest neighbor methods are high-capacity models that
represent a class by storing all of its examples, hence can
capture complex distributions. In recent years, metric-based
prototype parametric methods [17] have achieved significant
progress. One of the prototypical methods is Gaussian mixture
models, it belongs to low-capacity models which can fit simple
distributions robustly by representing a class by its examples’
means and variances. However, models using methods are only
suitable for specific data distributions, and they can not adjust
model size flexibly in terms of the data distribution. To solve
this problem, Kelsey R.Allen and Evan Shelhamer proposed
Infinite Mixture Prototypes (IMP) [18] which represent a
class as a set of clusters and the number of clusters is data
determined. IMP can learn a deep embedding network, which
can adjust the model capacity based on the given data.

The metric-based learning method has gained some achieve-
ments in small samples classification. However, it mainly uses

specific Euclidean distance [17] or Cosine distance as the
measurement method, which restricts the adjustability of the
metric method when encountering various data sets. Base on
the Prototype network, Sung proposed Relation Network [19]
for few-shot image recognition task [20], it aims to learn the
similarity between query images and labelled sample images
from training. After learning how to measure the similarity
between samples through the neural network, the performance
of classification with small data has improved significantly.

IMP provides a more reasonable scheme for the structure of
the classification model, whereas Relational Network provides
a more efficient way as measurement function. To retain
the advantages of IMP and relation network, we introduce
Adaptive Multi-prototype Relation Network, given the support
data, it can generate one or more prototype for each class.

The main contribution of the paper is that it provides a new
network structure that can adjust the network capacity accord-
ing to the data distribution. And the classification accuracy
based on four different datasets has improved.

II. RELATED WORK

Metric Learning [21] Approaches are most relevant to our
work, it builds a distance measurement method which allows
samples in the same class close to each other and samples
from different classes are further apart. Use appropriate dis-
tance measurement, non-parameter estimation methods can
be applied to build small data classifiers. Using KNN [22]
as an example, it does not require training, its performance
mainly depends on the choice of distance measure. With
the development of neural networks based machine learning
methods, some end-to-end nearest neighbor classifiers build
by different neural networks structure have been proposed.
These models can integrate the advantages of both parameters
and non-parameters models that can learn the presentation of
unlabeled new samples quickly and suitable for small samples
classification task.

Recently there are numerous few-shot learning [23] models,
such as Matching networks [8], Siamese Neural Networks
[6], Prototypical Networks [17] and Relation Network [19] .
Matching networks [8] can generate labels for unseen classes
without changing the network model. Its main innovations
are in the modelling and training process, in the modelling
process, memory and attention-based networks are selected
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Figure 1. The prototype obtained by the Prototype Network is shown in the figure on the left. The prototype is obtained by averaging the support set samples
according to classes, classified by comparing the query samples and the prototype. Our strategy is to cluster the supporting set samples and get one or more
prototypes according to the data distribution, as shown in the figure, such a method is more conducive to making correct predictions.

to improve learning speed. In the training process, the pro-
posed condition matching idea emphasizes that the training
and testing should be carried out under the same condition,
which requires during the training stage, the network should
only see a small number of samples from each class which
will be consistent with the testing process. Siamese Neural
Networks [6] restrict the input structure and automatically
discover the features that generalized from the new samples,
this was trained through supervised metric learning based on
twin networks which share the same weights and network
parameters. During training, to learn the distance between
pairs of input data samples, we send sample pairs into the twin
networks and combine the two outputs. At the top layer, use
the cross-entropy loss to determine whether inputs pairs belong
to the same class. Prototypical Networks [17] is efficient and
straightforward, it learns an embedding function to encode
each input into a feature vector. By calculating the mean
value of feature vectors in the same class, each class will
generate a prototype representation. Based on the idea that
feature vectors in the same class should gather around the
prototype representation, the classification problem becomes
to find the nearest neighbor of different prototype representa-
tions. A typical prototype network only gives one prototype
representation to each class during the modelling process. It
results in failing of fitting the distribution of complex data
sets in the embedding space. To solve this problem, IMP
is preferred as it provides multi-prototype representations to
each class according to the distribution of feature vectors. As
shown in figure 1, the IMP method can improve classification
accuracy considerably. When measuring the distance between
the feature vector of a test sample and multi-prototype rep-
resentations in the evaluation step, instead of using Cosine
distance or Euclidean distance selected by normal prototype
network, we use a learnable network to find more appropriate
distance measurement method.

The learnable of distance measurement is proposed in
Relation Network, which is also a popular few-shot learn-

ing neural networks. It focuses on measuring the similarity
between query and support samples, the class decision is
judge by relation scores. Compared with Relation Network,
the Prototype Network focuses on projecting samples into
a more effective embedding space while the similarity of
samples in the embedding space is measured by artificial
method (such as Euclidean distance and Cosine distance).
Whereas, the Relation Network intends to learn an effective
distance measuring method for training samples to perform
the few-shot classification task but without building a more
nature prototype representation for class information. IMP
offers more suitable prototype representations for each class
and exhibits the capability of multi-prototype to improve
classification performance.

III. METHODOLOGY

A. Problem Definition

In the task of Few-Shot Learning (FSL), its training and
testing process are called meta-training and meta-testing.

A few-shot training set contains a number of classes, with
multiple samples in each class. In the training stage, N classes
will be randomly selected from the training set, with K
samples in each class (total N ∗ K samples) to construct a
meta-task, which will be input as the support set of the model.
A batch sample is then extracted from the remaining data from
these N classes as the query set of the model. The FSL task
then requires the model to learn how to distinguish the N
classes from the N ∗K samples, which is called the N -way
K-shot problem.

During the training process, different meta-tasks are ran-
domly sampled from the training dataset in each epoch, in
other words, each training meta includes a different combina-
tion of classes. This mechanism enables the model to learn
more common features through different meta-tasks. These
features will focus more on expressing the underlying nature of
each class and features belong to the same class are more gath-
ered. Since each meta-task has different training label, when
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Figure 2. Adaptive Multi-prototype Relation Network for a 5-way 5-shot problem with one query example.

encountering a small data samples, learned features could get
rid of the label information and the overfitting problem can be
restrained. Models learned through this mechanism can also be
suitable for new meta-tasks, in the meta testing phase, support
and query set built on the new class can be classified accurately
by using the trained meta-model.

B. Network Architecture

As shown in Figure 2, our model is mainly composed
of embedding module and relation module. The embedding
module extracts the image features, following the distribution
of embedding features in different classes, each class is
mapped as multi-prototype representations by multi-prototype
learning module. Using DP-Means algorithm to implement
the multi-prototype learning module, details of the module
can be found in Section III C. After combining feature map
of prototype representations and query set, relation pairs are
feeding into relation module, we could get predicted labels by
selecting maximum relation score. Compared with the Relation
Network, the most significant improvement is the additional
multi-prototype learning module, which enhances the ability
to express the nature of the data distribution.

In the K-shot problem, the data processing flow is as
follows: embedding module fφ extracts features of support
samples and query samples, then feed K features of sup-
port sample to multi-prototype learning module, instead of
obtaining a single prototype by element-wise sum features
in the same class, cluster these vectors to generate one or
more prototype representations for each class. Finally, rela-
tion module makes predictions by comparing the similarity
between the query sample and the prototypes. When dealing
with the one-shot problem, our network degenerates into the
normal Relational Network, so only the K-shot processing is
described here.

For K-shot where K > 1, as illustrated in Figure 2. Samples
xj in the query set Q, and samples xc,i in the support set S
are into through the embedding module fφ, which produces
feature maps f ′(xc,i) and f ′(xj). K feature maps f ′(xc,i) in
the same class are mapped into M prototype representations
f ′′(xc,m) by multi-prototype learning module and f ′(xj) is
mapped as f ′′(xj) too. 1 ≤ m ≤ K, when m = 1, our network
is equivalent to Relation Network, m > 1, the prototype
representations f ′′(xc,m) and f ′′(xj) are combined together
and feed into relation module gφ, which eventually produces
a scalar in the range from 0 to 1 to represent the similarity
of input pairs, which is called relation score, then taking the
maximum relation score of the relation pairs for each class as
predict label.

C. Multi-prototype learning module

The key of the multi-prototype learning module is the
DP-Means algorithm, DP-means [24] is a deterministic, hard
clustering algorithm derived via nonparametric Bayesian for
the Dirichlet process. As illustrated in Algorithm 1, DP-means
iterates over the data points, computing the minimum distance
to all existing cluster means of each point. If this distance is
greater than the threshold λ, a new cluster will be created with
mean equal to the point. It optimizes a k-means-like objective
for reconstruction error plus a penalty for making clusters.

D. Loss function

After the relational network calculation, predict the value of
each class by taking the maximum value, and then calculate
the Mean Square Error (MSE) loss to train model, rj is relation
score vector, lj is one-hot vector of label.
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Table I
COMPARISON OF THE CLASSIFICATION PERFORMANCE ON THE Omniglot, mini-Imagenet, Stanford-cars, AND Caltech101 DATASETS. THE
MODULES ARE: Prototype network, Matching Nets, Relation Net AND Adaptive Multi-prototype Relation Network (Ours). ALL OURS ACCURACY

RESULTS ARE AVERAGED OVER 600 TEST EPISODES AND ARE REPORTED WITH 95% CONFIDENCE INTERVALS.

Methods Omniglot mini-Imagenet Stanford-cars Caltech 101
Prototype network 99.7 63.15 62.14 -
Matching Nets 98.9 55.31 64.74 -
Relation Net 99.708 62.663 64.59 74.089
Ours 99.718 64.719 65.086 76.195

Table II
ABLATION STUDY OF Relation Net AND Adaptive Multi-prototype Relation Network (Ours) ON Omniglot, mini-Imagenet, Stanford-cars DATASETS.

ALL OURS ACCURACY RESULTS ARE AVERAGED OVER 600 TEST EPISODES AND ARE REPORTED WITH 95% CONFIDENCE INTERVALS.

Omniglot mini-Imagenet Stanford-cars
Methods 5-way 10-way 5-way 10-way 5-way 10-way
Relation Net 99.708 99.64 62.663 46.743 64.59 44.761
Ours 99.718 99.66 64.719 48.94 65.086 45.825

Algorithm 1 Dp-means clustering algorithm
Input: x1, ..., xn: input data, λ: cluster penalty parameter
Output: Clustering `1, ..., `2 and number of cluster k

Init.k = 1, `1 = {x1,...,xn},and µ1 the global mean.
Init.cluster indicators zi for all i = 1, ..., n.
Repeat until convergence
for each point xi do

Compute dic = ||xi-µc||2 for c = 1, ..., k
If mincdic > λ,set k = k + 1, zi = k,and µk = xi.
otherwise, set zi = argmincdic.

Generate cluster `1,...,`k based on z1,...,zk:`j = {xi|zi =
j}
For each cluster `j ,compute µj = 1

|`j |
∑
x∈`j x

ϕ, θ ← argmin
ϕ,θ

N∑
j=1

|rj − lj |2

We may consider a better solution to obtain single predict
value without the maximizing procedure. Because maximizing
the information along the way might cause other parts to lose
useful gradient information. If this mechanism can be resolved,
the overall performance of the network can be improved.

IV. EXPERIMENTS

A. Datasets

We used the Omniglot, mini-Imagenet, Caltech-101 and
fine-grained dataset Stanford-cars. By conducting the clas-
sification experiment of the above datasets, we proved the
effectiveness of our network. All experiments are implemented
based on PyTorch.

Omniglot [14] is a dataset of 1,623 handwritten characters
from 50 alphabets. There are 20 examples of each character,
where the images are resized to 28∗28 pixels and each image
is rotated by multiples of 90◦. This gives 6,492 classes in total,
which are then split into 4,112 training classes, 688 validation
classes, and 1,692 test classes.

Mini-ImageNet [8] is a reduced version of the ILSVRC’12
dataset [25], which contains 600 84∗84 images for 100 classes

randomly selected from the full dataset. We use the split from
Ravi & Larochelle [26] with 64/16/20 classes for train/val/test.

Stanford-cars Dataset contains 16,185 images of 196
classes of cars. The data is split into 8,144 training images and
8,041 testing images, where each class has been split roughly
in a 50-50 split. Classes are typically at the level of Make,
Model, Year, e.g. 2012 Tesla Model S or 2012 BMW M3
coupe.

Caltech 101 The Caltech 101 dataset consists of a total of
9146 images, split between 101 different object categories, as
well as an additional background/clutter category. Each object
category contains between 40 and 800 images on average.
Common and popular categories such as faces tend to have a
larger number of images than less used categories. Each image
is about 300∗200 pixels in dimension. Images of oriented
objects such as airplanes and motorcycles were mirrored to
be left-right aligned, and vertically oriented structures such as
buildings were rotated to be off axis.

B. Implementation details
As most few-shot learning models utilise four convolutional

blocks for embedding module [17] [8], we follow the same
architecture setting for a fair comparison. More concretely,
embedding module is composed of four convolution block,
each convolutiona block contains a 64 channels, 3 ∗ 3 Con-
volution kernel convolution layer, a batch normalization and
a ReLU non-linearity layer respectively. The first two blocks
also contain a 2 ∗ 2 maxpooling layer while the latter two do
not. The relation module consists of two convolutional blocks
and two fully-connected layers, each of convolutional block
contains a 3 ∗ 3 convolution kernel, 64 channels convolution
layer, followed by batch normalization layer, ReLU activation
layer and 2 ∗ 2 max-pooling layer. Take the sample of mini-
ImageNet dataset as an example, in case of 5-way 5-shot,
feeding 25 ∗ 3 ∗ 3 ∗ 84 tensors to embedding module, output is
25 ∗ 64 ∗ 19 ∗ 19 vector, these tensors are expanded by class
and processed by multi-prototype learning module to produce∑5
i=1mi ∗ 64 ∗ 19 ∗ 19 prototypes, the prototypes and query

features are concatenated into
∑5
i=1mi ∗128∗19∗19 relation

pairs as input of relation module, finally end up with a 5 ∗ 1
relationship tensors. In our experiment, the values of batch
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size, learning rate and episode are 10, 0.001 and 500, 000
respectively.

C. Results

In different datasets, shown in table I that the classification
accuracy has been improved to a certain extent, especially
in the coarse-grained datasets mini-Imagenet and Caltech-
101, where the classification accuracy has increased by more
than 2%. It also performs better than the original model on
fine-grained datasets. Table I shows that for other typical
classification models, our model also has advantages over
several representative small sample datasets.

As can be seen from Table II, in the experiment of 10-way
5-shot, with the increase of sample class, our classification
performance is still superior to the original model. Although
our network structure has increased somewhat, the training
time to reach the optimal model has not increased much.

Based on the above datasets, given a random seed, we have
done groups of the control experiment. From the experimental
results, the performance of our model is superior to the
Relation Network. Especially for the datasets with significant
variance, performance improvement is more prominent. Ver-
ifying for the same class, the assumption that one or more
prototypes exist.

When it comes to datasets with insignificant intraclass
distance, like Omniglot dataset, there is no more prototype
within the class, by adjusting the clustering radius λ, the
network can be reduced to the Relation Network. Experiments
on coarse-grained data sets mini-Imagenet and Caltech 101
also prove that there may be one or more prototypes on
datasets with relatively discrete data distribution. Hence our
network structure performs better in these two datasets.

V. CONCLUSION

In this paper, we introduce Adaptive Multi-Prototype Rela-
tion Network, a Network structure that combines the charac-
teristics of IMP and Relational Network. Through a series of
experiments, there are a few conclusions in this work. Firstly,
the data mapped to the high-dimensional space, especially in
the coarse-grained datasets, still have different distributions
among the same class, according to the distribution of data
the choice of model is particularly essential. Secondly, Among
various metric learning methods, the learnable measurement
method is usually more appropriate than the traditional mea-
surement method. We believe this idea is also worthy as a
reference to many metric learning models.
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