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Abstract—This paper presents a framework for pre-training
neural networks, namely closed-form pre-training, and we apply it
to small-sample environmental sound recognition. Our main idea
is to pre-train neural networks on a dataset automatically gener-
ated by some formulas, without any prior real-world recordings
or manual annotation. Specifically, the proposed framework
consists of two steps. First, an audio classification dataset is
generated. Here, we propose three types of dataset definitions
using colored noise and its extensions. Second, a network is
pre-trained on the generated dataset. The obtained pre-trained
network is particularly effective for fine-tuning with few examples
because it helps optimization methods avoid falling into a
premature local optimal solution. In experiments, we demonstrate
the effectiveness of the proposed framework for small-sample
environmental sound recognition on three datasets: ESC-10/50,
and UrbanSound8K. We obtained performance improvement on
all datasets with a small number of training samples.

I. INTRODUCTION

Environmental sound recognition is an interesting research

topic having various applications to search, surveillance, adap-

tive speech recognition, and robotics. Thanks to the develop-

ment of learning techniques, recent research has made notable

progress in understanding environmental sounds. In particular,

some studies have shown that statistical approaches using deep

neural networks are effective.

To train neural networks, most optimization methods require

a set of training audio samples labeled with sound categories.

For example, to train convolutional neural networks (CNNs),

such as SoundNet [1] and EnvNet [2], manually labeled

datasets, such as ESC-50 [3] and UrbanSound8K [4], are often

used. After training, these networks can classify audio samples

into up to 100 environmental sound categories. However, they

are often sensitive to differences in recording conditions. This

is because, compared with automatic speech recognition, the

target environmental sounds are less structured. In fact, if we

compare human speech and environmental sounds such as

airplane engine sounds, the latter are more similar to recording

noise than the former.

To avoid the sensitivity problem in practice, networks are

typically trained using recordings collected from the same

location where a sound recognition system will be used. How-

ever, since the recording and manual labeling are often costly,

it is not always realistic to prepare enough audio samples to

train networks. Therefore, few-example environmental sound

recognition, which aims to train networks from a given set of

few audio samples per category, is needed.

∗equal contribution

Fig. 1. Overview of closed-form pre-training for small-sample environmental
sound recognition. A network is first pre-trained on an automatically generated
dataset, and then fine-tuned using a few recording examples. The Color5
dataset with 5 classes of colored noise is illustrated.

To effectively utilize a few examples, a promising approach

is to apply an adaptation technique. For example, fine-tuning

is the most popular technique, in which network parameters

are first pre-trained in a source domain, and then fine-tuned in

a target domain. In general, increasing the size of the dataset

for pre-training improves the classification performance in the

target domain. However, collecting a large number of audio

samples with valid copyrights and licenses is not easy in

practice.

This paper explores a framework for pre-training, namely

closed-form pre-training, which aims to pre-train networks

with a dataset automatically generated without using real-

world sound recordings. Specifically, the proposed framework

consists of two steps. First, an audio classification dataset

is generated. Here, we propose three types of dataset def-

initions using colored noise and its extensions. Second, a

network is pre-trained on the generated dataset. Figure 1

provides an overview of few-example environmental sound

recognition using the proposed framework. In experiments,

we evaluated the proposed framework on the ESC-10, ESC-

50, and UrbanSound8K datasets, and showed the effectiveness

of the proposed method for few-example environmental sound

recognition. In summary, our main contributions are threefold:

1) Development of a new closed-form pre-training framework

using artificially generated audio noise samples.

2) Definition of three noise datasets using colored noise and

its extensions.

3) Exhaustive experiments with few-example environmental
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Fig. 2. Visualization of dataset generation. (A) Five color categories for the colored noise dataset. The frequency distribution of each category and generated
audio sample spectrum are shown. (B) Ten attenuation categories for the Poisson colored noise dataset. Detailed steps are visualized from (C1) to (C4).

sound recognition on publicly available datasets.

The remainder of the paper is organized as follows. Sec. 2

reviews related work on environmental sound recognition.

Sec. 3 describes our method and the dataset definitions.

Sec. 4 presents and discusses the experimental results. Finally,

conclusions are offered in Sec. 5.

II. RELATED WORK

A. Environmental Sound Recognition

Environmental sound recognition is a task to classify audio

samples into pre-defined sound categories. Over the past 10

years, statistical signal processing approaches have led to

great success in this task. For example, probabilistic models,

such as Gaussian mixture models and hidden Markov models,

effectively estimate the distributions of audio features, such as

mel frequency cepstral coefficients. Recent studies have moved

to focus on end-to-end training of neural networks.

Dai et al. [5] proposed a deep CNN that accepts raw

audio data as input. Sailor et al. [6] proposed a convolutional

restricted Boltzmann machine to learn filter-bank features.

Temporal modeling with recurrent neural networks [7], [8],

and attention mechanisms [9], [10] are also known to be

effective. Tokozume et al. [2], [11] reported that EnvNet with

a swapping layer further improved the classification accuracy.

For evaluating these networks, researchers proposed datasets

compiled from environmental recordings. Piczak provided the

environmental sound classification dataset (ESC-10/50), which

consists of 2,000 audio samples of sound categories such

as sea waves and chirping birds. Salamon et al. constructed

UrbanSound8k [4] with 8,000+ urban recordings. Rakotoma-

monjy et al. [12] provided the LITIS Rouen dataset for

acoustic scene classification. More challenging audio datasets

are provided in the DCASE workshop series [13], [14].

B. Training with Few Examples

Training with few examples is a relatively new topic in the

field of audio and speech processing. For sound recognition,

including audio event detection, previous studies have found

that adaptation and fine-tuning techniques [15], [16], [17]

help improve the recognition accuracy. Data augmentation

techniques are also known to be effective for detecting rare

sound events [18]. For speech recognition, transfer learning

techniques from a high-resource domain to low-resource do-

mains are proposed in [19], [20]. A model pre-trained on a

large-scale English corpus is often adapted to low-resource

languages.

In these studies, pre-training on a large-scale dataset plays

an important role. However, collecting such a dataset is costly,

and its use is often limited to non-commercial research and

education uses. To complement the previous work, this study

explored a new technique for pre-training that does not require

any up-front costs for sample collection or manual annotation.

III. PROPOSED METHOD

This section presents the proposed pre-training framework,

namely closed-form pre-training, for few-example environ-

mental sound recognition. Our main idea is to pre-train neural

networks by using datasets artificially generated with formulas.

Specifically, we propose three types of datasets based on

colored noise.

A. Notation and Overview

Let Dtrain = {(xi, yi)}
N
i=1 be a training set for environmen-

tal sound recognition, where xi is an audio sample and yi is a

sound category label. Here, we assume that few examples are

given for each category. Our goal is to train a neural network

Nθ that predicts sound categories for new test samples, where

θ is a set of network parameters.

Recent neural networks [2], [6] have a large number of

parameters, and their performance improves with increased

network size. For these networks, training with few examples

is a challenging task because parameter optimization methods

often fall into a premature local optimal solution.

To avoid this problem, the proposed framework pre-trains

neural networks on an artificially generated dataset. Specifi-

cally, it consists of two steps: dataset generation and parameter

estimation. In the first step, an audio classification dataset

E = {(ǫj , wj)}
M
j=1 is generated, where ǫj is an audio sample

and wj is a category label. This dataset is independent from

Dtrain, but the input format, including sampling rate, should
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be the same. In the second step, the network Nθ is pre-trained

on the generated dataset E . The obtained pre-trained network

is then fine-tuned on Dtrain for evaluation. The following

subsections describe the details of each step.

B. Dataset Generation

Here, we propose three types of dataset definition for

constructing E . Note that none of them require any recording

or annotation costs.

1) Colored Noise Dataset: The first dataset is a colored

noise dataset consisting of five types of colored noise: white

noise, pink noise, blue noise, violet noise, and brown noise.

Pre-training on this dataset predisposes networks to focus

on differences in frequency distribution. Pairs of an audio

sample and a category label (ǫj , wj) for j = 1, 2, · · · ,M are

generated by the following three steps:

1. Apply uniform random sampling to select a color category

label cj from C = {1, 2, 3, 4, 5}, where 1 to 5 denote

white, pink, blue, violet, and brown, respectively. This

label is identical to the label for pre-training, that is,

wj = cj . The number of categories is |C| = 5.

2. Generate a white-noise source zj with a duration of 5

seconds. Note that the duration should be longer than the

input length of the network. In general, 5 seconds is long

enough.

3. Apply the coloring filter Fcj to zj to obtain a colored noise

sample by

ǫj = Fcj (zj). (1)

See the appendix for the filter definitions for each color.

Figure 2A visualizes the five categories. As can be seen, the

frequency distribution is different from category to category.

Therefore, pre-training on this dataset predisposes networks to

focus on the frequency distribution of audio samples.

2) Poisson Colored Noise Dataset: To introduce time-

domain variability into the dataset definition, a second dataset,

namely the Poisson colored noise dataset, generates non-static

noise. The noise occurrence follows the Poisson process shown

in Figure 2B. The dataset generation procedure is as follows:

1. Randomly sample a color category label cj and an at-

tenuation category label aj from C = {1, 2, · · · , 5}
and A = {1, 2, · · · , 10}, respectively. The label for pre-

training is defined by wj = (cj , aj). This means that the

number of categories is |C ×A| = 5× 10 = 50.

2. Generate a white-noise source zj and apply the coloring

filter Fcj followed by a Poisson-pulse filter Gaj
:

ǫj = Gaj
(Fcj (zj)). (2)

To construct the filter Gaj
, first, a sequence of

spikes is generated by a homogeneous Poisson process.

Here, we denote the time indexes of the spikes as

s(1), s(2), · · · , s(K), as shown in Figure 2 (C1). Second, at

each spike s(k), duration d(k) is sampled from a Gaussian

distribution N(µ, σ), where µ = λaj , λ is a scaling

parameter, and σ = 1. This makes a random pulse signal,

as shown in Figure 2 (C2). Finally, the filter Gaj
is defined

by

[

Gaj
(x)

]

t
=

{

10
Pmin
20

t−s(k)

d(k) · xt if ∃k t ∈ Rk

0 otherwise
, (3)

where [·]t denotes the value at time t; Rk is the range at the

k-th spike, that is, Rk = {t : s(k) ≤ t < min(s(k+1),s(k)+
d(k))}; and Pmin is a constant set to −120. This definition

attenuates the noise level linearly in decibels at each spike.

The definition is visualized in Figure 2 (C3).

Figure 2B shows the differences between categories. As can

be seen, the noise structure changes from pulse-like noise

to stable noise as the attenuation category label a increases.

Therefore, pre-training on this dataset predisposes networks to

focus more on time-domain characteristics.

3) Extended Poisson Colored Noise Dataset: The third

dataset, namely the extended Poisson colored noise dataset,

explores a different type of source signal to extend instance

variability. It introduces a source type selection procedure to

the second step of noise generation, where the source zj is

selected from white noise or a random pulse. The random

pulse is a signal having spikes with a value of 1 on an all-

zero background signal. The interval between adjacent spikes

is randomly sampled from 4 to 12. The number of categories

of this dataset is 100.

C. Pre-Training

After generating a noise dataset E , it is used to pre-train

a network Nθ. Any type of objective function for solving

classification problems, such as softmax loss or Kullback–

Leibler divergence loss [11], can be introduced into this step.

Further, data augmentation methods, such as mixup learning

[21], can also help improve the performance. For evaluation,

the pre-trained network is fine-tuned on the given training

dataset Dtrain having only a few examples of real-world

environmental sounds.

IV. EXPERIMENTS

This section describes the evaluation of the proposed

method for few-example environmental sound recognition

with three datasets: ESC-10, ESC-50, and UrbanSound8K.

We describe the evaluation settings before moving on to the

results.

A. Experimental Settings

The three datasets and their evaluation measures are as

follows:

1) ESC-10 dataset. This dataset consists of 400 environmental

recordings in 10 sound classes such as sea-waves, crackling

fire, and chainsaw. We followed the evaluation protocol in [3]

using fivefold cross-validation.

2) ESC-50 dataset. This dataset consists of 2,000 environmen-

tal recordings in 50 sound classes. We followed the evaluation

protocol in [3] using fivefold cross-validation.

3) UrbanSound8K dataset. This dataset consists of 8,732

audio clips for 10 urban sound classes, such as air conditioner,
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TABLE I
ACCURACY (%) OF SMALL-SAMPLE ENVIRONMENTAL SOUND RECOGNITION ON ESC-10, ESC-50, AND URBANSOUND8K DATASETS. COLOR5,

PCOLOR50, AND EXPCOLOR50 DENOTE THE DATASETS PROPOSED FOR PRE-TRAINING.

ESC-10 ESC-50 Urban8K

# Training Samples 1 2 4 8 1 2 4 8 1 2 4 8

EnvNetV2 [2] (scratch) 37.90 54.90 67.75 75.70 2.52 17.24 23.44 63.58 10.86 18.38 28.81 34.85
- Color5 43.80 56.25 65.70 75.70 4.80 21.30 23.30 64.69 17.52 27.58 34.68 40.09
- PColor50 48.75 62.40 72.25 81.40 25.10 37.98 38.14 66.80 23.53 33.75 39.25 49.14
- ExPColor50 50.55 67.05 76.65 84.95 27.66 39.49 39.39 67.16 26.50 33.62 40.04 48.88

SE-EnvNetV2 (scratch) 42.55 56.30 68.70 76.20 20.40 38.87 52.66 69.43 11.43 15.68 20.64 27.74
- Color5 38.75 51.25 60.65 71.35 20.20 37.73 52.02 70.50 16.56 18.43 28.67 30.96
- PColor50 51.60 62.75 71.80 80.45 27.97 41.03 56.08 69.47 26.74 35.23 41.30 50.74
- ExPColor50 51.25 61.75 72.75 80.85 27.49 41.33 56.39 69.95 26.04 35.49 41.43 50.84

dog bark, and gunshot. We follow the evaluation protocol in

[4] using 10-fold cross-validation.

To conduct experiments using few examples for training,

the number of training samples per category was varied from

one to eight. Experiments were repeated 10 times, and the

results are reported here as average classification accuracy.

Note that in all experiments, validation splits were fixed for a

fair comparison.

Two types of network architectures, EnvNetV2 [2] and SE-

EnvNetV2, were implemented. Here, SE-EnvNetV2 is a new

network that introduces the squeeze-and-excitation (SE) mod-

ule [22] to EnvNetV2. For pre-training, three proposed datasets

were compared: Colored noise dataset with 5 classes (Color5),

Poisson colored noise dataset with 50 classes (PColor50),

and extended Poisson colored noise dataset with 50 classes

(ExPColor50). Each dataset has 32 generated audio samples

per category. For training on evaluation datasets, the data

augmentation method in [11] was applied. The default hyper-

parameters were used in all experiments.

B. Experimental Results

Table I reports classification accuracy on the three evalua-

tion datasets. We see that the proposed pre-training framework

improves the performance for all datasets and conditions. This

confirms the effectiveness of pre-training on colored noise and

its extensions.

If we compare the three proposed pre-training datasets,

PColor50 significantly improves the performance from Color5,

and ExPColor50 yields a further slight improvement. This

shows that datasets having both frequency-domain and time-

domain varieties are effective for pre-training.

To analyze the optimization process, Figure 3 compares

training accuracy curves with and without introduction of a

pre-trained model. We see a clear difference between the two

curves, indicating that optimization without pre-training (from

“scratch”) falls into a premature local optimal solution. This

result supports our assumption that pre-training helps to avoid

such solutions, and confirms the effectiveness for for few-

example environmental sound recognition.

Finally, Table II confirms that our framework does not

degrade the performance even if many samples are used for

training. It also shows that our experiments were conducted

with a high-performance baseline compared with other meth-

ods. Combining our method with other types of learning

Fig. 3. Training accuracy curves on UrbanSound8K dataset using eight
samples per class for training.

TABLE II
COMPARISON WITH OTHER METHODS. THE RESULTS ARE OBTAINED

USING ALL SAMPLES FOR CONFIRMING THAT OUR PRE-TRAINING DOES

NOT AFFECT THE PERFORMANCE EVEN WHEN MANY SAMPLES ARE USED

FOR TRAINING.

Method Input Type Acc.

Piczak FBEs CNN [23] Mel spectrogram 64.50
SoundNet [1] Raw audio 74.20
ConvRBM [6] Raw audio 78.45
Human [3] - 81.30
TEO-GS CNN [24] Gammatone spectrogram 81.95
PEFBEs CNN [25] Mel spectrogram 84.15
Multi-Stream Net [9] STFT coefficients 84.00
ConvRBM+FBEs [6] Mel spectrogram 86.50

EnvNetV2 [2] Raw audio 84.90
- ExPColor50 Raw audio 84.90
SE-EnvNetV2 Raw audio 86.05
- ExPColor50 Raw audio 86.35

methods, such as unsupervised filter-bank learning [6], would

be a promising next step to further improve the performance.

V. CONCLUSION

This paper presents closed-form pre-training, which pre-

estimates network parameters without any prior recording or

annotation. We proposed three types of datasets for automati-

cally generating and using colored noise and its extensions. We

performed experiments to demonstrate the effectiveness of the

proposed framework for environmental sound recognition on

three publicly available datasets after fine tuning with only a

few examples. A useful line of inquiry for future work would

be to focus on introducing other types of noise, as well as

combining the method with other types of networks.
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VI. APPENDIX: DEFINITION OF COLORING FILTERS

Let z = (z1, z2, · · · , zT ) be a white-noise source. The

coloring filter Fc is defined autoregressively [26] as follows:

[Fc(z)]t = −
63
∑

k=1

ac,k [Fc(z)]t−k + zt, (4)

where ac,k is a filter coefficient inductively defined by ac,0 = 1

and ac,k=
(

k − 1− βc

2

)

ak−1

k
. The parameter βc is defined for

each color as β1 = 0 (white), β2 = 1 (pink), β3 = −1 (blue),
β4=−2 (violet), and β5 = 2 (brown). Note that this is

the standard implementation in Matlab for generating colored

noise.
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