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Abstract—Imitation learning is a data-driven approach that
has proven to be successful in building autonomous navigation
systems. One of the key tasks in imitation learning is collecting
data, but data only collected by humans cannot include many
types of data, such as deviating from the target path. If we use
a model trained with such data, the deviation will accumulate,
and returning to the target path will be difficult. Related studies
have demonstrated the importance of correction data, and two
types of solutions have been proposed: data augmentation and
online sampling. In this paper, we propose a new online sampling
method for acquiring correction data that is safe and effective,
which uses a device that detects the force applied a steering
wheel and accelerator pedal during an intervention. Autonomous
navigation experiments are conducted using small vehicles to
follow a specified path in static and dynamic environments.
Our experimental results show that we can successfully separate
intervention data from all collected data using intervention force
and that using intervention data for model training is effective
for improving the route-following. Also, our model can perform
obstacle avoidance and generate appropriate control signals when
encountering dynamic objects, such as pedestrians, at specific
locations.

I. INTRODUCTION

Countless situations need to be addressed for autonomous
vehicles such as self-driving cars, motorized wheelchairs, and
small mobile vehicles to operate safely and automatically
in dynamic environments. Most fully autonomous navigation
systems are designed in a modularized manner [1], [2], and
thus are divided into perception, navigation, decision-making,
and control components, and contain multiple modules at each
stage of the process. For an autonomous vehicle to deal with all
of the complex, real-world situations at the operational design
domain (ODD), it is necessary to design, test, and integrate
each module appropriately, which is expensive.

One approach used to develop autonomous navigation sys-
tems is known as imitation learning, where appropriate driving
behavior is learned from an expert. The most fundamental
method of imitation learning is a type of supervised learning
known as behavior cloning, in which, a model learns the
relationship between observations and experts’ actions from
a set of training data [3].

Behavior cloning is effective for some inference prob-
lems, but in real-world environments, it may be difficult or
impossible for the system to recover when a misalignment
occurs [4]. If we consider the case of an expert following

a target path, there will generally not be many instances of
the expert behavior deviating from the path, and so almost
all of the data will be collected along the target path. If a
model is trained only using such data, it may not be able to
take appropriate action when occurring a deviation from the
target path. Therefore, imitation learning systems require not
only demonstration data from an expert but also “correction
data”, which is data showing how to recover from diverging
situations. Correction data can be prepared in two methods:
data augmentation and online sampling.

Data augmentation is a method of generating data using
a framework, such as additional sensors. Bojarski et al. [5]
proposed a method of imitation learning for end-to-end driving
which is an example of behavior cloning using data augmen-
tation. They obtained camera images as input, which were
used to generate estimated steering angles as the output. In
addition to generating a demonstration dataset, they created
correction data for each time step, using data augmentation
based on images collected with additional cameras. As a result,
their method achieved vehicle control for lane-keeping on real
roads.

Online sampling is a method of collecting data while
control is being exercised by a trained model. An example
of behavior cloning using online sampling is the method
developed by Ross et al. [3], who proposed an interaction
method for imitation learning called the “DAgger”, which uses
an expert to create training data for a model. In contrast to data
augmentation methods, the data collection and model training
steps are repeated. During data collection, an expert’s correct
control over the model’s control allows for the acquisition
of training data to return from deviations. However, when
using the DAgger method, the expert may not perceive their
feedback as being sufficient, because the expert’s actions are
not reflected directly in the control of the vehicle. Therefore,
the expert can be exposed to a dangerous situation if the
model’s output is incorrect during data collection.

In this study, we propose a new online sampling method that
uses an intervention device. Intervention forces applied by an
expert are used to obtain correction data in the data collection
step. Fig. 1 shows an overview of our proposed method.
The expert can intervene the actions of the model using the
handle of the device. In other words, the handle is controlled
automatically during autonomous navigation, but the expert
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Fig. 1. Overview of our proposed method. We proposed collecting data
on force applied by an expert when intervening to correct an autonomous
navigation system, and using this data for imitation learning. By using our
intervention device, the expert can intervene whenever the model makes a
control error.

can interrupt control by applying the force to the handle. In
contrast to the DAgger algorithm, the device can override
control signals from the model, allowing the vehicle to be
controlled instead by the expert’s inputs. By installing similar
devices in autonomous vehicles, such as self-driving cars,
motorized wheelchairs, and small mobile vehicles, experts can
interrupt a model when it attempts to carry out dangerous
actions, and instantly receive feedback from their intervention
actions, allowing them to maintain safe control of the vehicle
during data collection.

The contributions of this work are as follows:

1) We propose a new online sampling method that is
safe and effective, which uses a device to detect the
intervention force.

2) Control force data is collected and forces recorded
during expert interventions are used as training data.
Objective control signal generation for operating the
vehicle is achieved using this small intervention dataset.

3) This method can be used for lane-following, obstacle
avoidance, and decision-making in dynamic environ-
ments along a target pathway.

The rest of this paper is organized as follows: Section II
summarizes related work, Section III describes the proposed
method, and Section IV describes our system setup. Section V
presents our experimental results, and our results are discussed
in Section VI. Finally, in Section VII, we present our conclu-
sions and suggest possible directions for future investigation.

A video of our proposed device and experiments
is available at https://drive.google.com/drive/folders/
1bM2-uMve-Sm-gA0xTdv5xqii6Lp3E Ul?usp=sharing.

II. RELATED WORK

End-to-end driving is a method that generates a control
signal directly from the sensor input. In the following subsec-
tions, we discuss several studies related to data augmentation,
reinforcement learning, and online sampling that is often used
to achieve end-to-end driving, respectively.

A. Behavior cloning with data augmentation

The concept of “end-to-end driving” vehicle navigation was
pioneered by Pomerleau et al. [6]–[9]. Their vehicle, called
ALVINN (autonomous land vehicle on a neural network),
took images from a camera and computed several image
transformations by shifting and rotating the original image to
the left and right to consider situations where the vehicle had
deviated from its intended trajectory. These images were then
fed into a back-propagation neural network with 30 outputs to
indicate steering direction.

Bojarski et al. [5] proposed an autonomous driving method
which applied a behavior cloning framework. A Convolutional
Neural Network (CNN) [10] model used camera images as
inputs and generated a steering angle as the output.

Seiya et al. [11] evaluated the effectiveness of Bojarski’s
data augmentation methods using a small vehicle. They found
that the correction data was required for model training and
that view-point conversion was the most effective method for
robustness. In subsequent studies, Seiya et al. [12], [13] used
data augmentation to further improve robustness.

Bansal et al. [14] proposed another learning-based au-
tonomous driving method which they called ChauffeurNet.
Their model learned the relationships between feature maps
and future ego positions. This means that the model learned a
planning module from human driving data. Their model also
used a data augmentation method called Trajectory Perturba-
tion for robustness. Trajectory perturbation is used to create
simulated situations such as collisions and deflections from the
center of the road which are difficult to obtain from normal
driving data. While these data augmentation methods require
a particular system to achieve some of their objectives, it will
be served multiple objectives simultaneously if the system is
not required.

B. Reinforcement learning and inverse reinforcement learning

Inverse reinforcement learning (IRL) is a similar approach
to imitation learning. In IRL, the main goal is to learn a reward
function from an expert’s behavior. A reward function is often
used for training agents to learn a policy in reinforcement
learning (RL). These methods are used when it is difficult to
build the reward function directly, such as in applications like
autonomous driving.

Sahand et al. [15] proposed the use of an IRL method for
autonomous driving. Their model was able to learn a reward
function from an expert’s demonstrations, allowing an agent
to learn human-like lane change behavior from simulations.

Kendall et al. [16] and Amini et al. [17] proposed practical
RL methods for autonomous lane-keeping systems. In their
systems, an agent initialized its parameters randomly, and
the expert then had to intervene frequently in the control of
the agent. Based on this expert demonstration, the system
calculated the rewards and trained the agent using RL.

Theerapap et al. [18] proposed an RL method that used
pull-string angles as a reward function, allowing a robot to
learn to follow a specific person in a test environment.
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These IRL and RL systems can be understood as an
adversarial framework, similar to Generative Adversarial Nets
(GANs) [19]. These systems have also been called Generative
Adversarial Imitation Learning (GAIL) [20] or Adversarial
Inverse Reinforcement Learning (AIRL) [21]. Kuefler et al.
[22] and Bhattacharyya [23] applied GAIL frameworks for
autonomous driving in a simple highway simulation [24].
Li et al. [25] introduced visual input into GAIL and demon-
strated its effectiveness using a racing game simulation. These
IRL and RL methods have challenges in terms of their real-
world applications and the need to design reward functions.

C. Online sampling methods

Online sampling methods repeat the sampling and training
steps. Laskey et al. [26] proposed an online sampling method
with a noise injection called DART. Their concept is similar
to behavior cloning methods with data augmentation. Noise
is added to control signals during data collection to obtain
correction data. Codevilla et al. [27] also used this method
for imitation learning. One drawback of this method is that it
can be dangerous in a real driving environment because the
control signal includes noise.

Ross et al. [3] proposed an online sampling method called
DAgger. During sampling, the expert and the model both con-
trol the vehicle at the same time, and the control signals from
the expert and model are mixed in a probabilistic framework,
and the training data is collected. During training, the model
learns driving policies from the collected data. When using the
DAgger method, the expert does not receive feedback directly,
since control signals from the model and the expert are mixed,
which can be disorienting for the expert.

Kelly et al. [28] proposed an improved DAgger method
called HG-DAgger, by introducing a switch that decides which
control signals (the expert’s or the model’s) are applied at
a particular time. In this method, control can be performed
without the mixing of expert’s and model’s control signals,
however, it does not take into consideration some device and
the possibility that signal changes may suddenly occur at the
moment when intervention begins.

III. INTERVENTION FORCE-BASED IMITATION LEARNING

In this study, we propose a behavior cloning method that
uses a simplified version of HG-DAgger. Our method uses a
control force feedback device that can directly obtain correc-
tion data from the expert. The device can also obtain control
feedback from the vehicle when the expert does not intervene.
Our system eliminates the rapid signal changes which may
occur at the beginning of an intervention, allowing for safer
intervention. In the following subsections, we discuss the
details of our proposed method.

A. Preparation of a suitable dataset for imitation learning-
based navigation

Behavior cloning methods for autonomous driving require
a training dataset for the model to learn the relationships
between sensor-inputs and action-outputs. This subsection
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Fig. 2. Relationship between map position-based navigation and behavior
cloning approaches in a state space.

discusses how to prepare a dataset for imitation learning-based
vehicle control.

Fig. 2(a) shows a simplified navigation problem in a state
space. One basic navigation problem is to find the best
action set to reach a destination without a collision. Typical
autonomous navigation systems [1], [2] use map position-
based navigation (Fig. 2(b)), which estimates positions on a
priori map, detects obstacles, plans the shortest path to the des-
tination, and then follows the path using a trajectory controller.
In contrast, behavior cloning-based navigation models learn
the relationships between current states and the appropriate
actions directly from the behavior of an expert human driver
(Fig. 2(c)).

Bojarski et al. [5] and Seiya et al. [12], [13] both realized
end-to-end driving using a simple CNN without a recurrent
structure or whole path output. This was possible due to
Bellman’s principle of optimality, which states that a given
section of the optimal path from location A to B is consistent
with the entire optimal path. In other words, a set of short
optimal paths to each position along the optimal path are
equivalent to the whole optimal path. Therefore, if a CNN can
output the optimal solution for each moment, and the vehicle
can be controlled accurately, then the vehicle can follow the
optimal path.

Of course, actual vehicle actions can include errors when
compared to the optimal solution for several reasons, and
as a result, the vehicle can diverge from the optimal path.
To solve this problem, Bojarski and Seiya both used a data
augmentation technique, in which shifted and rotated position
images from a base position, were generated using additional
cameras. This facilitates efforts to return to the base position
from each shifted position, allowing the vehicle to return to
the original trajectory.

Thus, including data to facilitate a return to the target path
when the vehicle deviates from its path is important (Fig. 2(d)).
In other words, using a dataset that includes correction data is
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returning pathdiverging path

keeping path

target path

driving path

Fig. 3. Types of driving data when an expert intervenes in the control of an
autonomous navigation system. The data includes travel along the target route,
travel which deviates from the target route, and the path used to return to the
target rote after deviating from the route.

highly desirable for imitation learning-based navigation.

B. Correction data using intervention force

Researchers have achieved trajectory following through end-
to-end driving, however various navigation problems remain,
such as dynamic obstacle avoidance and velocity control.
Some of the problems faced by conventional data augmen-
tation approaches are that the special system needs to be
designed and that the dataset tends to be very large since data
augmentation is performed for every scene.

A simpler approach is to extract correction data from driving
data. When an autonomous vehicle behaves in an unintended
manner, humans can intervene and provide the input necessary
for correction. As a result, the driving data includes the
recovery actions needed for various problem situations (which
are good data for learning) as well as the faulty actions which
resulted in divergence from the target path (which are not good
for learning). Fig. 3 illustrates these types of driving data.
The dashed line represents the target path, while the solid
line represents the vehicle’s actual path when trying to follow
the target path. The driving data thus includes three states:
keeping the target path, diverging from the target path, and
returning to the target path. If a learning method uses all of
this driving data, including divergence data, the learning results
will sometimes guide the vehicle off the target path, therefore
the extraction of data from path keeping activity and activity
when returning to the path is important for imitation learning.

Correction data is obtained when a human intervenes in
automatic control and this intervention can be detected from
the force applied to the steering wheel and accelerator pedal.
This idea is based on power steering in cars, which uses a
motor to magnify the force applied to the steering wheel.
When using power steering, the force from the motor can be
detected, so the correction data is obtained from the forces
applied during the intervention, while the data which is not
needed for learning can be removed.

C. Proposed algorithm

In this subsection, we describe our proposed online sam-
pling method which uses the forces applied by an intervention
device, which is also described in Algorithm 1. Firstly, an
expert directs a vehicle using the input device to collect
the first dataset D0, which includes input-sensor data and
output-action data. Subsequently, during learning, the first
model π0 is trained from scratch using dataset D0. Next,

the expert driver begins the data collection step, which is
tracked chronologically using timestep t, during which trained
model πs primarily controls the vehicle, with the control
state is reflected in the input device. If the expert applies
an intervention force ft at timestep t to the input device,
the expert controls the vehicle. During the intervention, the
proposed system collects the expert intervention data Dexpert.
Finally, after the data collection step, the training step is
initiated, during which the dataset Dexpert is added to Ds

to create a new dataset Ds+1, and the new model πs+1 is
trained using Ds+1 from scratch. The collection and training
steps are repeated N times.

Algorithm 1 Our proposed algorithm
Collect initial dataset D0

Train initial model π0 using D0

for repeating step s = 0, 1, . . . , N do
for driving timestep t = 0, 1, . . . , T do

Control vehicle using model πs
if expert applies force ft > ε to device then

Control vehicle by expert
Collect expert dataset Dexpert

end if
end for
Ds+1 ← Ds ∪Dexpert

Train model πs+1 using Ds+1

end for

Our proposed method offers three advantages Compared to
the methods proposed in related studies. Firstly, our method
does not use a physical model to obtain correction data.
Therefore, the method can be extended to various navigation
situations such as obstacle avoidance and dynamic environ-
ments. Secondly, the total amount of intervention data used
for training the model is small, therefore the total size of data
for learning to support various situations is reduced. Finally,
the intervention device allows for smooth transitions between
autonomous and intervention modes, therefore the driver can
maintain safe and comfortable travel through proactive inter-
vention.

IV. SYSTEM STRUCTURE

A. Intervention device
The device used in this study for expert intervention is

shown on the right of Fig. 4. Our device is composed of a
wheel for steering control and a lever for velocity control.
When the vehicle is being controlled automatically, control
components of the device receive feedback from the vehi-
cle and are controlled automatically. Since devices such as
gamepads do not provide feedback, sudden changes in signals
can occur at the beginning of an intervention, but this does
not occur when using our device. The expert can intervene
in the autonomous system and control the vehicle directly
when applying force to the device. The force signals are saved
during the intervention and they are used for extracting the
intervention data.
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Fig. 4. Experimental setup for basic experiments. The figure on the left
shows our experimental vehicle and the figure on the right is a close-up of
our intervention device, which consists of a steering wheel and a velocity lever.
The device receives feedback from the autonomous vehicle and is controlled
automatically. The expert can intervene in the control by applying force to
the device.

 3D LiDAR

VLP16 (for localization) 

 WHILL-CR 
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 Servo motor 

2DLiDAR
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Fig. 5. Experimental setup for our advanced experiment. The expert can
intervene the in control of the autonomous driving system using the steering
handles and velocity pedal in a manner similar to that used by the autonomous
vehicle.

For our experimental evaluation, we constructed vehicles
equipped with several sensors. For our basic experiments,
which consisted of following a specified route, static obstacle
avoidance, and decision-making in dynamic environments, we
used the vehicle shown on the left of Fig. 4. For our advanced
experiment, which involved outdoor navigation, we used the
device shown in Fig. 5, which was designed to be easily
overridden by an expert, allowing for interventions to be
performed with little force.

To obtain information about the surrounding environment,
we used a single-line (2D) LiDAR, for obtaining point clouds
to create grid maps. The vehicle was controlled by either
control signals from the model or an expert, who monitored
the movement of the vehicle and who could intervene in the
control of the model at any time by using the device.

Fig. 6 shows an example of an intervention force. The blue
and orange lines show the force of the intervention and the
angular velocity of steering, respectively. Angular velocity is
controlled by the model when the vehicle is under automatic
control, but when intervention occurs the control signal is
switched seamlessly and smoothly to an expert. By noting the

Fig. 6. Example of an intervention force. When the expert intervenes, the
applied force increases sharply (blue line) and angle velocity changes (orange
line). Therefore, intervention data can be separated from other data (light
orange areas).

period when the force applied to the device exceeds a certain
value, intervention data can be easily distinguished from other
data, as shown in the light orange areas.

B. Sensor data arrangement for network input

We used a grid map representation for observation ot of
the surrounding environment. Fig. 7(a) shows an example of
a grid map with H × W cells (a height of H cells and a
width of W cells). The actual H and W values are shown in
Table. I. The white cells represent occupied areas where the
LiDAR data indicated an environmental obstacle, while the
black cells represent open space.

To support operation in dynamic environments, we used
a blurred motion-grid map (Fig. 7(b)), which contains an
accumulation of a few seconds of LiDAR data. In the figure,
grayscale values of the cells indicate the age of scans, with the
color of the older dynamic cells turning black as time passes.
To generate the grid map, each set of scanner data is mapped
to world coordinates, accumulated, and then re-converted into
sensor coordinates. Thus, the values in the grid map change
with the passage of time and the currently unoccupied cells
turn black with the passage of time. In this manner, static
obstacles are mapped in white and moving obstacles have grey
tails (representing old data).

C. Network structure

Our neural network model is comprised of five convolu-
tional layers and five fully-connected layers to learn these
relationships, following a previous study [11]. The input of
the model is the grid map and the outputs are the velocity
v and angular velocity ω of steering. The convolution kernel
size is five in the top three layers, and three in the last two
layers.

V. EXPERIMENTS AND RESULTS

To evaluate our proposed method, we conducted four ex-
periments; following a specified route, avoidance of a static
obstacle, decision-making in a dynamic environment, and
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(a) Grid map (b) Blurred motion grid map

Fig. 7. Example of a grid map (left) and a blurred motion grid-map (right).
The white cells have a value of 1, while the black cells have a value of 0. The
grid map represents the surrounding environments, while the blurred motion
grid map distinguishes between static objects and dynamic objects.

Fig. 8. Experimental environment for specified route-following. We attempted
to follow a specified, indoor route, as shown by the red line. The route included
two turns and a narrow gate.

outdoor navigation. Table. I shows the conditions for these
experiments.

A. Route-following

This experiment investigates whether robust learning-based
autonomous navigation can be achieved by collecting the
data from the scenes that involve expert intervention. In this
experiment, we trained two models with different amounts and
types of data. One model was trained using all of the collected
data, including intervention data, while the other model was
trained using intervention data only. We compared both route
following performance and the amount of data utilized for
these two models. To evaluate performance, we measured the
amount of intervention force that needed to be applied by the
expert to the steering handle to stay on course. The less force
the expert needed to apply, the better the model’s performance.

Fig. 8 shows the environment for our route-following exper-
iment. The red line shows the specified route to be followed
by the vehicle, which includes two corners and a narrow gate.
The width of the vehicle is 60 cm while the width of the
narrow gate is only 85 cm. In terms of control, the following
task is challenging.

Fig. 9 shows the results of this experiment. The orange
and blue lines show the amount of training data used and
the average amount of torque of every frame applied for the
steering. The average torque of every frame represents the
intervention force needed to reach the destination without a
collision or going in the wrong direction. In other words,

Fig. 9. Average applied torque in relation to the amount of training data.
Increasing the number of sampling steps decreased the average force required.
When all of the data was used for training, the average force did not decrease.

the smaller the force needed, the more accurately the vehicle
was able to operate on its own. In terms of the amount
of training data used, we collected over 50,000 frames of
driving data in total during 20 sampling steps for training the
“all data” model. We also succeeded in separating just under
10,000 frames of intervention data from this data for training
the “intervention data only” model. In terms of navigation
performance, the amount of intervention force needed to stay
on course decreased overall when using the model trained
with only intervention data, as the number of repeated data
collection and training steps increased. However, the amount
of intervention force needed did not decrease when we used
all of the collected data.

Fig. 10(a) shows where interventions were needed to correct
the output of the model while data collecting step. The green
points correspond to the target path and the purple lines denote
the locations where interventions occurred. Intervention tended
to be needed when the direction of travel changed abruptly.
The trajectories when the intervention was not needed for
reaching the destination are shown in Fig. 10(b).

After 20 trails of repeating step, we also compared the
number of times the vehicle could reach its destination without
collision with a wall, in the absence of any expert intervention.
When all of the collected data was used for training a model,
the vehicle was able to reach its destination 0 times out of 15
attempts. In contrast, when only intervention data was used for
training a model, the vehicle was able to reach the destination
in 13 out of 15 attempts.

B. Static obstacle avoidance

We expanded the usage of our method to include obstacles.
In this experiment, an obstacle was randomly placed on
a straight section of the designated path, using the same
environment as in the previous experiment. The size of the
obstacle was 53 cm in length, by 31 cm in width, by 43 cm
in height. The expert collected data to avoid the obstacle, as
it was placed in various locations in each trail. After training
the model using 10,226 frames of data from about 40 obstacle
avoidance trails, we evaluated whether or not the vehicle could
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TABLE I
EXPERIMENTAL CONDITIONS

Specified route-following Static obstacle avoidance Decision-making
in dynamic environments Outdoor navigation

Number of frames of training data
in final step

5,097(intervention data)
53,165(all data) 10,226 3,747 21,235

Input map Grid map Blurred motion grid map
Number of cells in input map 80× 100× 1 150× 150× 1

Output signal Steering Steering and velocity
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(a) The green points represent
the target trajectory, and the
purple lines show where inter-
ventions occurred.
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(b) Trajectories of the vehicle
during autonomous navigation.
These trajectories were generated
using the model trained using
only intervention data.

Fig. 10. Trajectories of the vehicle when following the specified route.

automatically avoid a collision with a wall or with an obstacle
placed in ten different locations.

Our results show that the vehicle was able to automatically
follow the designated route without a collision in 6 out of 10
trails. Fig. 11 shows some of the trajectories. The first two
figures show how the vehicle could avoid the obstacle when
approaching it, and could then return to the center of the path
after passing the obstacle. In contrast, the last two figures show
trails where the vehicle collided with the obstacle or a wall.

C. Decision-making in dynamic environments

We also considered a situation that is likely to occur in
dynamic environments to investigate the difference in the
velocity output by the models when encountering a stationary
pedestrian versus a pedestrian moving towards the roadway. To
simplify the experiment, the accelerator lever of the interven-
tion device was activated while the vehicle is in a stationary
state, so that the vehicle was not actually moving. During
data collection, the expert decelerated from 0.3 m/s when a
pedestrian approached the path of the vehicle and accelerated
after the pedestrian had passed. On the other hand, when a
pedestrian was standing near the intersection but remained
stationary, and did not move to cross the street, the expert
did not slow down. The experiment was conducted in the
same manner as the previous route-following experiment, and
3,747 frames of intervention data were used for training.
We evaluated the output velocity for the vehicle when the
pedestrian was moving and when the pedestrian was not

Fig. 11. Examples of trajectories during static obstacle avoidance experiment.
Lines represent the trajectory of the vehicle and the black rectangles are
obstacles. The top two trajectories are examples of successful obstacle
avoidance, while the bottom two are examples of unsuccessful attempts.

moving.
Fig. 12 shows the results of this experiment. The blue

and the orange lines show the velocity output by the model
when the pedestrian was moving and when not moving,
respectively. The vehicle slowed down when the pedestrian
was approaching and crossing the vehicle’s path and increased
after the pedestrian had crossed. The velocity of the vehicle
remained high and did not change greatly when the pedestrian
remained stationary near the intersection. Fig. 13 shows input
images when moving and stationary pedestrians are located
at the same point near the intersection. At this particular
location, the velocity of the vehicle when a pedestrian was
moving (image on the left) was about 0.03 m/s, and when the
pedestrian was not moving(image on the right) the vehicle’s
velocity was about 0.25 m/s .

D. Outdoor navigation

As an integration of the previous three experiments, we then
attempted to perform outdoor navigation with our model, using
the vehicle shown in Fig. 5. Fig. 14(a) shows a bird’s -eye view
of the environment used in this experiment, which included
some pedestrians and intersections. The expert drove 14 laps
around the course and 21,235 frames of training data were
collected.

The vehicle could navigate the course successfully by itself
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Fig. 12. Change in velocity when moving and stationary pedestrians were
present. The blue and the orange lines show velocity output when a pedestrian
in front of an intersecting road is moving or stopped. When the pedestrian
was moving, the vehicle reduced its speed. In contrast, when the pedestrian
was not moving, the vehicle maintained its velocity.

Fig. 13. Comparison of moving and stationary pedestrian motion at the same
location. The representation of the moving pedestrian (left) shows a gray tail
to the left, which represents movement from the pedestrian’s prior location.
The representation of the stationary pedestrian (right) has no tail, including
no movement from a previous location.

(without intervention) when the model was trained with the 14
laps of intervention data. The trajectory is shown in Fig. 14(b).
Fig. 15 shows how the differences in the vehicle’s trajectory
depending on whether or not a stationary pedestrian was
present on the road at the same location. The pedestrian was
standing at a point with an x value of approximately -15 m.
The blue line shows the vehicle’s trajectory when there was no
pedestrian (the vehicle drove straight), while the orange lines
show the vehicle’s trajectories when a pedestrian was present
(the vehicle swerved to avoid the pedestrian). Fig. 16 shows
how the vehicle velocity differed depending on the presence of
a pedestrian crossing at an intersection. The blue and orange
lines denote vehicle velocity when there was no pedestrian and
when there was a pedestrian, respectively. Even when there
was a pedestrian crossing the road, sometimes the vehicle did
not slow down.

VI. DISCUSSION

In the route-following experiments, our results show that the
intervention force needed for the vehicle to remain on course
decreased when only using the intervention data for model
training. These results indicate that the use of intervention
data is effective for improving the robustness of autonomous
driving. By extracting and using the intervention data for
training, data from deviant actions was excluded, and thus

(a) Bird’s-eye view of the ve-
hicle’s route.

(b) Trajectory of the vehicle after
training from 21,235 frames of inter-
vention data.

Fig. 14. Overview of outdoor navigation experiment
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Fig. 15. Comparison of trajectories when there was a pedestrian in the path
of the vehicle (orange lines), and when there was no pedestrian (blue line).
When a pedestrian was present, the vehicle swerved to avoid a collision. When
there was no pedestrian, the vehicle continued along the route.

the vehicle was better able to travel without deviations. In
addition, Fig. 10(b) indicates that the trajectories of the vehicle
tended to expand when there was a wide path and to converge
when the path was narrow. This suggests that the subtlety of
control by the model may vary depending on environmental
differences such as road width.

In the experiments involving indoor obstacle avoidance,
our results show that our method can be applied not only
to simple route-following but also in scenarios that include
changing environmental conditions. This indicates that the
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Fig. 16. Change in velocity depending on the presence of pedestrian at the
intersection. The blue and orange lines show vehicle velocity when there
was no pedestrian present and when there was a pedestrian crossing the
intersection, respectively.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1686



(a) (b) (c)

Fig. 17. Input grid maps of the intersection where the data shown in Fig.16,
showing the moment when the vehicle’s velocity was at its minimum for each
of the three experimental conditions: (a) blue line = no pedestrian, (b) solid
line = pedestrian crossing quickly, and (c) orange dashed line = pedestrian
crossing slowly.

CNN was able to abstract features, allowing the vehicle to
avoid the obstacles. As a result, the vehicle was able to avoid
the obstacles automatically, even when they appeared outside
the collected data. Sometimes the vehicle failed to avoid an
obstacle even though it reacted to the obstacle because the
change in the steering angle was not sufficient to avoid it.
Similarly, the vehicle sometimes failed to return to the path
when it missed the obstacle. To address these problems, we
consider that adjusting the range of input data being used,
depending on the objective, seems to be effective. Our input
grid map represented an area of 16m× 20m, but this may be
too large an area, because some obstacles become relatively
small. This suggests that extracting important features in order
to avoid obstacles is difficult if the size of input data is not
adequate.

In the experiments conducted in a dynamic environment,
our results show that our method could distinguish between
moving and non-moving obstacles. Therefore, our proposed
method can be used in complex situations such as dynamic
environments.

In the outdoor navigation experiment, we observed that
when pedestrians were crossing at an intersection, the output
speed of the autonomous vehicle differed depending on the
speed of the pedestrian. Fig. 17 shows an input grid map of the
intersection. By comparing Fig. 17(b) and Fig. 17(c), we can
see that the speed the pedestrians are traveling is different; the
pedestrian in the former is moving faster than the pedestrian
in the latter. When examined in conjunction with Fig. 16,
it appears that the vehicle does not slow down significantly
when the pedestrian is moving quickly, possibly because the
pedestrian is expected to finish crossing the road before the
vehicle arrives. In contrast, the vehicle does slow down when
the pedestrian is moving slowly, because maintaining the
higher velocity could result in a collision.

VII. CONCLUSIONS

In this paper, we have proposed new online data sampling
methods for autonomous driving using an intervention device.
Since the device proposed in this study can receive feedback
on the control of the autonomous vehicle, the expert can inter-
vene smoothly if needed. Furthermore, our method provides an
easy and safe way to collect training data from an expert. Our

results show that using the collected expert intervention data
for training is an effective method of improving the robustness
of an agent’s driving ability. Our experiment demonstrated
that our method can be applied to route-following, obstacle
avoidance along a specified route. It is unclear, however, if
our method will work when following a different route than
the one used for training.

In future work, we will need to evaluate our method in
real-world driving scenarios using real automobiles. In order
to improve performance, we are looking to make use of data
from scenes where intervention has not occurred and to be
able to notice obstacles. In addition, although this study dealt
with navigation on a specific pathway, it will be extended to
navigation on any pathway. Furthermore, we will also evaluate
whether or not model-based systems, which are designed in a
modularized manner, can be improved, in terms of safety and
driving comfort, by applying our method.
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