
Detecting Object Surface Keypoints from  

a Single RGB Image via Deep Learning Network  

for 6DoF Pose Estimation  

Lee Aing1 and Wen-Nung Lie1,2,3 

1Department of Electrical Engineering 

E-mail: ainglee55@gmail.com 
2Center for Innovative Research on Aging Society (CIRAS) 

3Advanced Institute of Manufacturing with High-tech Innovations (AIM-HI) 

National Chung Cheng University (CCU), Taiwan 

Email: ieewnl@ccu.edu.tw 

 
 

 
Abstract— Estimating the 6DoF object pose from a single 

RGB image is one of the challenging tasks in computer vision. 

Before the pose parameters can be defined by traditional PnP 

algorithm, 2D image projections of a set of 3D object keypoints 

have to be accurately detected. In this paper, we present 

techniques for defining 3D object keypoints and predicting their 

corresponding 2D counterparts via deep-learning network 

architectures. The main technique to designate object keypoints 

is firstly to employ k-means clustering for calculating the object 

surface weights and then select from all surface points the ones 

mostly distributive with larger surface weights to describe the 

object shape as possible. Moreover, Robust loss function is 

adopted in training the ResNet18 network for predicting image 

projection of object keypoints by focusing on small scale errors. 

Experimental results show that our proposed technique 

outperforms state-of-the-art approaches in ratio of correctness 

in both “2D projection” and “3D transformation” metrics. 

keywords: 6DoF object pose, deep learning, object shape. 

I. INTRODUCTION 

The 6DoF (Degree of Freedom) object pose estimation is a 

process to identify the orientation and translation of the target 

object (with respect to a pre-built 3D model) in order to 

understand more about the 3D scenes. A precise pose 

estimation is always high-demanding for the variety of 

applications such as Virtual Reality (VR), Augmented Reality 

(AR), autonomous driving, Human Robot Interaction (HRI), 

etc. Things become more challenging when the estimation 

deals with only a single RGB image. Recently, one of the 

efficient approaches based on deep neural network to train 

and estimate eight corners of the 3D bounding box in a 2D 

image was proposed by [1] . Those estimated 2D corners were 

then used to align with the corresponding 3D corners by 

operating the PnP solver [2]. This proposed technique was 

simple but lacked the ability of identifying object shape 

information, because those bounding-box corners were not 

lying on the object surface. Besides designating keypoints [3] 

around the object surface to form a feature point set for 

describing the object shape is not sufficiently mature and still 

an open issue. The drawbacks of losing certain critical 

keypoints and learning naïve networks with emphasis on only 

large errors cause existing systems imperfect in terms of 

estimation accuracy. 

In this paper, we aim to fulfill those gaps by using the 

pixel-wise voting network invented by [3] as the base system 

and then enhance the network to achieve a higher 

performance. The first technique we adopt is to localize the 

critical object keypoints (Fig. 1(a)) by using a method called 

double direction keypoint sampling (DDKS). This method 

starts from grouping the object points as regions by utilizing 

the well-known K-Means clustering. From those cluster 

means (see Fig. 2(a)), a weight can be calculated for each 

object surface point in the cloud to seek for representative 3D 

keypoints. By using recorded camera parameters in the 

dataset (in this paper, LINEMOD is used), 2D projections of 

object keypoints can be produced, from which a set of unit-

vector fields for all keypoints can be calculated and used as 

the ground truths for network training with cross entropy and 

Robust loss [4]. In testing, a procedure of keypoint voting is 

applied to restore 2D keypoints (Fig. 1(b)) from network 

outputs (unit-vector fields), and then the PnP algorithm [2] is 

used to recover the 6DoF pose (Fig. 1(c)) based on the paired 

correspondences of the 3D and 2D object keypoints. To 

summarize, main contributions of this research are: 

(a) 3D keypoints (b) 2D keypoints (c) 6DoF pose

Fig. 1. Estimation of 6DoF object pose from 3D and 2D keypoints pairs. (a) 
Definitions of 3D object keypoints (blue regions mean the possible 3D 

keypoint after applying CPS), (b) estimated 2D keypoints which can be 

defined in (13), (c) 6DoF pose visualized as a 3D bounding box. 

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1673978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020



• A direction-based technique (DDKS) to define 3D 

keypoints on the object surface which are capable of 

faithfully describing object shape for 6DoF pose 

estimation. 

• A set of unit-vector fields with its gradients derived from 

2D keypoints is used as ground truths for network training 

(not the 2D keypoints themselves). 

• The combination of a pixel-wise voting network and the 

Ruber loss with the regularization term enables the 

network to upgrade the performance, especially in the 3D 

transformation metric. 

II. RELATED WORK 

In this section, we will review some state of the art methods 

in defining 6DoF pose from a single RGB image. From the 

observation, we can basically divide those methods into two 

groups: pose-parameter based methods [5-8] and keypoint 

based methods [1, 3, 9, 10]. In this proposed method, the 

indirect keypoint based method is implemented to challenge 

with those state of the art methods, including some multi-

stage training approaches (methods with refinement) whose 

performances are always difficult to defeat. 

A. Pose Parameter Based Methods 

One state of the art method proposed to estimate the pose 

parameters which were 3 vector translation and 4 quaternion 

rotation was presented by Billings et al. [8]. The main 

contribution of this approach was to store offline the 3D 

features in the network and then tried to repaint the occluded 

parts of the estimated object mask. From that complete object 

mask, the quaternion rotation was predicted combined with the 

prior translation to form the pose. The performance was 

competitive, but the system contained a lot of learning steps, 

which becomes complicated to train.  

However, to enhance the performance, [5] [6] proposed 

techniques of refinement which were initialized by the initial 

pose from any existing techniques [7, 9] and outputted the pose 

offset. The differences between them were not only the object 

features using, but also model architecture. The refinement 

approach in [5] focuses on the optical flow and object mask to 

train the network while [6] put the effort on the object contour 

matching features with a new visual loss function. generally, 

they could obtain the better performance only if the refinement 

loops with more iterations. In conclusion, estimating the pose 

parameters might not be a good choice. 

B. Keypoint Based Methods 

Since the PnP algorithm was famous by solving 2D-3D 

correspondence object pose and consuming less time, [1] came 

up with the idea of regressing 2D projection of 3D object 

bounding box corners with DarkNet architecture from YOLO  

as the backbone. These proposed systems were feasible and fast 

enough, but low performance. This was because the estimation 

of those bounding box corners could not be robust to the 

occlusion problems and the corners were far away from the 

object, so that the training network gathered less correlation 

information between the object and the corners. 

For the reason that the 2D projection points were the most 

important to estimate the object pose, Peng et al. [3] proposed a 

novel technique to indirectly estimate the 2D keypoints lying 

on the object surface. This seemed to be more plausible 

whereas the object surface keypoints contained more details 

than the corners, so that estimating can go more accurately. 

After restoring back the keypoints by using a voting technique, 

the covariances of those detected 2D keypoints were calculated 

and fed to an uncertainty PnP algorithm [2] for estimating the 

6-DoF object pose. This indirect intermediate feature was great 

because they were easier to converge and post processing to 

infer the keypoints was not so complicated but precise.  

III. PROPOSED METHOD 

In this paper, we would like to estimate 2D projection 

keypoints, where their ground truth derived from 3D object 

keypoints based on a principle of double direction keypoint 

sampling (DDKS) and accordingly recorded camera 

parameters, and then the final step is to recover to estimate 

6DoF pose. One of the indirect ways to estimate 2D keypoints 

is to estimate the unit vector field which is a pool of unit 

vector pointing from each pixel location to those keypoints. In 

training, the ResNet18 architecture is employed as the 

backbone, combined with skip connections of intermediate 

outputs, to get the desired up-sampled feature maps. In testing, 

the network outputs are reversely converted to get the 

estimated 2D keypoints by using a keypoint voting technique. 

Finally, the PnP algorithm is applied to estimate 6DoF object 

pose (see Fig. 3). 

A. Double Direction Keypoint Sampling 

Our definition of selecting 3D keypoints is not only to 

distribute the keypoints on the object surface as possible (e.g., 

like the farthest distance criterion in [3]), but also make them 

informative and representative for the object shape. In this 

technique, 3D curvature is considered as an important 

information used to seek for object keypoints. Firstly, the K-

Means clustering technique is applied to assemble object point 

clouds or to cluster the object into regions (see Fig. 2(a)), in 

order to find a set of K cluster means (K has more number then 

…
(a) (c)

m1

oi

C1

 i

(b)

Cj

mj

oi

 i

Fig. 2. Computing weights from DDKS. (a) All the object point clouds are 

grouped into regions by using K-Means. (b) Each clustering is applied by 

DDKS to define the weights. (c) After clustering weights are all computed, 

they are assembled back to become the 3D object weights.   

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1674



the object keypoints). Each object surface point is associated 

with a weight, which can be calculated from two vectors: the 

surface normal vector and the vector pointing from the 

corresponding cluster means to the object surface point itself. 

The combination of these two vectors can provide some 

information about the object shape, so that from that 

information we can choose the appropriate keypoints. The 

inner-product of these two vectors is calculated to obtain the 

included angle (0~𝜋) between them, which is then normalized 

to [0, 1]. The weight of each point is expressed by: 

 1

2

( ) 1
1 cos ,

π

o m
n

o m

T
i j

i i j

i j

w i C−
 −

= −   
 − 

, (1) 

where oi and ni  are the i-th object surface point and its 

corresponding normal vector, respectively, and mj represents 

the means of j-th cluster Cj where oi is located (see Fig.2 (b)). 

To determine K keypoints, the selecting process is 

conducted in a subsequent manner. For each object point, its 

weight wi (see Fig. 2(c)) is multiplied (element-wise 

multiplication) with a home distance home
id and temp distance 

temp
id as shown in (3). The home distance is defined as the 

distance between each object surface point and the object 

centroid. The object point with the largest weighted home 

distance will be selected as the keypoint. However, to make K 

keypoints more distributed when determining the next 

keypoint, the surrounding of the current keypoint is updated 

by a rule defined in (2). For each object surface point, a temp 

distance is calculated, which is defined as the distance of all 

points to the previous chosen keypoint. Fig.1(a) shows the 

keypoints are all defined from the high weighted surface (red 

surface) by avoiding the body which is covered by green color, 

and then they update themselves the surrounding to be low 

weighted surface (blue regions). This process is repeated until 

all K keypoints are identified. 

 
,       if  

,       otherwise          

home home temp
i i ihome

i
temp
i

D D D
D

D

 
= 


, (2) 

 [ , ] [ , ]home temp home temp
i i ii iD D d d w=  , (3) 

After projecting those 3D keypoints to obtain the 

corresponding 2D keypoints, a unit-vector field vk (see green 

vector field in Fig. 3) for each 2D keypoint is calculated by 

using (4). All of the K unit-vector fields are used as the output 

ground truths for network training, which can be seen in Fig. 

3 and will be described in part B in section III. 

 

2

( )
k l

k l

k l

−
=

−

s p
v p

s p
, (4) 

where sk and pl stand for the k-th 2D keypoint and the l-th 

pixel within the segmented object mask, respectively, and the 

outside object mask (no unit-vector field) is the background 

which is set to be zero value. 

B. Deep Neural Network Design 

The network backbone that we use to do the upsampling 

decoder is ResNet18. We further modify it by ignoring some 

down-samplings, so as not to lose much information in high 

level features. During forward pass, only four outputs with 

different down-sampling dimensions of the intermediate 

backbone outputs (the blue  maps seen in Fig. 3) will be 

skipped and re-used to concatenate with the previous up-

sampled feature maps (the green ones). The grey feature maps 

are convoluted with padding to have the same dimension but 

different depth. The concatenation is then passed through to 

the convolutional block (including 2D convolution, batch 

normalization, and activation function) before being up-

sampled by using the bilinear interpolation to reproduce the 

same size as the corresponding skip connection feature maps. 

This simple process is continued until the desired output of 

size H×W×[C+1+2×K] is obtained, where H and W are image 

height and width, respectively, C and K are the numbers of 

object classes (1 is added because of the background) and 

keypoints, respectively, and the factor 2 comes from the fact 

that each unit vector is composed of horizontal and vertical 

components.  

In network training process, cross entropy loss for 

measuring semantics in segmentation and Robust loss [4] for 

measuring correctness of unit-vector fields are employed. 

Robust loss contains two sub-loss functions, where one is the 

Fig. 3. Overview of the proposed system.. In the bottom row, the green points represent the selected keypoints on the object surface model and their corresponding 

2D projections. The unit-vector fields are then calculated as the ground truths in network training. In the top row, ResNet18 is used as backbone network for 

predicting unit-vector fields from which the predicted 2D object keypoints in an image can be derived by passing through a keypoint voting technique. Those 2D 

keypoints are fed into the PnP solver for 6DoF pose estimation.  

Keypoints Voting 

Technique

PnP solver 

Concatenation

Convolution

Test only

Train only

Upsampling

Sobel operation

Robust LossEntropy Loss

DDKS

+

CAD

Model

Skip connections

RGB image

H
 

W
 

3

H
/2
 

W
/2
 

6
4

H
/4
 

W
/4
 

6
4

H
/8
 

W
/8
 

1
2
8

H
/8
 

W
/8
 

2
5
6

H
/8
 

W
/8
 

1
2
8

H
/8
 

W
/8
 

1
2
8

H
/4
 

W
/4
 

1
2
8

H
/4
 

W
/4
 

6
4

H
/4
 

W
/4
 

6
4

H
/2
 

W
/2
 

6
4

H
/2
 

W
/2
 

6
4

H
/2
 

W
/2
 

3
2

H
 

W
 

3
2

H
 

W
 

3

H
 

W
 

[C
+

1
+

2
K

]

H
 

W
 

K

H
/8
 

W
/8
 

2
5
6

H
/8
 

W
/8
 

5
1
2

M
ax

-p
o
o
li
ng

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1675



Ruber loss proposed by Irie et al. [4] and the other is the 

Mean Absolute Error (MAE) loss. Ruber loss focuses on 

small scale errors rather than the large ones, meaning that 

higher priority will be given to optimize small scale errors 

which form the major part in the loss graph. Specifically, the 

combination of Ruber and MAE loss is accumulative in 

performance but less influence to each other. For training, 

Ruber loss is used to supervise the unit-vector fields first and 

then compute the corresponding gradients before passing 

through MAE loss that follows. The definition of Ruber loss 

and computation of gradients are expressed in (5) ~ (10) as 

below: 

 
2

| | , if | |
( )

2 | | , otherwise

vector vector

Ruber vector

vector

e e c
l e

c e c


= 

−

, (5) 

 ( ) | |MAE gradient gradientl e e= ,  (6) 

 max{ } 50%vectorc e=  , (7) 

 ˆ ( ) ( )vector k l k le v v= −p p , (8) 

 )()(ˆ llgradient kk
GGe pp

vv
−= , (9) 

 )()()(
22

l

y

l

x

l kkk
GGG ppp

vvv
+= , (10) 

where ˆ ( )v pk l and ( )v pk l are the estimated and the ground 

truth unit-vector (as defined in (4)), Gx and Gy are gradient 

operator along the x and y directions, respectively, evector and  

egradient represent errors of unit-vectors and their gradient 

magnitudes, and c is a threshold defined to be 50% of the 

maximum absolute error in the mini-batch, which has a 

dimension of B×2K, where B is the batch size and K is the 

number of keypoints.  

C. Derivation of 2D keypoints from estimated unit-vector 

fields  

2D keypoints can be determined from the estimated unit-

vector fields by voting and histogramming intersection points 

between any pairs of unit vectors in the pool. We follow the 

technique from [3] by changing parameter values and without 

computing the covariance. Firstly, the intersection points 

which are called keypoint candidates (hk,n, k = 1~K, n = 1~N) 

are determined, where N is the number of candidates for each 

keypoint. The pool of unit vectors which is also called the 

voter pool (v = 1~V) is random uniformly selected in the 

object mask, where V is the number of voters.  

Next, the voting score which is defined in (11) [3] is 

calculated as the inner product [∙] of the vectors pointing from 

pixels (the voter’s locatio s) pk,v to the keypoint candidate hk,n, 

and the estimated unit vectors of the voter pool ,ˆ ( )v pk k v  with 

the condition of being greater or equal to a pre-determined 

confidence threshold 𝜃, where I[.] is a Boolean function that 

return 1 for true and 0 for false). The voting to each keypoint 

candidate from the voters is counted by doing the summation 

at the dimension v, and then the mask index of the best 

keypoint and candidate is determined by using the Boolean 

function I[.] before being element-wise-multiplied [∘] by mk,n,v, 

and finally, the summation is performed to obtain the best 

mask voter for each keypoint mk,v. This computation is 

expressed in (12). 

 , ,

, , ,

, , 2

( )
ˆI ( )

h p
v p

h p

T

k n k v

k n v k k v

k n k v

m 
 −

=   
−  

, (11) 

 
, , , , , , ,I maxk v k n v k n v k n v

n
n v v

m m m m
   

= ==   
   

   , (12) 

we apply this mask mk,v to defi e the best voters’ locatio s 

, ,p k vk v m  and best voters’ u it vector fields 
,,v̂ k vk v m . In 

order to determine the estimated keyoints ŝk , the linear 

equation of the orthogonal best voters’ unit vectors and the 

vectors pointing from best voters’ locatio s to keypoi ts can 

gets optimized by using least square fitting as seen in (13) [3].  

To the end, the tolera t keypoi ts’ locatio s are obtained. It is 

interesting to be noticed that this indirect (or voting-based) 

derivation of 2D keypoints from unit-vector fields is robust 

even in the presence of cropped object. 

 
( ), , ,

, ,

ˆ
ˆ

ˆ

v p
s

v

k v k v k v

k

k v k v

m

m

⊥

⊥


= , (13) 

IV. EXPERIMENTAL RESULTS 

A. Implementation Details 

Our experiments were based on a platform of Core i9 CPU 

Intel processor with GeForce RTX 2080 Ti GPU in Ubuntu. 

The proposed method could be operated in average of 27 fps. 

Related to DDKS, 8 keypoints and an object centroid (K=9) are 

determined, and the value of c is fixed to be equal to 50% of the 

maximum absolute errors in the mini-batch. The number of 

epoch is set to be 100, so that some object models converging 

with higher epochs are not missed out and the training time is 

also reduced. To optimize the parameters, we use Adam as the 

optimizer with the batch size B = 8, and the learning rate starts 

from 0.001 and be adjusted by dividing in half per 20 epochs. 

In the process of deriving keypoints from the estimated unit 

vector fields, the number of voters is set V = 100 points and the 

number of keypoint candidates is set to N = 200. These 

keypoint candidates are randomly re-paired when the 

probability is not satisfied or the iteration does not reach to the 

maximum. The threshold of probability of at least one inlier in 

the data samples is 0.99, and  =0.999. 

B. Evaluation Datasets and Metrics 

    To evaluate the proposed system, two LINEMOD datasets 

(normal and occlusion) are tested with two performance 

metrics such as 2D projection error (2D Projection), and 

average distance (ADD). The normal LINEMOD contains 

benchmark objects with clutter, texture-less, and poor lighting 

condition, while the occlusion LINEMOD focuses on heavy 

object occlusion. We follow the rule of evaluation, where 

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1676



only 15% of the total images is used for training and the rest 

85% is for testing which is applied for the normal LINEMOD, 

and for the occlusion LINEMOD, we use it for testing only. 

We also include synthetic images and data augmentation in 

the training with the different backgrounds obtained from 

PASCAL VOC [12]. 

 
Table 1. Performa ce (perce tage of correct ess) compariso  i  terms of “2D 

projectio ” a d “ADD” metrics betwee  our method and the baseline 

methods on normal LINEMOD dataset. 

Method 
2D Projection ADD(-S) 

[1] [3] Ours [5] [1] [3] Ours 

ape 92.1 99.2 99.0 77.0 21.6 43.6 63.1 

bvise 95.1 99.8 99.7 97.5 81.8 99.9 99.9 

cam 93.2 99.2 99.3 93.5 36.6 86.9 90.7 

can 97.4 99.9 99.8 96.5 68.8 95.5 97.2 

cat 97.4 99.3 99.7 82.1 41.8 79.3 83.9 

driller 79.4 96.9 97.5 95.0 63.5 96.4 98.3 

duck 94.7 98.0 99.0 77.7 27.2 52.6 64.8 

eggbox 90.3 99.3 99.3 97.1 69.6 99.2 99.7 

glue 96.5 98.5 99.1 99.4 80.0 95.7 98.0 

puncher 92.9 100 99.8 52.8 42.6 81.9 89.9 

iron 82.9 99.2 99.6 98.3 75.0 98.9 99.7 

lamp 76.9 98.3 98.7 97.5 71.1 99.3 99.9 

phone 86.1 99.4 99.6 87.7 47.7 92.4 95.5 

Average 90.4 99.0 99.2 88.6 55.9 86.3 90.8 

 
Table 2. Performance (percentage of compariso  i  terms of “2D projectio ” 

a d “ADD” metrics betwee  our method a d the baseli e methods o  

occlusion LINEMOD dataset. 

Method 
2D Projection ADD(-S) 

[11] [3] Ours [10] [11] [3] Ours 

ape 69.6 69.1 67.1 22.0 17.6 15.8 25.2 

can 82.6 86.1 90.3 44.7 53.9 63.3 71.1 

cat 65.1 65.1 64.9 22.7 3.3 16.7 21.0 

driller 73.8 73.1 76.9 44.7 62.4 65.7 72.7 

duck 61.4 61.4 62.2 15.0 19.2 25.2 35.4 

eggbox 13.1 8.4 5.4 25.2 25.9 50.2 52.0 

glue 54.9 55.4 56.8 32.4 39.6 49.6 46.5 

puncher 66.4 69.8 77.3 49.5 21.3 39.7 46.7 

Average 60.9 61.0 62.6 32.0 30.4 40.8 46.3 

 

The “2D projection” measures the mea  dista ce betwee  

the projections of all point clouds transformed by using the 

estimated and the ground truth poses. If the mean error is less 

than 5 pixels, the estimated object pose is considered correct. 

Moreover, we compute the ADD metric by transforming all 

point clouds with the estimated and the ground truth poses, and 

then calculating the mean distance between those two 

transformed point clouds in 3D space. If the average error is 

less than 10% of the ground truth object’s diameter, the pose 

estimation is considered to be correct. For symmetrical objects 

i.e. “eggbox” a d “glue”, we use a other metric called ADD-S 

[7]. 

C. Results and Analysis 

The comparison in percentages of correctness in metrics of 

“2D Projectio ”, and “ADD(-S)” between our proposed and the 

other state-of-the-art methods are shown in Table 1 for the 

normal LINEMOD dataset, respectively. From the experiments, 

we can see that our proposed method outperforms most of the 

other methods in those two metrics. The improvement is 

especially obvious in ADD metric owing to the adoption of 

Robust loss which optimizes the small scale errors which are 

the majority number in the total errors. This significant 

improvement behavior is quite similar when occlusion 

LINEMOD dataset is tested, which is shown in Table 2. This 

indicates that our proposed method is consistent to improve the 

performance in any conditions i.e. texture-less, occlusion, etc. 

In Table 2, we observe that one of the symmetrical objects 

which is “eggbox” has a very low performance. This is not 

because the detection accuracy is poor, in contrast, the precise 

pose which is inferred from its higher accuracy in 2D keypoint 

detection is reversed to the ground truth pose. It means that the 

symmetrical object in the training images and testing images 

are opposite. However, we can make the 2D projection 

performance of “eggbox” in Table 2 higher by just exchanging 

the detected keypoints from back to front, but the 

corresponding one in Table 1 will become low. In total, our 

proposed method cannot overcome the symmetrical objects. 

V. CONCLUSIONS 

We presented an improved technique to define critical 3D 

keypoints on object surface and use deep learning architecture 

to predict their 2D projections (i.e., 2D keypoints) in an image. 

Based on the corresponding pairs of 2D-3D keypoints, PnP 

solver is used to estimate 6DoF pose parameters. Our training 

technique relies on Robust loss to boost the performance up to 

another high level. A distinguishing performance about our 

proposed method is the improvement in 3D transformation 

(i.e., ADD) metric which is much higher, compared to the 

“2D projectio ” accuracy even in the occlusion situation. 

ACKNOWLEDGMENT 

This work was financially supported by the Center for 

Innovative Research on Aging Society (CIRAS), Advanced 

Institute of Manufacturing with High-tech Innovations (AIM-

HI) from The Featured Areas Research Center Program 

within the framework of the Higher Education Sprout Project 

by the Ministry of Education (MOE) in Taiwan.  

REFERENCES 

[1] B. Tekin, S. N. Sinha, and P. Fua, "Real-Time Seamless Single 

Shot 6D Object Pose Prediction," in 2018 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 2018, 

pp. 292-301. 

[2] V. Lepetit, F. Moreno-Noguer, and P. Fua, "EPnP: An Accurate 

O(n) Solution to the PnP Problem," International Journal of 

Computer Vision, vol. 81, p. 155, 2008/07/19 2008. 

[3] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, "PVNet: 

Pixel-Wise Voting Network for 6DoF Pose Estimation," 

presented at the 2019 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, 2019. 

[4] G. Irie, T. Kawanishi, and K. Kashino, "Robust Learning for 

Deep Monocular Depth Estimation," in 2019 IEEE 

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1677



International Conference on Image Processing (ICIP), 2019, pp. 

964-968. 

[5] Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, "DeepIM: Deep 

Iterative Matching for 6D Pose Estimation," International 

Journal of Computer Vision, 2019/11/05 2019. 

[6] F. Manhardt, W. Kehl, N. Navab, and F. Tombari, "Deep 

Model-Based 6D Pose Refinement in RGB," in Computer 

Vision – ECCV 2018, Cham, 2018, pp. 833-849. 

[7] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, "PoseCNN: 

A Convolutional Neural Network for 6D Object Pose 

Estimation in Cluttered Scenes," Robotics: Science and Systems 

(RSS), 11/01 2018. 

[8] G. Billings and M. Johnson-Roberson, "SilhoNet: An RGB 

Method for 6D Object Pose Estimation," IEEE Robotics and 

Automation Letters, vol. 4, pp. 3727-3734, 2019. 

[9] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, "Segmentation-

Driven 6D Object Pose Estimation," in 2019 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition 

(CVPR), 2019, pp. 3380-3389. 

[10] K. Park, T. Patten, and M. Vincze, "Pix2Pose: Pixel-Wise 

Coordinate Regression of Objects for 6D Pose Estimation," in 

2019 IEEE International Conference on Computer Vision 

(ICCV), 2019. 

[11] M. Oberweger, M. Rad, and V. Lepetit, "Making Deep 

Heatmaps Robust to Partial Occlusions for 3D Object Pose 

Estimation," in Computer Vision – ECCV 2018, Cham, 2018, pp. 

125-141. 

[12] M. Everingham, S. Eslami, L. Van Gool, C. Williams, J. Winn, 

and A. Zisserman, "The Pascal Visual Object Classes 

Challenge: A Retrospective," International Journal of 

Computer Vision, vol. 111, 01/01 2014. 

 

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1678


