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Abstract—The purpose of singing voice synthesis (SVS) is to
generate human-like singing voice from lyrics and the corre-
sponding musical score. Nowadays, mainstream SVS approaches
rely on neural networks (NNs) which can map linguistic and
musical contextual factors to acoustic features for producing
audio outputs. For SVS in Mandarin or other Chinese languages
in particular, a sufficiently large and adequately labeled database
has not been publicly available. To proceed with Mandarin SVS
research, we built a singing voice database from scratch, with
600 pop songs sung by 2 male and 2 female vocalists. Each
audio contains single vocal only, without any background music.
This paper describes the recording of the dataset and necessary
steps of data preprocessing for training NNs to perform SVS.
Several simple neural network architectures were adopted so
preliminary SVS performance can be compared. Both subjective
and objective evaluations show that these networks could learn
from the MPop600 database to generate singing voice with unseen
musical scores. MPop600 is available in both the MIDI and the
MusicXML formats. In the future, we believe that more advanced
and recently developed networks can be applied to model the
singing behaviors in this database and help advance research in
Mandarin SVS.

I. INTRODUCTION

Natural singing voice synthesis (SVS) is an emerging re-
search topic, and previous attempts have aimed to synthesize
singing in different languages, including Japanese [1], Spanish
[2], Korean [3] and so on. Even though Mandarin is the second
most spoken language in the world — only after English —
however, Mandarin SVS remains relatively under-explored [4],
[5], [6]. One possible reason might be the lack of publicly
available datasets that are sufficiently large and meticulously
labeled to enable supervised learning. Therefore, we aimed
to create and share a Mandarin singing database so as to
facilitate future research in Mandarin SVS. Our database is
named MPop600 to indicate explicitly that it contains 600
popular songs in Mandarin, sung by native speakers of the
language.

SVS differs from speech synthesis in that the synthesized
singing voice needs to follow the musical scores; performance
of pitch and rhythm synthesis would directly influence the
perceived quality. According to the techniques adopted by dif-
ferent systems, existing SVS methods can be categorized into
concatenation-based SVS (CSVS) [7], hidden Markov Model
(HMM)-based SVS [1], or neural network(NN)-based SVS.

Within the realm of CSVS, commercially available tools such
as Vocaloid [8] and Synthesizer V1 have successfully gathered
loyal groups of users. In principle, human-like singing voice is
synthesized by concatenating sample units that are found in a
corpus. Hence, the performance of CSVS directly depends on
that the corpus covers all possible phonemes and syllables of
the language of interest. A shortcoming of CSVS is perhaps
the lack of flexibility to change the voice characteristics.
Auxiliary systems such as the Vocalistener [9] have been built
to grant the users with certain degrees of freedom so the
synthesized voice characteristics can be adjusted in artistic
ways.

In contrast, HMM-based SVS [4], [10] can model the
spectral envelopes, excitation, and the singing voice duration
separately. Then, speech parameter generation algorithms [11]
are used to produce singing voice parameter trajectories. As
HMM predates the advances in deep learning, the naturalness
of HMM-based SVS is outperformed by what could now be
achieved by neural networks. Over the past few years, several
types of neural networks have been adopted for SVS, such
as a generic deep neural network (DNN) [12], a recurrent
neural network with long-short term memory (LSTM-RNN)
[3], and generative adversarial networks (GAN) [13], [14]
most recently.

In this paper, besides presenting the MPop600 database,
we also built SVS systems based on DNN, LSTM, and bi-
directional LSTM (BiLSTM) so as to compare performance
and evaluate whether it takes certain additional care to syn-
thesize Mandarin singing voice due to the tonal nature of the
language. Our systems separately consider the fundamental
frequency (F0) and “pronunciation”, loosely referring to all
aspects of word enunciation other than controlling the pitch.
To train the neural nets, we first annotated the lyrics and
musical scores for all the songs. Then, contextual features were
carefully designed and extracted from the lyrics and scores so
they can be fed as the input to the NNs. Meanwhile, the audio
signals were aligned to the lyrics and the notes, and acoustic
features were computed from the audio via the WORLD
vocoder [15]. Thus, the contexual factors were paired with
the corresponding acoustic features with frame-level accuracy,

1https://synthesizerv.com/en/
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Fig. 1. The structure of Mandarin singing voice database creation.

so that the mapping from the contextual domain to the acoustic
domain can be learnt. To compare the performance of different
NNs, subjective and objective evaluations were conducted in
terms of the mean opinion score (MOS) and the Mel-cepstral
distortion (MCD), respectively.

The rest of this paper is organized as follows. Section II
describes the details about the establishment of Mandarin
singing voice database and auto transcription, which is the
main part in this research. Section III introduces the design of
the voice synthesis system as well as input and output features.
Section IV describes the experimental condition and the result
evaluations. Conclusions are given in Section V.

II. DATABASE CREATION

The flowchart for creating the MPop600 database is shown
in Fig. 1. First, each of the four participating singers, two male
and two female, was invited to freely choose 150 songs they
would like to record. So, in total, 600 Mandarin pop songs
were recorded. Next, we labeled the linguistic information
manually and musically transcribed the singing voices semi-
automatically. Thus, the database consists of 600 sets of
aligned lyrics, musical scores, and the corresponding vocal
audios, and statistical distributions of the phonemes and note
pitches are shown in Fig. 2.

A. Considerations for recordings and sound engineering

Two male and two female singers were asked to sing 150
songs each. To ensure the steadiness of tempo and accuracy
of pitch, the singers were required to sing synchronously with
the accompany audio and tempo click, which were played
into the headphone, so each recorded audio only contains

(a)

(b)

Fig. 2. (a) The statistical distribution of phonemes in the MPop600 database.
The phoneme symbols are initial/final of Pinyin. (b)The statistical distribution
of musical pitches in the MPop600 database. Here, 60 equals C4 in musical
notation.

pure vocal, without any background music. What’s more, to
increase the diversity of phonetics and musical expressiveness
within limited time, only the first verse and the chorus were
recorded for each song. The recording data length was about
2.5 hours per singer and about 10 hours in total.

In addition, every song preserves two beats in front of the
measure before the singing starts, so that the score could easily
align with the singing voice. Besides, to reduce the noise
caused by the singers, we applied iZotope RX72, a commonly
used software in the music production industry, to remove the
mouth clip and plosive sounds.

The singing voices were recorded by a condenser micro-
phone and RME UFX, a high resolution audio interface, in
a room with sufficiently little reverb. The recording setup
met the professional studio standards. A filter was also used
to obstruct fast airflow and prevent popping sounds from
being recorded during singing. Finally, the data were recorded
in 96kHz sampling rate with 24 bits per sample in .wav
(Waveform Audio File Format) format.

B. Labeling

The word boundaries of lyrics were labeled manually on
Transcriber3, a tool for annotation of speech signals. To ensure
the precision of word boundaries, we double checked the labels
by Praat [19], which provides the visualization of spectrum,
pitch, intensity, and formants of the audio, and this helped us to
discover some erroneous boundaries. After word transcription,
the Mandarin characters were translated into Pinyin. As for
phoneme duration labeling, an open source phoneme-level
alignment tool called Speech-Aligner4 was applied. In this

2https://www.izotope.com/en/products/rx/features.html
3http://trans.sourceforge.net/en/presentation.php
4https://github.com/open-speech/speech-aligner
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research, the initial/final of Pinyin was utilized to represent
Mandarin word pronunciation. By marking the boundaries
between initial/finals of Pinyin, pronunciation of the lyrics
has been unambiguously encoded and aligned to the audio
temporally.

C. Automatic singing voice transcription

The musical score of a song includes the note pitch and
duration, the tempo, the key signature, and the time signature,
and so on. Instead of creating the MIDI score directly by
operating on a electronic piano keyboard, we came up with
a semi-automatic singing voice transcription. The method
consists of three steps:

• Pitch determination: Due to some personal skills such as
vibrato or glissando, the mean of F0 of each whole word
may not correspond to the musically correct note intended
by the singer. Fig. 3 (a) shows a typical result in which
the note pitch is calculated by the mean of F0 within a
whole word. In order to obtain the note pitch accurately,
each word is cut into 100-ms segments, and then the mean
F0 of the segment which has the smallest variance was
defined as the pitch of the note. Fig 3 (b) shows a typical
result in which the note pitch is determined by the above
method. During the creation of MPop600 database, we
assumed that each word corresponds to only one note;
exceptions remain to be handled in this research.

• Duration quantization: We assumed that any note dura-
tion in a pop song is longer than 1/16 note. Therefore,
the length of a word (or note) is quantized to the closest
integer multiples of a half of note, a 1/4 note, a 1/8 note
or a 1/16 note.

• Adjustment of rhythm: Continuing from above, a dynamic
quantization method was used to modify the rhythm so
the transcription would be more musically reasonable
while allowing syncopation. Depending upon the note
duration, the onset of each note was moved to an integer
multiple different lengths; a note equal to a 1/4 note
or longer would be moved to align with the 1/8 note
grid line. Similarly, a note duration originally equal to
or shorter than 1/16 note would be moved to align with
the 1/32 note grid line. While the note duration is shorter
than a 1/4 note but longer than a 1/16 note, it would be
moved to align with the 1/16 note grid line. Fig. 3 (c)
shows a typical result of the proposed automatic singing
voice transcription approach.

After transcribing the singing voice automatically, musical
scores were saved in two formats: Musical Instrument Digital
Interface (MIDI) and Music eXtensible Markup Language
(MusicXML), so that a score could be manually labeled or
corrected if necessary. We envision that, if necessary, the
pitches, durations, and the relative positions of the notes in
a bar can be easily modified in the MIDI format on a digital
audio workstation, and the MusicXML format can be used to
label high-level information, such as the onset and offset of a
musical phrase, or to add meta-data, such as the key signature
and the time signature.

(a)

(b)

(c)

Fig. 3. The typical result of the note pitch estimation method. (a) is the one
in which the note pitch is calculated by using the mean of F0 contour within
whole word. (b) is the result of the proposed pitch determination method. (c)
is the result of the proposed automatic singing voice transcription approach.

III. SYNTHESIS SYSTEM

A. System design

In Fig. 4 the system is divided into the training and the
synthesis part. In the training part, the input and the output
of the system are, respectively, the contextual features and the
acoustic features extracted from the singing voice database.
The contextual features were extracted from the lyrics and
the musical scores, which had been automatically transcribed
from singing voice as mentioned in Sec. II. The acoustic
features consisted of the fundamental frequency (F0), the
mel-generalized cepstrum (MGC) [17], the band-aperiodicity
(BAP) [18] and the voice/unvoice decision (VUV) [15]; the
MGC and BAP were encoded from spectral parameters pro-
vided by the WORLD vocoder. Hereafter, we abbreviate MGC,
BAP and VUV as MBV. Subsequently, F0 and MBV were
trained separately, because empirically we found that, if all of
the output features are trained in the same network, the model
might not be able to find the correct learning direction even
when the output loss is weighted.

Furthermore, we found that different representations of F0
could influence the performance of prediction. In this work,
instead of predicting the F0 directly, a ∆logF0 term which
denotes the difference between the singing voice logF0 and the
musical note in logarithm was adopted to be the representation
of F0. Thus, ∆logF0 was supposed to be easier to model than
logF0 itself, because the distribution of logF0 could be too
sparse. However, there was a jumping problem of ∆logF0
because, in Mandarin as well as other languages, an unvoiced
period might occur at the beginning of a word instead of
during a rest. This situation would make ∆logF0 ill-defined.
A pitch normalization method [12] was incorporated to mend
the jumping problem.

Therefore, in the synthesis part, Fig. 4 shows that the note
pitch of the input is used in combination with the predicted
∆logF0 and threshold VUV to calculate the final F0 contour
in Hertz. Happening in parallel, the predicted MGC and BAP
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Fig. 4. Overview of the singing voice synthesis system based on Bi-LSTM.

are decoded back to the spectral parameters. After that, they
are delivered to WORLD vocoder for synthesizing the audio.

B. Organization of the input and output features

Contextual factors regarding the musical scores with lyrics
include phoneme identity, note pitch, note duration, rhythm,
tempo, musical phrase, and so on. In most SVS systems,
contextual factors are encoded to become the input feature
vectors. According to our team’s previous work [16], the F0
contour may slightly depend on the tonality of the lyrics
when a singer sings in Mandarin. Thus, we designed a set
of contextual factors that takes tonality into account. The
contextual factors are organized into five layers, listed as
follows with the smallest unit first:

• phoneme – phoneme identity, tone, position of the
phoneme in a Mandarin character (initial/final)

• note – pitch, musical key, note duration, position of the
note in a musical measure

• character – tone of the character (high and level, rising,
falling and rising, or falling), number of notes

• phrase – number of phonemes, notes, and characters
• song – number of phonemes, notes, measures, and

phrases
After analysis, the contextual features are represented in the
phoneme level. Let x be the input sequence, which comes
from the contextual factor analysis. Thus, we have

x = {x1, x2, ..., xNp
}, (1)

where Np denotes the number of the phonemes, and xi denote
the feature vector corresponding to the i-th phoneme in the
sequence, i = 1, 2, ..., Np. On the output side, let y be the
acoustic feature sequence comprised of ∆logF0, MGC, BAP
and VUV; that is,

y = {y1, y2, ..., yNf
}, (2)

TABLE I
THE ARCHITECTURES AND HYPERPARAMETERS OF DNN LSTM MODELS

DNN LSTM
Item Details Item Details
Nlayer 4 Nneuron in latent layers 2048

Nneuron, layer 1 1024 Nlayer 2
Nneuron, layer 2 512 Nneuron in LSTM kernel 1024
Nneuron, layer 3 256 Nneuron in dense layer 128
Nneuron, layer 4 128 Batch size 16

Batch size 16 Step size 20

where Nf is the number of frames, and yt denotes the output
feature vector of the t-th frame, t = 1, 2, ...Nf . With the
input x, the model predicts the acoustic features at each time
step from the input. To synchronize the input and the output
sequences, the time stamp of contextual feature vectors have
to be converted from the phoneme level to the frame level.

C. Feature Extraction and Waveform Synthesis

Based on the WORLD vocoder, singing voice signals are
represented by F0 plus two spectral parameters, namely the
spectral envelopes (SP) and the aperiodicity (AP). They were
estimated by the state-of-the-art methods HARVEST [20],
CheapTrick [21], and D4C [22], respectively. In this research,
the frame shift was set at 5 ms. The FFT length was set to 4096
at a sampling rate of 48000 Hz. Instead of taking the vocoder
features directly, SP and AP were encoded into 60-dimensional
MGC [17] and 5-dimensional BAP [18] respectively, since
reducing the dimension of the output feature space can make
it easier for the model to learn the mapping. In addition,
VUV was also extracted to switch on or off the fundamental
frequency generation module (see Fig. 4). After the prediction,
they were converted back to the SP, AP, F0 correspondingly.
Finally, the frame-level SP, AP and F0 were passed to the
WORLD vocoder for synthesizing the singing voice.

IV. EXPERIMENTS AND DISCUSSION

Here we report results of selecting 40 songs for training the
neural networks. All the songs were sung by the same female
singer. Additionally, we selected one song for validation, and
two songs for evaluation. The total audio length of the training
dataset is about 1 hour. As mentioned previously, the training
was separately conducted by the F0 model and the MBV
model.

In this research, we constructed and compared a deep neural
network (DNN), an LSTM RNN, and a bidirectional LSTM
(Bi-LSTM) network. A 4-layer DNN was trained and regarded
as the baseline system, while both LSTM and Bi-LSTM had
two hidden layers. The details of the neural network archi-
tectures and the setting of the hyper-parameters are tabulated
in Table I. Additionally, in order to assess whether tonaliy is
important for Mandarin SVS, we also compared two LSTM
models; one of them considered word tonality while the other
did not.

All models were trained with a mini-batch stochastic gra-
dient descent (SGD)-based back-propagation algorithm, and
with Adam [23] as the optimizer. Also, the learning rate was
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TABLE II
RESULTS OF OBJECTIVE EVALUATION

Model model 1 model 2 model 3 model 4
Method DNN LSTM LSTM+* BiLSTM+*

Slow song Fast song
Model F0-RMSE MCD logF0-RMSE MCD

model 1 0.057 11.16 0.061 11.41
model 2 0.055 8.77 0.054 8.85
model 3 0.046 8.59 0.049 8.85
model 4 0.042 8.45 0.047 8.66

exponential decayed; it was initially set to 0.001, and decayed
with a base of 0.95 per 10 epochs. The loss function was
the measurement of mean squared error between target values
and predicted values. In addition, the activation functions of all
models were Sigmoid [24]. Regarding feature normalization,
we followed Saino et al. [10] so that the input features were
normalized to the range from 0 to 1 and output features were
scaled to the range from 0.01 to 0.99.

A. Objective Evaluations

Four frameworks based on different neural networks and
features were trained to observe if the proposed dataset is
trainable for SVS. The differences between the four frame-
works are described in Table II, including: (1) DNN without
tonality consideration (baseline), (2) LSTM without tonality
consideration, (3) LSTM with tonality consideration (+*), and
(4) Bi-LSTM with tonality consideration (+*).

To evaluate the performance of the proposed systems ob-
jectively, we calculated logF0 root mean squared error (logF0-
RMSE) and the MCD. The base of logF0-RMSE was 10
(instead of the more commonly used base-2 logarithm in music
theory),

logF0-RMSE =

√
1

N

∑
i

(log10 Fi − log10 F̂i)2, (3)

where Fi denotes the target F0 at the ith frame, F̂i denotes
the predicted F0 for the ith frame, and N is the total number
of frames for a song.

MCD is commonly used for synthesized speech quality
assessment. It quantifies the distance between two sequences
of mel cepstra. In this research, a small MCD between the
synthesized singing and the ground truth is preferred; the
following equation defines the MCD for this research,

MCD (dB) =
10
√

2

ln10

1

T

T∑
t=1

√∑
i

(Cti − Ĉti)2, (4)

where Cti denotes the i-th Mel cepstral component at the t-
th target frame and Ĉti denotes the same component for the
synthesized frame.

The objective evaluation was conducted over 2 songs
that were previously unseen during the training phase. The
evaluation results in Table II shows that three LSTM-based
frameworks outperform the baseline method in terms of
both logF0-RMSE and MCD. This is not surprising, because

Fig. 5. Results of MOS test for each methods.

temporal relationship among input frames was not explicitly
considered by the DNN. In addition, adding tonality as input
features helps to predict both the F0 contour and, somewhat
suprisingly, the acoustic output. To explain this, note that in
Mandarin, word meanings are partially conveyed by tones.
Consequently, when a Mandarin song is sung, word meanings
might potentially be misunderstood because the direction of
the tone — rising, falling, or flat — might conflict with the
melodic direction.

Furthermore, Bi-LSTM achieves the lowest logF0-RMSE
and MCD. This is reasonable because, like an experienced
singer, a neural network should consider both the past and
the future notes to “sing” expressively instead of just looking
to the past. In this sense, Bi-LSTM might have implicitly
characterized the position of a note within a musical phrase
and thus become the most successful singing network here.

The logF0-RMSE and MCD achieved by the three LSTM-
based networks are in a reasonable range; for comparison
purposes, logF0-RMSE in [4] was in the range of 0.045 to
0.049, and MCD in [3] was in the range of 5.43 to 8.61.

B. Subjective Evaluations

A subjective listening test was carried out to evaluate the
synthetized singing voices. 15 subjects participated in the
evaluation to rate the pitch and pronunciation accuracy of the
generated singing voice. The mean opinion score (MOS) with
a scale from 1 (poor) to 5 (good) was adopted. All subjects are
native Mandarin speakers. The listening material consisted of
the same two songs that were chosen for objective evaluation.

Figure 5 shows the results of subjective evaluation. The
height of the bar shows the mean score across 15 subjects, and
the error bar shows the 95% confidence intervals determined
as follows,

CI =
[
µ̂− 1.96

σ̂√
N
, µ̂+ 1.96

σ̂√
N

]
, (5)

where µ denotes the mean score responded by the subjects, σ̂
is the corresponding standard deviation, and N = 15 denotes
the number of the subjects [25].
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The present results suggest that all the LSTM-based systems
achieve higher MOS than the baseline. Also, songs with
slow and fast tempo have similar MOS range. Note that in
the present experiment, only 40 songs were included in the
training set. While we continue to label the data, we believe
that better performance could be obtained in the future when
the size of the training dataset increases.

V. CONCLUSIONS

In this research, we intend to build a system that can sing a
Mandarin song by “sight-reading” — including the lyrics and
the sheet music. In order to implement it on neural networks,
we created a dataset that contains 600 Mandarin pop songs
from scratch. The dataset was prepared with care during the
recording and the labeling phase. In particular, singing voice
transcription had to be achieved automatically because the
participating singers freely chose the songs to sing and thus
the musical score of the songs were mostly unavailable. The
data was preprocessed to obtain the contextual and acoustic
features. Four neural-network models were adopted to find
the mapping from the contextual feature space to the acoustic
feature space. We verified that, by using the proposed dataset, a
Mandarin SVS system is trainable; results from both the objec-
tive and the subjective evaluation suggest that (i) the sequential
nature of music matters, as LSTM-based model consistently
outperformed the DNN, and (ii) explicitly telling the system
to consider word tonality helps to improve the synthesized
sound quality as far as Mandarin SVS is concerned. In the
future, we believe that techniques developed more recently
can be applied to model Mandarin pop song singing using
this dataset. Therefore, we will gladly release the dataset to
academia and maintain it after the conference.
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