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Abstract—This paper presents an integrated architecture of
the class embodiment autoencoder (CEAE) and variational
autoencoder. The aim is to improve the generalisation of the
algorithm and accordingly increase the classification accuracy
of unseen samples. The proposed variational CEAE is trained
by using hyperspectral images of Manuka honey dataset, then
evaluated for generalisation performance on unseen brands of
honey. We applied well-known generalisation techniques to this
structure, and evaluated the effect of these on our dataset.
Our experiment results show that the average validation set
performance of the new autoencoder technique on unseen brands
is 55.4%, while the average benchmark technique is 48.1% for the
same unseen brands. The autoencoder structures are performing
feature reduction on our data, which has shown to improve
the classification accuracy and generalisation performance. We
tested the feature reduction techniques in combination with
K-nearest-neighbour classifier, linear support vector machine
(SVM), and radial basis function SVM. This work develops an
important step toward the automatic classification of Manuka
honey quality using hyperspectral imaging and machine learning.
This is the first work to evaluate generalisation performance
in honey classification, which is crucial for a viable real-world
solution.

Index Terms—Autoencoders, Feature Reduction, Generalisa-
tion, Hyperspectral Imaging, Support Vector Machines

I. INTRODUCTION

This paper introduces the next step towards automat-
ing Manuka honey quality classification, using hyperspectral
imaging and machine learning. The current real-world tech-
niques are chemical-based, and are very accurate, but have
several significant drawbacks. Honey is a large industry in
New Zealand (NZ), some NZ honey such as Manuka honey,
are very premium products making them a target for fraud.

Specifically, this paper aims to evaluate and combine exist-
ing generalisation techniques with a new type of autoencoder
on our Manuka honey dataset. We are evaluating both their
regular testing performance and the generalisation perfor-
mance on unseen brands of honey. This generalisation is
essential to simulate the real-world scenario, where honey of
an unknown brand and type must be evaluated and given
an accurate quality rating. This level of generalisation to
unseen brands is already possible with the current chemical
technique, as it analyses the honey for different concentrations
of chemicals [1].

In our current work on honey classification, we have suc-
cessfully been able to classify different botanical origins of
honey from a range of different NZ honey brands [19]. We

have also worked on more directly, the premium Manuka
honey type. Initially by classifying the Unique Manuka Factor
(UMF) for Manuka honey exclusively for each brand [16]. We
have also classified Manuka honey types based on their Unique
Manuka Factor (UMF) more generally across the entire dataset
[20].

We split the dataset between training and testing so that
every brand in the testing set is also in the training set. Every
type of honey that we have has been sampled six times, with
five of those samples in training and one for testing. This
data split is useful because we can reliably train and test our
algorithms on data from the same source [20].

In a real-world scenario identifying the UMF rating of
honey, there might not be existing examples of the same type
or brand of honey. This scenario means that our dataset and
current work is so far not testing the generalisation ability to
the standard required in the real-world case. Existing work
on hyperspectral imaging for honey classification does not
consider this real-world scenario, and use the same honey
types in testing and training.

This paper uses a new experimental setup for Manuka
honey classification, where we use a leave one out policy for
each brand of Manuka honey. Each brand is excluded from
the training set and used as a validation set. We then use
the other brands for training and testing as usual. We focus
on using different generalisation approaches to increase the
performance on the validation set, while not compromising
good performance on the testing set.

This evaluation approach was not possible using the existing
Manuka UMF value dataset. Some UMF values only exist for
one or two brands in the dataset, so they would not be a
fair test of the ability to generalise. The new approach for
this work changes the class labels into categories of UMF
values. These categories are the ranges that are considered
lower quality Manuka honey (UMF < 10), medium quality
(10 ≤ UMF < 15), high quality (15 ≤ UMF < 20), and
very high quality (UMF ≥ 20) [1]. These categories are all
represented by many of the brands in the data. This approach
makes it a fairer test when leaving out each of the brands.

We consider widely used generalisation techniques for ma-
chine learning algorithms, including regularisation [4], feature
reduction, using simpler architectures, drop-out [26], and
adding noise to the training data [8]. These are all strategies
that have shown to help a learned model classify unseen data.
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Fig. 1. Block diagram of the standard autoencoder architecture.

However, these strategies are not typically used to classify data
from a different source [7].

We also evaluate transfer learning inspired approaches for
this work, alongside our existing generalisation techniques
[27]. The honey classification problem requires transferring the
knowledge from training with the primary dataset, to classify a
new unseen brand. The honey spectrum changes due to many
other attributes aside from the UMF rating, so generalisation
of these brands is a hard problem. The data is expensive to
acquire and time-consuming to capture; therefore, we look for
techniques that can increase the generalisation without adding
any new data.

We apply these generalisation techniques to the class em-
bodiment autoencoder (CEAE), which previously performed
the best in the wider honey dataset [19], [20].

The two main objectives of this work are:
• Evaluating honey classification using hyperspectral imag-

ing in a way which better represents the real-world
scenario.

• Creating a new autoencoder architecture to improve on
the generalisation performance of the CEAE for this
honey classification task.

II. BACKGROUND

This section details the critical background information for
this work. In particular, the feature reduction and classification
techniques and existing work in honey quality classification.

A. Autoencoders

Autoencoders are a type of neural network which have
two networks; encoder and decoder. The input data is passed
through the encoder network to create features; then the fea-
tures are passed through the decoder recreating the input data
[2]. Figure 1 shows the general structure of an autoencoder.
The number of features is typically smaller than the input
dimension, and the autoencoder learns how to compress the
input information.

1) Class Embodiment Autoencoder (CEAE): The CEAE
was developed for this honey dataset [19] but is also applicable
to general problems. The key part of this structure is the
classification layer, which is weighted during training between
zero and one. Figure 2 shows the structure for this autoencoder.
We use the CEAE as a starting point for the new methods
in this paper, as well as a key benchmark method for test

Fig. 2. Block diagram of the CEAE architecture.

set performance. The key differences between the CEAE
architecture and standard supervised autoencoders is that a
value weights the classification layer between zero and one in
the loss function. The final output of the CEAE is the features,
rather than the classification output.

2) Variational Autoenoders (VAEs): VAEs build upon the
standard autoencoder technique, but instead of learning a
single feature vector, they learn a distribution in the latent
(feature) space for every training example. Figure 3 shows the
VAE structure [25].

VAEs create new data by reconstructing the sampled latent
space with the decoder network. The latent space created
by VAEs satisfies certain conditions which make it easy to
manipulate to create variations on the data. The latent space
must be continuous and must map similar data close together
in an organised way. Using regularisation on the latent space
enforces these conditions [4].

This regularisation uses the Kullbeck-Leibler (KL) diver-
gence between the returned latent distribution and a standard
gaussian. The KL divergence refers to the relative entropy
between the two distributions, equation 1 shows this regulari-
sation term [4], [25]. Where DKL is the KL divergence, xi is
a training example, z is a point in the latent space, p(z|xi) is
the probability of a point z in the latent space, given an input
xi, and q(z|xi) is the estimated probability of a point z in the
latent space given xi.

DKL(q(z|xi)||p(z|xi)) =
∫
q(z|xi)log(

q(z|xi)
p(z|xi)

)dz (1)

The regularisation that occurs involves substituting our
distribution into equation 1. This substitution gives the final
regularisation procedure in equation 2.

DKL(q(z|xi)||p(z|xi)) =
1

2
[1 + log(σ2

q )− σ2
q − µ2

q] (2)

The final loss function at the decoder is the combination of
the normal autoencoder loss and this regularisation, given in
equation 3, where J is the dimension of the latent vector z,
and L is the number of samples from the latent space. E q(z|zi)
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Fig. 3. Block diagram of the traditional VAE.

refers to the expectation of the following function with respect
to the random variable q(z|xi) [4].

L = −
J∑

j=1

1

2
[1 + log(σ2

j )− σ2
j − µ2

j ]

− 1

L

L∑
l=1

E q(z|xi)[log(p(xi|z
(i,l)))] (3)

By including this regularisation term in the loss function
for the VAE, we can now manipulate the latent space. The
VAE should also be able to generalise better to unseen data,
as regularisation is a common technique for achieving this [4].

3) Denoising Autoencoders: Denoising autoencoders have
been used widely for image applications, typically for re-
moving noise in preprocessing [31]. The technique used in a
denoising autoencoder is adding a random noise vector to each
training example [32]. This additional noise means that the
autoencoder learns to replicate the clean image at the output
when given a noisy input image [8], [12].

B. Support Vector Machines (SVMs)

SVMs are well known for excellent generalisation perfor-
mance, particularly in situations where the data is of high
dimensionality, or has non-linear complexities [9], [10], [28],
[30]. SVMs work by first transforming the feature space by a
kernel function, and then splitting the data by a hyperplane in
a way that minimises the risk of misclassifications. Figure 4
shows how an SVM can solve an example non-linear problem.

Previous work has investigated different SVM structures
for Manuka honey classification [19] with varied success. We
will consider these structures further in these generalisation
experiments, as SVMs are known for good generalisation
ability.

Fig. 4. An example non-linear problem being solved by an SVM.

C. Transfer learning

Transfer learning is the concept of taking the information
learnt in one space and transferring that knowledge into
another space [18], [29], [33]. Often this is done with similar
spaces, but one might have more labelled information than
the other. The general concept can apply to many situations
where learning something in one space can help in learning
something in another space [27].

Because we use deep autoencoders to learn our features,
we consider transfer learning techniques from deep neural
networks. These deep transfer learning techniques are sep-
arated into four categories [27]: instance-based, mapping-
based, network-based, and adversarial-based. For our intended
autoencoder algorithm, we focus on using mapping-based,
instances-based, and network-based deep transfer learning
techniques.
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D. Manuka honey classification

Hyperspectral imaging has recently become a popular tech-
nique in analysing food quality. Hyperspectral imaging uses a
combination of imaging and spectroscopy techniques. Hyper-
spectral image data is a 3D hypercube which contains both
spatial and spectral information. Advantages of hyperspectral
imaging over traditional methods for determining food quality
are that it requires minimal sample preparation, fast data
acquisition, and is non-destructive to the sample [5], [6], [34].

Spectroscopy has been used to determine the botanical
origins of honey [3], [11], [17], [21], but more recently, Hy-
perspectral imaging is being investigated for this application.

Traditional cameras have been investigated for honey botan-
ical origins classification, sometimes providing useful informa-
tion in combination with other attributes [21]. Machine vision
has been used to determine several attributes of food quality,
such as colour, shape, and size. Using machine vision for
classifying honey has been investigated [23]. Colour has been
used as an important attribute in combination with machine
learning to predict measurements of chemical properties such
as ash content in different kinds of honey [22]. The dataset
was minimal, and only used six different types of honey, with
only 129 samples in total.

Hyperspectral imaging for honey classification is still very
new, and there are only a few examples of this. There is one
example of using hyperspectral imaging to detect if a pixel
is sugar or honey in a mixture of sugar and honey [24]. The
study was small, and only 56 honey samples were used.

A system for botanical origins of honey classification using
hyperspectral imaging has been developed with a dataset of
NZ honey [14]–[16]. Traditional machine learning approaches
have been tested on this dataset, which resulted in an average
balanced accuracy of 80.5% across all classes. Using the same
dataset, a new type of autoencoder technique, the CEAE,
was developed for feature reduction and applied to the honey
classification scenario. The overall classification accuracy
achieved over the entire dataset was 90% in combination with
a k nearest neighbour (KNN) classifier [19].

Another study [13] has developed a technique using hy-
perspectral imaging to classify the botanical origins of five
different kinds of honey, achieving 90% testing accuracy.
However, this study used a minimal sample size, with only
52 samples in total, and only 20 of those samples were used
for testing.

Overall, there has been minimal work on honey botanical
origins classification using hyperspectral imaging, although
there is now an extensive database developed for this appli-
cation [20]. There has so far not been a focus on Manuka
honey, nor generalisation for classifying unseen brands or
honey types.

III. METHODOLOGIES

This section describes the methods we have developed in-
tending to improve generalisation performance on the Manuka
honey classification problem. The techniques we use are,
for the most part, not new methods, but we are using new

combinations of different techniques to form new architectures
for a valuable application.

A. Variational Class Embodiment Autoencoder

We combine the benefits of the variational autoencoder and
the class embodiment autoencoder to create the variational
class embodiment autoencoder (VCEAE). We train this struc-
ture with three objectives: recreating the data, regularisation
of the latent space, and classification accuracy.

These three objectives are all trained simultaneously, and
the overall optimisation criteria is a combination of these three
metrics. Figure 5 shows the VCEAE structure that we use in
this work. The concept of including an additional classifier has
been used previously with supervised variational autoencoders.
However, the additional parameter weighting the classification
output, and using the features as the output makes the VCEAE
unique to the best of our knowledge.

Using the VCEAE architecture as a starting point, we then
apply techniques that have shown to improve generalisation
performance in other similar architectures. The VCEAE ar-
chitecture Combines the CEAE which was the best technique
on this dataset previously [19], and the VAE to improve
generalisation.

B. Denoising VCEAE

Denoising autoencoders are powerful when working with
noisy data. If we consider that some of our data could be
quite noisy, using additional noise in training could improve
classification and generalisation performance [8], [12], [31],
[32].

C. Drop-out

Drop-out is a common technique used in deep learning to
counteract overfitting of neural networks that can happen when
training large models [26]. Drop-out works by temporarily
removing some random nodes from the training process at
each epoch. Including drop-out trains the network to have
many redundant paths to the correct solution, and counters
overfitting. The network will be more robust to slight changes
at every network layer, including the input layer.

D. Data Transformation

We develop a data transformation approach for this data,
using a mapping technique from deep transfer learning [27].
We are transforming the new brand, so it has the same
distribution as the training set. We perform this in the latent
space because the latent space has properties that allow it to
be transformed based on the VAE.

We transform the data in the latent space of the learned
VCEAE using a standard scalar approach. The distributions
were scaled to match between the brand validation set and the
training data. Based on initial testing, this scaling approach
was more effective than transforming the data based on only
the mean.

One drawback with this technique is that on data other
than Manuka honey, this could skew the data and cause a
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Fig. 5. Block digram of the VCEAE architecture. The classification output is connected to the latent space, and the output of the network is features from
the latent space.

false positive for Manuka. False positives are undesired in
our work, as it would mislabel a cheap kind of honey as
the premium brand. One way to avoid this is to also develop
a binary classifier for Manuka and non-Manuka before any
transformations happen. The binary Manuka problem is much
easier to solve, and does not have as much difficulty with
generalisation.

E. Unsuperivsed training

We develop a new approach to training the network, inspired
by instance-based deep transfer learning. In this case, we
train the VCEAE as usual, but at the end apply a small
number of unsupervised epochs to the VAE. This unsupervised
training uses a combination of the brand validation data and
the training set.

The idea of this approach is to get the variational autoen-
coder to regularise the latent space for the new unseen brand,
as well as learning to compress the data from the unseen brand.

Another technique applying the same idea is to do this
unsupervised training with only the unseen brand validation
data. The idea is that this should allow the VAE to adapt to
this specific dataset.

IV. EXPERIMENT DESIGN

This section describes the design of the experiments. Partic-
ularly, the methods we use as benchmarks, the data split be-
tween training, testing, and validation, as well as the parameter
tuning approach we take to obtain the network architecture.

A. Generalisation data splits

We are defining a new way to evaluate generalisation for
our honey dataset that is more in line with the requirements
of a real-world quality evaluation system.

Because our dataset is limited, it was not possible to test the
generalisation extensively on the Manuka UMF value dataset.

Instead, we created new data labels that put the Manuka honey
samples into four categories that define the quality of the
Manuka honey. These categories are in the ranges that are
considered lower quality Manuka honey (UMF < 10), medium
quality (10 ≤ UMF < 15), high quality (15 ≤ UMF < 20),
and very high quality (UMF ≥ 20) [1]. These categories are
all represented by many of the brands, which makes excluding
each brand a fairer test. These tests are a step towards the final
goal, which is being able to determine the exact UMF value
of a Manuka honey sample regardless of the brand or type.

The way we evaluate generalisation is by leaving each brand
out of the testing and training set and using the examples
belonging to that brand as a validation set. The average
performance on the validation set indicates how well the
algorithm can classify honey from new or previously unseen
brands. The new methods we have developed are aiming to
improve the classification accuracy on this validation set.

B. Benchmark Methods

The benchmark methods we use have all been used for
classification on this honey dataset in previous work. The
first benchmark to consider is the original features from
the hyperspectral image. The other benchmarks are principal
component analysis (PCA), a standard autoencoder, a VAE,
and a CEAE. The CEAE achieved the best performance on
the wider honey dataset previously [19] but did not have the
best generalisation ability.

The three autoencoder benchmarks will use the same layer
structure decided for the VCEAE, but the number of epochs
is tuned for each autoencoder. The PCA approach will take
the first 20 principal components to keep in line with the
autoencoders having an encoding dimension of 20.

KNN and two SVM methods (linear, and RBF kernel) will
be applied after the feature reduction techniques to obtain
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the final classification result. These final classifiers are the
same as for the new generalisation approaches so that we can
evaluate the feature reduction on different classifiers. Some
initial tuning and evaluation will be done on only the KNN
classifier, as the SVM classifiers require parameter tuning.

C. VCEAE Network Parameters

We developed the specific VCEAE architecture using a
parameter sweep over the number of layers, the size of the
latent feature space, and the classification weight. The best
network found by the sum of test, training, and brand sets
accuracy was selected to be our candidate for evaluation. This
network was structured to have layer sizes that decrease evenly
between the input feature size and the latent space feature size.
The batch size of 32 and a learning rate of 0.001 are used in
parameter tuning and also the initial evaluation. The number
of epochs is later fine-tuned for the final architecture, but was
set to number of layers ∗ 100 in this initial parameter tuning.

Overall the best structure found through our parameter
tuning was a six hidden layer encoder and decoder network
with layers [128(input), 128, 110, 92, 74, 56, 38, 20(output)],
and the reverse for the decoder. There are 20 features in the
latent space, and it has a classification weight of 0.4. To find
this network, we used 600 epochs with a batch size of 32,
and a learning rate of 0.001 as defined in our parameter
tuning process. The rectified linear unit (ReLU) activation
function was used throughout the entire network, aside from
the classification output, which used sigmoid. The number of
epochs is fine-tuned between 0 and 500, evaluating every 50
epochs for each of the final autoencoder structures.

With our finalised network architecture, we then began
tuning parameters for the generalisation techniques as well
as performing some analysis on how the network performs
with different values of these parameters. Section V shows this
evaluation for our generalisation techniques that have some
key parameters.

For SVMs, we tune the parameters C, and gamma (for RBF
SVMs), using seven values on a log scale between 10−3 and
103, taking the best average result as our chosen parameters.

V. RESULTS AND ANALYSIS

This section details the results of our generalisation ex-
periments on the VCEAE architecture. The specific VCEAE
structure we use is defined in section IV-C. We apply several
techniques aiming to improve the generalisation ability of the
network. As described in section IV-A, we evaluate perfor-
mance on an unseen brand.

The first approach we apply is using drop-out. We add drop-
out layers between every layer of our network with a low
drop-out rate and evaluate how this can potentially improve
the generalisation performance. Figure 6 shows how differ-
ent drop-out rates affect the training, testing, and validation
performance on our dataset.

We also consider using a minimal number of features in
the latent space. This change involves leaving the network
structure as it is but reducing the size of the feature layer.

Fig. 6. Drop-out parameter tuning graph

Fig. 7. Reduced features parameter tuning graph

Figure 7 shows how different feature sizes affect the overall
performance of the architecture.

We also consider adding unsupervised training with the
validation set at the end of our autoencoder training. Figure 8
shows the result of using a different number of training epochs
to train the validation set unsupervised after regular network
training. Figure 9 shows the result of unsupervised training
the autoencoder with the validation set and the training set
combined for a range of epochs after regular training of the
network.

We also use a data transformation approach and a denoising
autoencoder, as discussed in section III. These approaches do
not require any additional parameter tuning.

Table V shows the results of these techniques. A KNN
classifier with K = 5 is used after feature reduction on all
the techniques, as it is a simple classifier that does not require
any parameter tuning.

Table V shows that the VCEAE with reduced features
technique is performing the best on the validation set, followed
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Fig. 8. Unsupervised training with validation set parameter tuning graph

Fig. 9. Unsupervised training with validation + training set parameter tuning
graph

closely by VCEAE with drop-out, and then the standard
VCEAE. The other techniques did not have a positive effect
on the validation data, which is surprising. With some further
investigation, it can be theorised that the techniques are not
suited to this type of generalisation problem. The denois-
ing autoencoder did not improve the performance, which is
likely because the variational autoencoder already includes
random noise into the latent space during training. The other
techniques were transfer learning based techniques. The idea
behind this was to transfer the model and information learned
in the training process to the unseen brand of honey. However,
these data sets are not entirely different and share much
information. These transfer learning techniques were possibly
over-correcting on the new data and losing some useful
classification information. Although transfer learning is a
particularly exciting area to explore, these kinds of techniques
are not suitable for our Manuka honey generalisation problem.

We progress using the two techniques (drop out and reduced

TABLE I
INITIAL RESULTS OF GENERALISATION TECHNIQUES BEING APPLIED TO

THE VCEAE. BOLD INDICATES THAT THE BRAND VALIDATION
PERFORMANCE WAS BETTER THAN THE STANDARD VCEAE.

Technique Brand Train Test Val

Standard VCEAE

C2 0.999 0.825 0.453
C3 0.990 0.804 0.638
C4 0.995 0.802 0.457
C9 0.997 0.787 0.464
C10 0.995 0.882 0.412
C11 0.996 0.933 0.325
avg 0.996 0.839 0.458

Denoising

C2 0.938 0.779 0.478
C3 0.959 0.787 0.558
C4 0.946 0.768 0.380
C9 0.952 0.728 0.620
C10 0.968 0.831 0.422
C11 0.969 0.869 0.255
avg 0.955 0.794 0.452

Drop-out

C2 0.996 0.811 0.371
C3 0.995 0.792 0.658
C4 0.993 0.788 0.500
C9 0.995 0.829 0.676
C10 0.995 0.882 0.433
C11 0.983 0.933 0.305
avg 0.992 0.839 0.490

Reduced Features (3)

C2 0.997 0.785 0.507
C3 0.993 0.800 0.649
C4 0.998 0.794 0.490
C9 0.997 0.817 0.591
C10 0.996 0.907 0.410
C11 0.986 0.925 0.307
avg 0.995 0.838 0.492

Data Transform

C2 0.991 0.777 0.396
C3 0.983 0.829 0.638
C4 0.982 0.774 0.240
C9 0.990 0.783 0.564
C10 0.989 0.844 0.417
C11 0.990 0.933 0.311
avg 0.987 0.824 0.428

Unsupervised val training

C2 0.975 0.766 0.380
C3 0.987 0.802 0.640
C4 0.983 0.826 0.500
C9 0.990 0.802 0.533
C10 0.984 0.778 0.458
C11 0.984 0.930 0.158
avg 0.984 0.817 0.445

Unsupervised val+train set training

C2 0.977 0.823 0.276
C3 0.979 0.861 0.667
C4 0.988 0.822 0.477
C9 0.992 0.819 0.518
C10 0.991 0.887 0.460
C11 0.993 0.933 0.270
avg 0.987 0.857 0.444

features) that improved upon the standard VCEAE, and also
combining the two techniques. These techniques are evaluated
using SVMs as well as the KNN classifier. We consider
both linear and radial basis function (RBF) kernel SVMs and
compare the new techniques and the VCEAE to the existing
benchmark techniques. Table V shows these techniques with
SVMs applied, the combination of the two techniques, and the
benchmark methods as described in section IV-B.

Comparing the results of the new methods in table V to
the benchmark methods, we can see that when using the
RBF SVM, our new techniques have an improvement over
the known benchmarks in validation set performance. This
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TABLE II
RESULTS OF SVMS APPLIED TO THE BEST GENERALISATION TECHNIQUES AND A COMBINATION OF THE BEST TWO TECHNIQUES. BOLD INDICATES THE

BEST PERFORMANCE FOR EACH CLASSIFIER.

KNN Linear SVM RBF SVM
Technique Brand Train Test Val Train Test Val Train Test Val

New Methods

Standard VCEAE

C2 0.999 0.825 0.453 1.0 0.783 0.596 0.999 0.806 0.418
C3 0.990 0.804 0.638 0.925 0.699 0.771 0.997 0.798 0.618
C4 0.995 0.802 0.457 0.959 0.818 0.500 0.972 0.842 0.433
C9 0.997 0.787 0.464 0.944 0.743 0.431 0.993 0.783 0.351

C10 0.995 0.882 0.412 0.996 0.824 0.418 0.996 0.904 0.400
C11 0.996 0.933 0.325 0.995 0.936 0.304 0.969 0.939 0.263
avg 0.996 0.839 0.458 0.970 0.801 0.503 0.988 0.845 0.414

Dropout

C2 0.996 0.811 0.371 0.996 0.783 0.347 1.0 0.754 0.349
C3 0.995 0.792 0.658 0.992 0.787 0.667 1.0 0.783 0.918
C4 0.993 0.788 0.500 0.994 0.804 0.487 1.0 0.778 0.500
C9 0.995 0.829 0.676 0.992 0.872 0.578 1.0 0.806 0.558

C10 0.995 0.882 0.433 0.993 0.909 0.418 0.997 0.824 0.427
C11 0.983 0.933 0.305 0.980 0.925 0.341 0.989 0.904 0.273
avg 0.992 0.839 0.490 0.991 0.847 0.473 0.998 0.808 0.504

Reduced Features (3)

C2 0.997 0.785 0.507 0.999 0.802 0.556 0.990 0.773 0.500
C3 0.993 0.800 0.649 0.991 0.785 0.651 0.992 0.733 0.920
C4 0.998 0.794 0.490 0.992 0.794 0.480 0.978 0.800 0.433
C9 0.997 0.817 0.591 0.996 0.838 0.469 0.992 0.779 0.429

C10 0.996 0.907 0.410 0.990 0.887 0.408 0.992 0.884 0.413
C11 0.986 0.925 0.307 0.979 0.936 0.338 0.944 0.939 0.352
avg 0.995 0.838 0.492 0.991 0.840 0.484 0.981 0.818 0.508

Dropout + Reduced Features

C2 0.997 0.823 0.287 0.989 0.792 0.34 0.935 0.724 0.449
C3 0.998 0.792 0.667 0.995 0.804 0.62 0.947 0.718 0.696
C4 0.994 0.816 0.413 0.991 0.812 0.497 0.909 0.76 0.847
C9 0.994 0.817 0.44 0.997 0.838 0.46 0.909 0.771 0.458

C10 0.996 0.853 0.39 0.996 0.907 0.42 0.976 0.776 0.377
C11 0.987 0.933 0.291 0.987 0.931 0.284 0.945 0.859 0.497
avg 0.994 0.839 0.415 0.993 0.847 0.437 0.937 0.768 0.554

Benchmark Methods

CEAE

C2 0.997 0.821 0.458 0.977 0.779 0.498 0.992 0.804 0.484
C3 0.995 0.773 0.662 0.979 0.752 0.658 0.986 0.766 0.662
C4 0.996 0.818 0.483 0.99 0.802 0.457 0.995 0.818 0.483
C9 0.997 0.792 0.402 0.996 0.787 0.391 0.996 0.785 0.402

C10 0.996 0.893 0.385 0.994 0.878 0.363 0.995 0.88 0.373
C11 1.0 0.933 0.247 0.997 0.928 0.285 0.998 0.931 0.245
avg 0.997 0.838 0.44 0.989 0.821 0.442 0.994 0.831 0.442

VAE

C2 0.965 0.88 0.247 0.589 0.573 0.469 1.0 0.484 0.329
C3 0.597 0.404 0.3 0.315 0.309 0.278 1.0 0.316 0.667
C4 0.564 0.392 0.327 0.262 0.34 0.287 1.0 0.354 0.48
C9 0.609 0.364 0.271 0.29 0.263 0.442 0.827 0.309 0.249

C10 0.594 0.442 0.21 0.222 0.222 0.25 1.0 0.38 0.258
C11 0.963 0.928 0.246 0.851 0.776 0.248 1.0 0.435 0.285
avg 0.715 0.568 0.267 0.421 0.414 0.329 0.971 0.38 0.378

Standard AE

C2 0.979 0.829 0.46 0.849 0.794 0.276 0.974 0.768 0.376
C3 0.982 0.863 0.664 0.82 0.752 0.64 0.973 0.716 0.664
C4 0.979 0.75 0.31 0.78 0.776 0.217 0.973 0.736 0.4
C9 0.983 0.832 0.611 0.868 0.705 0.464 0.984 0.796 0.731

C10 0.985 0.876 0.488 0.845 0.764 0.313 0.987 0.836 0.492
C11 0.989 0.885 0.156 0.867 0.773 0.147 0.982 0.933 0.156
avg 0.983 0.839 0.448 0.838 0.761 0.343 0.979 0.797 0.47

Full Features

C2 0.989 0.819 0.293 0.894 0.747 0.202 0.93 0.808 0.322
C3 0.991 0.857 0.636 0.828 0.659 0.793 0.923 0.821 0.667
C4 0.99 0.836 0.453 0.841 0.718 0.47 0.938 0.814 0.487
C9 0.992 0.863 0.5 0.88 0.712 0.464 0.962 0.869 0.658

C10 0.99 0.873 0.407 0.841 0.724 0.553 0.952 0.851 0.402
C11 0.997 0.92 0.158 0.914 0.755 0.404 0.947 0.957 0.169
avg 0.991 0.861 0.408 0.866 0.719 0.481 0.942 0.854 0.451

PCA

C2 0.843 0.613 0.269 0.705 0.533 0.236 1.0 0.368 0.333
C3 0.834 0.573 0.453 0.569 0.453 0.358 1.0 0.316 0.667
C4 0.835 0.608 0.48 0.594 0.498 0.587 1.0 0.35 0.5
C9 0.856 0.615 0.544 0.608 0.493 0.578 1.0 0.368 0.333

C10 0.853 0.656 0.37 0.648 0.549 0.092 1.0 0.389 0.25
C11 0.903 0.728 0.27 0.67 0.616 0.317 1.0 0.4 0.286
avg 0.854 0.632 0.398 0.632 0.523 0.361 1.0 0.365 0.395
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TABLE III
VALIDATION SET CONFUSION MATRICES FOR THE REDUCED FEATURES

AND DROP-OUT VCEAE USING AN RBF SVM.

Brand Manuka UMF value

C2

0-9 10-14 15-19 20+
0-9 114 36 0 0

10-14 55 88 7 0
15-19 150 0 0 0
20+ 0 0 0 0

C3

0-9 10-14 15-19 20+
0-9 72 75 3 0

10-14 59 241 0 0
15-20 0 0 0 0
20+ 0 0 0 0

C4

0-9 10-14 15-19 20+
0-9 139 11 0 0

10-14 35 115 0 0
15-19 0 0 0 0
20+ 0 0 0 0

C9

0-9 10-14 15-19 20+
0-9 58 6 0 86

10-14 2 148 0 0
15-19 132 18 0 0
20+ 0 0 0 0

C10

0-9 10-14 15-19 20+
0-9 121 0 4 25

10-14 12 81 57 0
15-19 8 118 24 0
20+ 148 0 2 0

C11

0-9 10-14 15-19 20+
0-9 149 0 0 1

10-14 150 126 0 24
15-19 104 105 0 91
20+ 52 0 1 247

result shows that the techniques are having a positive effect in
generalising to the unknown brand data. We can see some
brands are performing very well, above 65% in many of
the techniques, specifically brands C3 and C4 for our best
technique. These high performing brands are increasing the
average accuracy, so it is important to investigate why this
might be happening in the data.

The best benchmark technique was the original features
with a linear SVM with 48.1% accuracy on the validation
set. This benchmark is more accurate than some of our new
approaches on this classifier. However, the test performance
was only 71.9%, where the new methods were all higher than
this.

Interestingly, the new approaches improve a lot with the
RBF SVM classifier. For the VCEAE with drop-out method
and the reduced feature VCEAE method, the linear SVM did
not improve the performance compared to a KNN classifier.
The linear SVM did improve the performance when these
approaches are combined and for the standard VCEAE.

We also analyse the confusion matrices from the best
classifier in table V to determine how our approaches are
performing very well for some brands, but less well for others.

Table V shows the confusion matrices for the VCEAE with
drop-out and reduced features using an RBF SVM. Looking
at the brands that performed very well, C3 and C4, we can
see that these brands only have examples from the first two
classes. These two classes are the largest in our training set

in terms of the number of examples, and the number of
brands containing examples of them. Having more brands
containing these classes provides variation in the dataset so
that the algorithms can generalise better for these two larger
classes. For the smaller brands the classifier predicts most of
the examples correctly if they are from either UMF0-9 or
UMF10-14. Classifying examples from the UMF20+ group
is working well in brand C11, but not in C10. All brands
that have examples in UMF15-19 are unable to classify these
examples very accurately. The classifier may be overfitting to
one or two brands in training for these smaller classes, as there
are not many brands that contain these classes. These examples
are also from a range of different UMF values (15, 18);
in contrast, UMF0-9 examples only contain UMF5 examples
from our dataset. Having multiple classes meant the classifier
has even fewer examples from each UMF class from UMF15-
20. These small brands and classes are an area where we could
look to improve the generalisation performance in future work,
either by adding more data or by using the transfer learning
approaches in a more targetted way.

VI. CONCLUSION AND FUTURE WORK

We have developed a new autoencoder architecture with
the variational class embodiment autoencoder (VCEAE). This
architecture is a combination of the CEAE which was previ-
ously the best performing structure on this dataset, and the
VAE which is known to improve generalisation performance.
In this paper, we introduced a new evaluation strategy to
test the generalisation to unseen samples from brands of
Manuka honey. The new VCEAE architecture had the best
generalisation performance when using a small number of
features, and drop-out in combination with an RBF SVM
classifier. The accuracy has been increased by over 7% while
retaining a high accuracy on the standard testing set. Increasing
the generalisation ability of our algorithms is a step towards a
system for real-world honey quality classification. This is the
first work on honey classification to evaluate the performance
of unseen types or brands of honey, which is critical for the
real-world application. Future work will include adding more
data to the database and involve finding ways to create fake
data to improve the generalisation for small size classes.
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Alewijn, and Piotr M Kuś. Vis/nir imaging application for honey floral
origin determination. Infrared Physics & Technology, 86:218–225, 2017.

[14] Ary Noviyanto and Waleed H Abdulla. Honey dataset standard using
hyperspectral imaging for machine learning problems. In 2017 25th
European Signal Processing Conference (EUSIPCO), pages 473–477.
IEEE, 2017.

[15] Ary Noviyanto and Waleed H Abdulla. Segmentation and calibration of
hyperspectral imaging for honey analysis. Computers and Electronics
in Agriculture, 159:129–139, 2019.

[16] Ary Noviyanto and Waleed H Abdulla. Honey botanical origin classi-
fication using hyperspectral imaging and machine learning. Journal of
Food Engineering, 265:109684, 2020.

[17] Ary Noviyanto, Waleed Abdullah, Wei Yu, and Zoran Salcic. Research
trends in optical spectrum for honey analysis. In Signal and Information
Processing Association Annual Summit and Conference (APSIPA), 2015
Asia-Pacific, pages 416–425. IEEE, 2015.

[18] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359,
2009.

[19] Tessa Phillips and WH Abdulla. Class embodiment autoencoder (ceae)
for classifying the botanical origins of honey. In Image and Vision
Computing New Zealand (IVCNZ), 2019.

[20] Tessa Phillips, Ary Noviyanto, and Waleed Abdulla. Hyperspectral
imaging honey database. 4 2020. Available at https://figshare.com/
s/25afe30ff531b8f1e65f .

[21] Kaspar Ruoff. Authentication of the botanical origin of honey. PhD
thesis, ETH Zurich, 2006.

[22] Sahameh Shafiee, Saeid Minaei, Nasrollah Moghaddam-Charkari, and
Mohsen Barzegar. Honey characterization using computer vision system
and artificial neural networks. Food chemistry, 159:143–150, 2014.

[23] Sahameh Shafiee, Saeid Minaei, Nasrollah Moghaddam-Charkari, Mahdi
Ghasemi-Varnamkhasti, and Mohsen Barzegar. Potential application of
machine vision to honey characterization. Trends in food science &
technology, 30(2):174–177, 2013.

[24] Sahameh Shafiee, Gerrit Polder, Saeid Minaei, Nasrolah Moghadam-
Charkari, Saskia van Ruth, and Piotr M. Ku. Detection of honey adul-
teration using hyperspectral imaging. IFAC-PapersOnLine, 49(16):311
– 314, 2016. 5th IFAC Conference on Sensing, Control and Automation
Technologies for Agriculture AGRICONTROL 2016.

[25] Irhum Shafkat. Intuitively understanding variational autoencoders.
[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–
1958, 2014.

[27] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang,
and Chunfang Liu. A survey on deep transfer learning. In International
conference on artificial neural networks, pages 270–279. Springer, 2018.

[28] Yichuan Tang. Deep learning using linear support vector machines.
arXiv preprint arXiv:1306.0239, 2013.

[29] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of
research on machine learning applications and trends: algorithms,
methods, and techniques, pages 242–264. IGI global, 2010.

[30] Vladimir Vapnik. The support vector method of function estimation. In
Nonlinear Modeling, pages 55–85. Springer, 1998.

[31] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. Extracting and composing robust features with denoising

autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096–1103. ACM, 2008.

[32] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion.
Journal of machine learning research, 11(Dec):3371–3408, 2010.

[33] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of
transfer learning. Journal of Big data, 3(1):9, 2016.

[34] Di Wu and Da-Wen Sun. Advanced applications of hyperspectral
imaging technology for food quality and safety analysis and assessment:
A review-part i: Fundamentals. Innovative Food Science & Emerging
Technologies, 19:1–14, 2013.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1640


