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Abstract—This paper presents the multiple target prediction
for model-free deep reinforcement learning. Traditionally, the
learning algorithm based on deep Q network (DQN) suffers from
slow convergence in learning process which usually constrains
the system performance. To speed up the learning process, this
study incorporates the prediction network and the auxiliary replay
memory in DQN which allows us to predict multiple target values
over different actions rather than relying on a single target value
from an action. The prediction network is trained in a sequential
manner by using the samples from replay memory while the
auxiliary replay memory is introduced to store the states and the
predicted targets which are related to individual possible actions
that are taken. With these two additional components functioned
in DQN algorithm, the resulting approach can efficiently predict
Q values and rewards to train an agent with comprehensive target
values. The experiments on different tasks demonstrate the merit
of multiple target prediction in reinforcement learning.

Index Terms—machine learning, reinforcement learning, deep
learning, deep Q network

I. INTRODUCTION

Deep reinforcement learning (DRL) [1] has been rapidly
developing in the era of artificial intelligence. DRL deals with
complex sequential decision problems such as computer games
[2], [3], [4], automatic control [5], [6], [7] and natural language
processing [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18] as well as many other tasks including hyperparameter
tuning and architecture selection for optimization of deep
neural network (DNN) [19], [20], [21], [22]. The standard
DRL based on deep Q network (DQN) [1], [23] is trained
as a regression-based DNN which uses the states as inputs
to implement a specialized Q learning. This learning predicts
the Q values of different actions from which the agent can
choose as the output. To learn a desirable policy, the agent
needs to interact with the environment thousands to millions
of times which result in a barrier for system development
with very limited computation power. The issue of slow
convergence in reinforcement learning is basically because of
inefficient exploration as well as sparse reward in learning
procedure. For model-free DRL, the regression-based DNN
in implementation of DQN is only updated by the actual
actions the agent had taken. The agent can only update the Q
value depends on the action it had taken because it doesn’t
know the target values of other actions. The weaknesses
in training are accordingly caused by its limited ability to
predict target values over different actions. If the agent can
accurately predict what may happen next as well as human
learners, it can learn in a much more efficient way. This paper
presents multiple target prediction to tackle the weaknesses

in training procedure of DQN. Our idea is to develop a
general component which brings prediction to DQN-based
models. In addition to traditional components, we introduce
the complementary processing units in DQN which consists
of a prediction network and an auxiliary replay memory.
Prediction network is used to predict all Q values of a state
after taking each individual action. With the auxiliary replay
memory, we perform multiple target updating for DQN at each
state, which improves the training efficiency. This method is
evaluated by the experiments on computer games and language
understanding.

II. DEEP REINFORCEMENT LEARNING

The issues of inefficient exploration, sparse reward and
weak prediction in deep reinforcement learning have been
investigated in the literature. Regarding the issue of explo-
ration, a bootstrapped method [24] was proposed to rapid the
ε-greedy exploration in traditional DQN via a deep explo-
ration using DNN where the randomized value functions were
implemented. In [25], a noise term was added in parameter
space to allow the agent with fast exploration. To deal with
the issue of sparse reward, the idea of intrinsic reward [26],
[27], [28], [29], [30], automatically generated by the agent,
was proposed to perform self learning. In [31], the agent
performed the sample-efficient learning based on hindsight
experience replay. How the actions were right or wrong could
be learned from sparse reward. On the other hand, the issue
of insufficient prediction was handled by learning a model
with domain knowledge of control system and simulating the
fictional experience from such a model [32]. Both fictional
and real experiences were learned accordingly. In [33], a
neural network in a form of autoencoder was constructed in
Atari games to predict the states in next image frames to
compensate the lack of prediction. This paper presents a new
framework which deals with insufficient prediction in deep
reinforcement learning by predicting the values rather than
the states. This framework facilitates rapid computation and
learning in training procedure, particularly in early training
steps, through multiple target prediction based on prediction
network and auxiliary replay memory.

III. MULTIPLE TARGET PREDICTION

Figure 1 displays the whole procedure of an extended DQN
which carries out multiple target prediction for reinforcement
learning. The standard DQN is performed according to the
lower half part with blue shading where the Q network receives
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Fig. 1. An overview for implementation procedure of multiple target
prediction in deep Q network.

a state st from environment at time t as input and produces
an action at based on a set of value functions Q(st, :) of
st over different actions at ∈ {αn}Nn=1. Replay memory
M stores the information of consecutive states and current
action and reward {st, st+1, at, rt}. This primary information
is merged with an auxiliary information from the upper half
of the system with red shading. The fusion of information is
then used to conduct multiple target prediction and calculate
the value functions Q(st, :) via Q network in RL agent when
choosing an action at. The auxiliary information is obtained
by a prediction network and an auxiliary replay memory.
Prediction network is introduced to address the prediction
issue while auxiliary replay memory Ma is used to update
the value network in RL agent with a whole vector of target
values instead of a single target value in traditional DQN.

A. Prediction network

To evaluate what may happen next in an environment, a
kind of autoencoder was successfully developed to predict
next image frames after taking an action for Atari games
[33]. However, predicting the next frames is computationally
difficult. And sometimes the information in a frame is too little
to make a decision by the agent. Therefore, instead of using
the frame data, this study mitigate the computation barrier
by presenting a prediction network to predict Q values from
state sj to new state sj+1. Here, j means the mini-batch
index when sampling from the original replay memory M
which is created by basic RL agent. We use Q(sj , :) of Q
network of state sj and action as the inputs and Q̂(sj+1, :)
of target network of state sj+1 and the reward rj as the
supervised outputs for training the prediction network. After
the training, this prediction network can predict the values
Q̃(sj+1, :) corresponding to different actions for state sj+1

in prediction phase. We iteratively feed N different actions

{αn}Nn=1 with the Q values of state sj sampled from M into
the prediction network to obtain the outputs {Q̃(sj+1, :), r̃j}.
Target network and prediction network have the target values

y(sj) = rj + γmax
a

Q̂(sj , a) (1)

ỹ(sj , αn) = r̃j + γQ̃(sj+1, αn) (2)

respectively, where ∀n = 1, . . . , N and the discount factor is
given by γ = 0.99. Basically, prediction network is seen as
a kind of generator which generates future Q values to allow
RL agent to improve the training efficiency.

B. Auxiliary replay memory

Auxiliary replay memory Ma is used to store the con-
secutive states {sj , sj+1} and the predicted multiple target
values ỹ(sj , :) via prediction network in a mini-batch j. This
memory Ma is separate from the original memory M . With
the auxiliary replay memory Ma, RL agent samples a set of
data pairs {sj , sj+1, ỹ(sj , :)} in different mini-batches sj from
Ma to learn the parameters of Q network where multiple
target values ỹ(sj , :) are used rather than using a single
target value ŷ(sj) in traditional DQN. This paper integrates
the prediction network and the auxiliary replay memory to
implement multiple target prediction in DQN (also named as
the MTP-DQN). The samples from auxiliary memory Ma are
used to learn Q network while those from original memory
M are used to train prediction network as detailed below.

IV. TRAINING PROCEDURE

A. Training of deep Q network

First of all, the agent interacts with the environment to
acquire data. At each time step t, the agent receives a state st
from the environment. This state st is fed into Q network to
obtain Q value vector Q(st, :). Given this Q value vector, an
action is selected by at = argmaxaQ(st, a). After executing
an action, the next state st+1 is received with a reward rt
from the environment. RL agent then saves the transition
information {st, st+1, at, rt} in replay memory M . At each
training step, the agent randomly samples the transitions
{sj , sj+1, aj , rj} from replay memory M . These samples are
time independent, so the samples are indexed by j instead of
t. The agent feeds the target network with the state sj+1 to
obtain a Q value vector Q̂(sj+1, :). The target value y(sj+1)
is then calculated according to Eq. (1). Traditional Q network
is trained by minimizing the regression loss Lq given by

Lq =
∑
sj

(y(sj)−Q(sj , aj))
2
. (3)

B. Training of prediction network

In [33], an autoencoder was proposed to predict the states
or image frames for deep reinforcement learning. Basically,
predicting the states accurately is not as useful as predicting
the Q values and reward accurately. Accordingly, we use Q
value vector and action as inputs to the prediction network,
and the Q value of next state and the reward as outputs. In
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Fig. 2. Calculation of learning objective Lp for prediction network.

order to have an accurate predicting result, we need to train the
prediction network separately. Figure 2 depicts the calculation
of learning objective for prediction network Lp.

The agent randomly samples a mini-batch of transitions
{sj , sj+1, aj , rj} from replay memory M . State sj is then fed
into Q network to receive Q value vector Q(sj , :) while the
next state sj+1 is fed into target network to obtain the target Q
value vector Q̂(sj+1, :). Prediction network uses the Q values
of sj and the action aj as the inputs, and the corresponding Q
value vector Q̂(sj+1, :) and reward rj as the supervised targets
to train the prediction network according to loss function

Lp =
∑
sj

[
N∑

n=1

(
Q̂(sj+1, αn)− Q̃(sj+1, αn)

)2
+(rj − r̃j)2

] (4)

where Q̃(sj , αn) is the predicted Q value from prediction
network and r̃j is the predicted reward.

C. Construction of auxiliary replay memory

In order to perform mini-batch training for Q network using
the predicted data, we need to construct an auxiliary replay
memory Ma to store these predicted samples. Figure 3 shows
the procedure of constructing auxiliary replay memory con-
sisting of data pairs of states sj and the corresponding target
values Q̃(sj , :). First, the agent randomly samples sj from
replay memory M and obtains Q value vector Q(sj , :) from
Q network. Then, this agent iteratively introduces N different
actions a ∈ {αn}Nn=1 and sj sampled from M into the pre-
diction network to obtain the predicted Q value Q̃(sj+1, αn)
and calculate the target values ỹ(sj , αn) according to Eq. (2).
Then, the agent combines all predicted target values into a
predicted target vector ỹ(sj , :). Data pairs {sj , Q̃(sj+1, :)}
or equivalently {sj , ỹ(sj , :)} are stored in auxiliary replay
memory Ma. Importantly, these data pairs figure out the
mapping between a state sj and its corresponding Q values
or target values under different actions.

D. Training with auxiliary replay memory

Once the auxiliary replay memory Ma is constructed, Q
network is trained by using this memory. To do so, we
randomly sample a mini-batch of {sj , ỹ(sj , :)} from Ma

 

 

auxiliary

replay memory

Ma

Q network

prediction

network

prediction

network

prediction

network

~y(sj; :)

sj »M

Q(sj; :)

~Q(s(j+1)1; :)

~rj1

®1

~Q(s(j+1)2; :)

~rj2

®2

~Q(s(j+1)N ; :)

~rjN

®N

max

max

max

°

°

°

£

£

£

+

+

+

~y(sj; ®1)

~y(sj; ®2)

~y(sj; ®N)

Fig. 3. Construction of auxiliary replay memory Ma.

where sj is fed into Q network to obtain Q(sj , :). Training
Q network is performed by minimizing the regression loss
Lqm in a form of

Lqm =
∑
sj

N∑
n=1

(ỹ(sj , αn)−Q(sj , αn))
2 (5)

where the subscript qm in Lqm reflects the loss of Q network
due to multiple target prediction which is different from that in
Eq. (3) due to single target prediction. The parameters of MTP-
DQN for Q network Q(·), target network Q̂(·), prediction
network Q̃(·) are jointly trained with replay memory M
and auxiliary replay memory Ma by minimizing three loss
functions Lq , Lp and Lqm .

E. Single target versus multiple targets

The main difference between single target prediction in
DQN and multiple target prediction in the proposed MTP-
DQN is the loss function for updating Q network. DQN uses
Eq. (1) as loss function where only the chosen action is
employed in updating the Q network. MTP-DQN adopts the
loss function Eq. (5) where all possible actions are considered
in updating Q network in soft manner. Such a difference plays
a key role to improve learning efficiency. Importantly, the orig-
inal replay memory M with {st, st+1, at, rt} is used to train
prediction network while the auxiliary replay memory Ma

with {sj , ỹ(sj , :)} is used to train the new Q network. Since
the prediction network is trained in a supervised way with
{Q(sj , :), aj} as inputs and {Q̂(sj+1, :), rj} as targets, after a
while, the distribution of the predicted values {Q̃(sj+1, :), r̃j}
will be close to that of {Q̂(sj+1, :), rj}. Owing to the storage
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of predicted values in auxiliary memory Ma, the distribution
of data sampled from Ma at training steps is supposed to
be close to that of the data sampled from M . Training with
Ma is comparable with that with M . In case of single target
prediction, the single target updating is regarded as a vector
updating with only the chosen action aj set to the calculation
of target value y. Every updating only changes a single entry
of the vector. In case of multiple target prediction, updating a
whole vector of target values is regarded as updating a mini-
batch of single target values.

V. EXPERIMENTS

This paper presented a new DQN for deep reinforcement
learning which was evaluated by three tasks. The first task was
a simple grid world with known Q values of every states and
actions. The second task was the Atari 2600 games. The third
task was a language understanding task with the states and
actions all described in words and sentences. In the evaluation,
the episode-reward plots were shown to see the performance
of training efficiency by using different methods. In the
implementation, at each episode, we acquired data samples
{st, st+1, at, rt} from environment in different time steps and
stored them in M . ε-greedy algorithm was applied. In this
sequential process, the prediction network was run every 10
time steps. Then, the standard DQN was executed every 8
steps and the construction of auxiliary replay memory was
performed every 20000 steps. Next, Q network was trained
every 8 steps and the target network was updated every 10000
steps. The DNN parameters in different networks based on loss
functions in Eqs. (3)-(5) were updated by stochastic gradient
descent (SGD) algorithm. In practice, we performed single
target updating and multiple target updating alternatively to
tradeoff between stability and capability using MTP-DQN.

Fig. 4. The environment (left) and the reward map (right) of a grid world.

A. Grid world

Grid world was a simple toy world built in a matrix. Each
element in the matrix was a position. The agent received its
current position, given by two one-hot vectors x and y for
two axes, as its state. There were four possible actions: up,
down, left and right to move to the nearby positions. The
goal of the environment was to find a shortest path to the
goal. The environment is illustrated in Figure 4 where yellow
circle denotes the current position of an agent, gray blocks
denote the obstacles and red block denotes the goal. The
reward map of this environment is also shown. We construct
the environment of this toy task where the ground-truth Q

values of different states can be calculated to eliminate any
uncertainty caused by Q values which are calculated by the
target network. The DQNs with single target prediction (DQN)
and multiple target prediction (MTP-DQN) are compared. The
Q network architecture used in this task was a simple architec-
ture with two fully-connected hidden layers consisting of 256
and 128 hidden units. Both layers adopted the ReLU activation
function. The optimizer was based on back propagation.

Fig. 5. Learning curves of total rewards in grid world.

The comparison of learning curves using single target up-
dating and multiple target updating is shown in Figure 5. This
is an environment with action space of 4. Even if single target
updating is less efficient, with the greedy algorithm, the agent
can easily choose the right path. Therefore, we simply set the
batch size to 1. The experiment result shows that multiple
target updating works much better than single target updating.
Updating with multiple target is beneficial for efficient training
in reinforcement learning.

Fig. 6. Learning curves of total rewards in Atari 2600 games.

B. Atari 2600 games

This study further used the OpenAI Gym [34] to implement
the Atari 2600 Games which is a benchmark task in evaluation
of reinforcement learning. The network architecture was the
same as that in original DQN provided in [1], [35]. The
prediction network architecture is same as the one used for grid
world. In particular, the game on Ms. Pacman was examined.
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The learning curves comparing DQN and MTP-DQN are
illustrated in Figure 6. The experimental result shows that
MTP-DQN performs better than DQN in this comparison.
Using MTP-DQN, the possibility that inaccurate prediction
can cause a failure is low because the ghosts are moving slower
and they are often blocked behind a wall.

Fig. 7. Illustration of natural language-based home world

C. Natural language-based home world

This language understanding task is a kind of text-based
game. Using deep reinforcement learning on such an environ-
ment first appears in [8]. In this text-based game, all interac-
tions in the virtual world were through text. The underlying
state could not be observed. We constructed the home world
with five different rooms. The agent was given a goal which
described what it should do in this episode. The goal of the
agent was to find the right room and do the right thing.
Basically, the agent received 4 sentences as its state shown
on the left side of Figure 7. In an initial state, the goal and
the starting place in the sentences were randomly chosen. The
action of the agent contained a verb chosen from {go, eat,
sleep, watch, do, take} and a noun chosen from {north, south,
east, west, something, bath, TV, exercise, here}. An illustration
of the environment is shown in the figure, notice that the
agent can only see the sentences. The agent could only receive
positive reward by choosing the right pair of action in the right
place with the right goal (ex: action:{take, bath}, place: toilet,
goal: dirty). It would not receive any positive reward in other
conditions even if the agent was heading for the right room.
The reward in such an environment was so sparse that the
agent could hardly learn what to do. In the implementation,
the input sentences were encoded into a matrix. The agent
received 4 sentences with a maximum length of 5 words. After
adding the beginning and the ending characters, the maximum
length was 7. The input state had a vocabulary size of a 7×4
matrix. We used a long short-term memory (LSTM) [36], [37]
layer to represent natural language. The output units of LSTM
layers was 256. After the LSTM layer, we used an average-
pooling layer and two dense layers both with 256 hidden units.
Because the environment received two words as an action, the
network outputs should be separate. After the dense layers,
one hidden layer with 128 units at both heads was used.

In general, this is a multi-goal task where the goals in
individual episode are different. This condition motivates us
to incorporate the hindsight experience replay (HER) [31] in

DQNs where the first and the fourth sentences were used
as the current goal, and the second and the third sentences
were treated as the current state. HER could provide additional
information to the agent. The environment was built by provid-
ing agent information about if the agent’s current action would
complete some other goals or not. Accordingly, the network
architecture was constructed with two inputs: state and goal.
These two inputs went through their individual LSTM and
average-pooling layer. After these layers, two input paths were
concatenated. Basically, the goal remained the same during a
whole episode. Because of this multi-output environment, we
used two individual networks to predict two Q values of two
words with two shared layers. All of the hidden layers had 128
hidden units and hyperbolic tangent as the activation function.

Fig. 8. Learning curves of total reward in home world

The experimental result on natural language-based home
world is shown in Figure 8 where HER is applied in both DQN
and MTP-DQN. The learning curves of total reward clearly
show that DQN is significantly improved by applying the
proposed multiple target prediction. The learning curve climbs
steeply with big jumps at about episodes 5000 and 10000.
These two jumps might happen when the agent creates a new
auxiliary replay memory. The Q values generated by prediction
network in this natural language environment work well. This
result once again demonstrates the benefit of multiple target
prediction in reinforcement learning.

VI. CONCLUSIONS

This paper presented a new multiple target updating ap-
proach to deep reinforcement learning where the learning
efficiency using deep Q network was improved. The prediction
network and the auxiliary replay memory were proposed to
fulfill multiple target prediction based on DQN. The experi-
ments on three tasks showed that the incorporation of these
two additional components in DQN consistently improved the
conventional method based on single target predicting. The
proposed MTP-DQN will be further investigated in different
perspectives. First, combining the prediction network with
methods such as Monte Carlo tree search [38] will allow
the agent to deal with the sparse reward problem. Second,
the deep deterministic policy gradient [39] algorithm will be
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introduced to implement the proposed method for continuous
control tasks, e.g. robot moving and autonomous driving.
Third, the replay memory in DQN and the auxiliary replay
memory in MTP-DQN will be related to the memory networks
where attention mechanism could be applied. Fourth, other RL
domains and tasks will be examined.
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