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Abstract—Diversity of generated responses is important for a
data-driven neural conversational model (NCM) for non-task-
oriented conversation. A criterion of maximum mutual informa-
tion (MMI) and generating N-best outputs are both effective ways
to increase the diversity. Generally, a beam search is used for
generating N-best outputs. However, the beam search is likely
to produce similar outputs in the N-best results. We propose a
simple and efficient N-best search, namely N-greedy search, for
an encoder-decoder recurrent neural network (RNN) with an
attention mechanism. We built an NCM with a fictive chitchat
corpus and generated responses based on the MMI criterion and
N-greedy search. All of four objective indices of diversity showed
increases, and a subjective evaluation clearly showed a reduction
in the number of dull responses.

I. INTRODUCTION

In accordance with today’s prevalence of AI assistants and
chatbots, non-task-oriented response generation techniques are
gaining attention. This type of conversation is important for an
agent to build rapport with a user through continuing coherent
and diverse responses to idle talks.

Applications of sequence-to-sequence neural network mod-
els to the conversational domain have shown fluent response
generation [1], [2], [3]. However, such generative models
trained on the basis of the criterion of minimizing cross-
entropy error have suffered from generating dull responses
such as “I think so, too” and “I don’t know.”

To address this issue, Li et al. proposed diverse response
generation on the basis of a criterion of MMI with an input
sentence [4]. The concept of MMI was introduced to model
training and implemented with an incremental reinforcement
learning (RL) algorithm called MIXER [5]. Reinforcement
learning enabled introduction of various types of rewards
such as ease of answering and semantic coherence [6]. MMI
was further incorporated into a generative adversarial network
(GAN) [7].

Outputting N-best results is also effective for diverse re-
sponse generation. The N-best results leave the possibility of
choosing one on the basis of different criteria. For example, the
N-best results were compared and re-ranked based on event
causality relations [8]. The N-best results are also effective
for robust model training. To circumvent “exposure bias”, a
frequnecy gap of words that appear in training and in decoding,
sequence level training considering various hypotheses with

an optimized beam width showed effectiveness in multiple
tasks including machine translation [9]. However, a beam
search tends to produce similar sentences that diverged from
a common partial sentences and different at the end of the
sentences. The N-best results are desired to be efficient in
terms of diversity. In other words, a variety of fluent sentences
are desired to be contained in N-best results. Regarding this
issue, iterative beam search which runs multiple iterations of
beam search with excluding any previously explored space was
proposed [10]. Recently, a simple but effective variation of
top k sampling, “nucleus sampling” was proposed to generate
diverse but coherent responses [11].

We developed an encoder-decoder NCM with an attention
mechanism using a large-scale fictive chitchat corpus between
two female personae. To obtain diverse responses efficiently
with N-best outputs, we propose a simplified N-best search,
“N-greedy search”. In addition to the MMI criterion that
reduced dull responses substantially, N-greedy search further
improved the diversity of the responses with a simple imple-
mentation.

II. FICTIVE CHITCHAT CORPUS

We collected a fictive chitchat corpus between two Japanese
female personae in their twenties through crowd sourcing. To
let crowd workers share common images of the personae, we
set 80 attributes from basic ones, such as name, birthday,
family, friends, and job, to detailed ones such as personality,
various favorites and dislikes, current mood and today’s time
of waking up. One of the two initiates chitchats in 50 different
ways, and the ladies exchange responses alternately up to 10
times. Crowd workers were asked to compose three likely
responses to each input from the interlocutor with the personae
in mind. Thus, each of 50 initial sentences formed a tree of
triply-branched alternate responses with a depth of 10.

A total of 1.68 million responses were composed by 200
crowd workers in a time span of 10 months. We assessed
the quality of the composition in two aspects: the rate of
reproduction among three responses to an input along with
the rate of inconsistency between responses and the persona
settings by random sampling. The quality was considered
to be good enough with a 7% reproduction rate and a 5%
inconsistency rate.
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III. NEURAL CONVERSATIONAL MODEL

A. Base model

The base model is an encoder-decoder recurrent gated unit
(GRU) [12] neural network with an attention mechanism [13].
The encoder accepts the previous input from the interlocutor,
and the decoder generates a response with an attention to
the encoder’s output vectors corresponding to tokens of the
input from the interlocutor. The encoder is composed of an
embedding layer and a GRU layer. The decoder is composed
of an embedding layer, an attention layer, a GRU layer, and a
fully-connected layer with a softmax function.

Let the previous input from the interlocutor and its response
represented by S = {s1, . . . , sNS

} and T = {t1, . . . , tNT
}

, where s and t denote indices of source (input) and target
(output) tokens. The indices are common to inputs and outputs
with a vocabulary size V . In the encoder, a GRU accepts a
concatenation of an embedding vector of an input token xsj

and a hidden state at the previous token he(j−1), and updates
the hidden state with an output of an encode vector ej .

xe
j = Embeddinge(sj) (1)

(ej ,h
e(j)) = GRUe(xe

j ,h
e(j − 1)) (2)

hd(0) = he(NS) (3)

The last hidden state of the encoder is passed to the decoder
to initialize its hidden state as hd(0). The first input to the
decoder is a “<start>” index, and the output from the decoder
is fed recurrently to the decoder as its next input. To output
the kth token, a context vector ck is obtained as a weighted
sum of the encode vectors ej with an attention weight vector
ak. A GRU accepts a concatenation of an embedding of the
last output token xd

k and the context vector ck, and it updates
the hidden state with passing a decode vector dk to the fully-
connected layer. The output token t̂k is a word that has the
maximum output probability at the fully-connected layer.

xd
k = Embeddingd(t̂k−1) (4)

ak = softmax(vT tanh(W 1E +W 2H
d
k−1)) (5)

ck =

Ns∑
j=1

ak(j) · ej (6)

(dk,h
d
k) = GRUd(xd

k, ck) (7)
yk = softmax(W ydk + by) (8)

t̂k = argmax
v

(yk(v)), (9)

where E and Hd
k−1 denote matrices of stacked encode vectors

ej(1 ≤ j ≤ NS) and stacked duplications of a hidden state
hd
k−1, respectively.
The model is trained in the normal sequence-to-sequence

manner, where cross-entropy error is minimized by the
stochastic gradient descent (SGD) algorithm.

loss = −
M∑

m=1

maxNT∑
k=1

log yk(tk), (10)

where M denotes the mini-batch size.

B. Decoding based on maximum mutual information criterion

As the base model tends to generate dull responses, we
introduce decoding based on the MMI criterion. The decoder
incorporates a penalty of Li’s anti-LM with a decreasing
weighting function [4]. The MMI-based decoder generates a
response that maximizes the mutual information between S
and T .

T̂ = argmax
T

{
log

p(S, T )

p(S)p(T )

}
= argmax

T
{log p(T |S)− log p(T )} (11)

This equation is interpreted as penalizing frequent responses
from the base of conditional log probabilities output by the
base model. The MMI criterion is generalized with introduc-
tion of a hyperparameter λ for weighting the penalty. The
penalizing term log p(T ) is calculated as an accumulated log
likelihood of a language model.

T̂ = argmax
T
{log p(T |S)− λ log p(T )} (12)

log p(T ) =

NT∑
k=1

log p(tk|t1:k−1) (13)

In practice, the 1-best sequence of output tokens is obtained
by a greedy search. The yk in (8) gives a set of conditional
probability of the kth token tk given the previous input
S and a sequence of previous output tokens t̂1, . . . , t̂k−1,
and an n-gram language model gives the penalty. In Li’s
implementation, the penalty is only applied to tokens around
the head of output responses because the penalty promotes
ungrammatical sentences to be output as well. The MMI-based
decoder determines an outputs token t̂k as follows:

t̂k =

 argmax
v

(log yk(v)− λ log p(v|t̂k−1)) (k ≤ l)

argmax
v

(log yk(v)) (k > l)

(14)

where l is the maximum length of penalizing frequent series
of output tokens.

C. N-greedy search for diverse response generation

We extends the decoding with two types of N-best search.
One is a basic beam search. The beam search keeps top K
partial sentences with their accumulated scores every time-step
for a search in the next time-step. From every partial sentence,
conditional probabilities of the next tokens are computed, and
the top L hypotheses are kept for comparison. Then, top K
partial sentences are kept out of a set of K × L hypotheses.
Finally, N-best sentences are selected on the basis of a mean
score per token. A problem with the beam search is that the
top K partial sentences are often occupied by those stretching
from a common partial sentence when the number K is not
very large.

The other N-best search keeps the top N words at the first
(head) output token of the responses and greedily searches the
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TABLE I
DATA SIZES OF FICTIVE CHITCHAT CORPUS.

Set #pairs #vocabulary #tokens
Training 1,122,183 36,959 21,163,298
Validation 62,343 18,134 1,175,511
Test 62,344 18,104 1,177,674

1-best sequence of tokens following each of the N words at
the head. To be exact, the first output token is selected as:

{t̂1,n}n=1,...,N = N-max
v

(log y1(v)− λ log p(v|t0)) (15)

where t0 is a “<start>” and the following tokens are deter-
mined by (14). The final N-best outputs are sorted on the
basis of a mean score per token.

As the attention mechanism works best at the first output
from the decoder, the N-best words at the head of sequences
look substantially reasonable and diverse. Different words lead
to diverse responses. We call this implementation N-greedy
search.

IV. EXPERIMENTS

A. Experimental setup

The fictive chitchat corpus was separated into input-
response pairs. The pairs were first divided into two classes
corresponding to the personae. The Japanese sentences were
preprocessed as follows:

1) Split every sentence into a sequence of words using the
Japanese morphological analyzer “Mecab” [14].

2) Eliminate punctuation marks except for question marks
and replace all words of only one occurrence in the
corpus with “<oov>.”

3) Insert a “<start>” and an “<end>” into the head and
tail of every sentence, respectively, and convert every
sentence into a sequence of indices in reference to a
vocabulary table.

All pairs of one persona were split into training, validation,
and test sets with a proportion of 18:1:1. The numbers of pairs
in the training, validation, and test sets were 1.12M, 62k and
62k, respectively. The size of the vocabulary V , which was
common to two personae, was 37,785. The rate of out-of-
vocabulary words was 0.04%. The detailed numbers are listed
in Table I.

A base model was trained for each of the personae using
the normal sequence-to-sequence training algorithm that min-
imizes cross-entropy error with teacher forcing. The dimen-
sions of the embeddings and hidden states were set at 128 and
256, respectively. The models were trained with 20 epochs.
The language model used for calculating the penalty term was
a unigram LM with additive smoothing. The language model
was trained on the same corpus. The decreasing weighting
function was set to penalize only the first word after “<start>”,
that is l = 1 in (14).

Three kinds of responses were generated for the common
test set of inputs from the interlocutor using 1) the base
model with a normal beam search (Base beam), 2) the MMI

TABLE II
DIVERSITY INDICES FOR GENERATED RESPONSES.

Dist-1 Dist-2 Ent-1 Ent-s Len-s
1-best case
Original 0.0249 0.1790 8.28 14.34 9.38
Base beam 0.0081 0.0232 5.57 7.40 7.17
MMI beam 0.0329 0.0534 7.52 10.88 4.95
MMI N-greedy 0.0274 0.0580 7.74 13.39 7.10
3-best case
Original 0.0115 0.1010 8.27 14.67 9.37
Base beam 0.0017 0.0035 4.70 5.09 6.15
MMI beam 0.0131 0.0267 7.70 12.79 5.40
MMI N-greedy 0.0131 0.0342 7.78 14.59 7.16
5-best case
Base beam 0.0014 0.0033 4.97 6.14 6.38
MMI beam 0.0082 0.0187 7.77 13.74 5.71
MMI N-greedy 0.0089 0.0262 7.81 15.12 7.18
10-best case
Base beam 0.0009 0.0026 5.22 7.69 7.98
MMI beam 0.0040 0.0104 7.77 15.12 6.57
MMI N-greedy 0.0051 0.0178 7.84 15.85 7.24

criterion with a normal beam search (MMI beam), and 3)
the MMI criterion with the N-greedy search (MMI N-greedy).
In the normal beam search, the numbers L and K were set
at 5 to output 1-best and 3-best responses, while set at 10
to output more responses. In the N-greedy search, top N
words were kept at the head to output N -best responses.
The hyperparameter λ was tuned at 0.8, where Distinct-1 and
Ent-1, two indices of diversity described below, reached their
maximum levels with the validation set.

The diversity of the responses was measured objectively
with four indices: Distinct-1, Distinct-2, Ent-1, and Ent-s.
Distinct-n is a ratio of the number of unique n-grams to the
total number of n-gram tokens appearing in the corpus [4].
Dist-1 and Dist-2 stand for those of unigrams and bigrams
in the test set. Ent-1 is the entropy of the unigrams in the
test set with base 2 [7]. Likewise, Ent-s stands for sentence-
level entropy. A low entropy means a biased distribution, that
is a sign of frequent dull responses. Besides, the quality of
responses was assessed subjectively from grammatical and
contextual points of view.

B. Objective evaluation of diversity

Table II shows the four indices of diversity with an addi-
tional index Len-s for the test set in four cases: 1-, 3-, 5- and
10-best. The Len-s is the average number of tokens (length)
in a response. The “Original” stands for the responses in the
corpus. In the case of 1-best, one of three original responses
to each input was randomly chosen.

Although all four indices of diversity decreased from the
“Original” considerably with the “Base beam”, the MMI-based
response generation (MMI beam) significantly recovered all
the indices. The N-greedy search (MMI N-greedy) further
increased all the indices with Len-s increasing as well in all
the case of the 3-, 5- and 10-best results. Table III lists an
example of an input, three original responses, and generated
3-best responses with three methods.
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TABLE III
EXAMPLES OF GENERATED RESPONSES (IN TRANSLATION).

Input I like Hawaii. Europe is nice, too.
Original 1 Europe is nice. I want to visits quaint

streets and musiums.
2 In Europe, where do you want to visit?
3 I like Hawaii, too. I want to surf a wave.

Base beam 1 Oh, I see.
2 It sounds good. Great.
3 It is very you.

MMI beam 1 Europe is nice. Want to visit there.
2 Europe is nice. I want to visit there.
3 Europe is nice. Want to go there.

MMI N-greedy 1 In Europe, where do you want to visit?
2 Angkor Wat is also nice, isn’t it?
3 Hawaii is nice. I want to visit there, too.

C. Subjective assessment of quality

We conducted a subjective evaluation of the generated
responses using a scale of discrete levels with crowd sourcing.
A total of 6,000 input-response pairs were randomly sampled
out of the test set except those including an “<oov>” in the
input. Every input-response pair was scored by three raters
on the scale of six levels listed in Table IV. The raters were
collected through crowd sourcing. One rater scored 100 sets
of three responses to a common input. The scores were tallied
except 0 scores (responses to dull inputs), after checking if
the rating was not conducted in an automatic manner.

Table V shows the percentages of the subjective scores and
a ratio of the top among three methods including ties. The
introduction of an MMI criterion greatly reduced the number
of dull responses that occupied nearly half of all the responses
to less than 10% and increased the ratio of the top from 58%
to 60%. The N-greedy search achieved an additional reduction
in the number of dull responses and an increase in the ratio
of the top. However, a problem was that the ratios of score 1
and 2 increased more than those of score 4 and 5. This will
be future work.

V. CONCLUSIONS

A non-task-oriented neural conversational model was
trained with a large-scale fictive chitchat corpus in Japanese,
and generated responses based on an MMI criterion was
evaluated objectively in diversity and subjectively in quality.
The four indices of diversity showed substantial increases by
introducing the MMI criterion and additional increases by the
efficient N-best search that keeps N-best words at the head
of output sequences. The results of a subjective evaluation
clearly showed a significant reduction in the number of dull
responses and slight improvement in the general quality of
the generated responses. The N-greedy search generated more
diverse responses than the beam search while keeping the same
level of quality.

While the number of dull responses was significantly
reduced and the number of contextually correct responses
increased, the number of contextually incorrect responses
increased as well. This issue will be future work.

TABLE IV
CRITERION OF SUBJECTIVE RATING

Level Criterion
5 Grammatically and contextually correct
4 Grammatically imperfect, but contextually correct
3 Dull response
2 Grammatically correct, but contextually incorrect
1 Grammatically and contextually incorrect
0 Dull input

TABLE V
PERCENTAGES OF SUBJECTIVE SCORES AND RATIO OF TOP AMONG THREE

METHODS INCLUDING TIES.

1 2 3 4 5 Top
Base beam 3% 10% 47% 7% 34% 58%
MMI beam 8% 27% 9% 9% 46% 60%
MMI N-greedy 8% 27% 7% 11% 47% 61%
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