
MERGING WELL-TRAINED DEEP CNN
MODELS FOR EFFICIENT INFERENCE
Cheng-En Wu∗, Jia-Hong Lee∗, Timmy S.T. Wan∗, Yi-Ming Chan∗ and Chu-Song Chen∗†‡

∗ Institute of Information Science, Academia Sinica, Taipei, Taiwan
E-mail: {chengen, honghenry.lee, timmywan, yiming, song}@iis.sinica.edu.tw

† MOST Joint Research Center for AI Technology and All Vista Healthcare, Taipei, Taiwan
‡ Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan

Abstract—In signal processing applications, more than one
tasks often have to be integrated into a system. Deep learning
models (such as convolutional neural networks) of multiple
purposes have to be executed simultaneously. When deploying
multiple well-trained models to an application system, running
them simultaneously is inefficient due to the collective loads of
computation. Hence, merging the models into a more compact
one is often required, so that they can be executed more efficiently
on resource-limited devices. When deploying two or more well-
trained deep neural-network models in the inference stage, we
introduce an approach that fuses the models into a condensed
model. The proposed approach consists of three phases: Filter
Alignment, Shared-weight Initialization, and Model Calibration.
It can merge well-trained feed-forward neural networks of the
same architecture into a single network to reduce online storage
and inference time. Experimental results show that our approach
can improve both the run-time memory compression ratio and
increase the computational speed in the execution.

Index Terms—Convolutional Neural Networks (CNNs), Mul-
titask Learning, Co-compression of CNN Models, Fusing CNN
Models, Merging CNN models

I. INTRODUCTION

Deep neural networks play a main role in recent signal
processing applications. To handle various tasks, deep models
have been trained with particular datasets. Hence, they are
often effective for individual tasks or specific purposes. Given
different deep models (that have been well-trained with data),
we hope to merge them into a single model. The merged neural
network is capable of handling different tasks of the original
networks simultaneously.

Deep model merging has great potential for applications in
real-world problems. For example, in a face-related human-
machine interaction system, various facial understanding tasks
such as face recognition [1], [2], gender classification [3], [4],
and facial expression prediction [5], [6], could be involved.
In a multi-modal system, deep learning models based on
heterogeneous signal sources (e.g., face image and speaker’s
voice) would need to be combined for human identity verifi-
cation [7]. Merging well-trained deep models on the inference
stage is beneficial to building a more efficient smart-system
than running them separately.

To train a multitask model, a typical way is to construct a
new architecture with multitasking outputs in the final layer at
first, and then train this model with the union of training data

of all tasks. However, such an approach requires a long-period
trial-and-error procedure since the architecture selected could
be inappropriate in the beginning, and multiple re-training
processes are needed in every trial. Even if neural network
architecture search (NAS) [8], [9], [10] techniques can find
appropriate architectures, it is still demanding to conduct a
satisfied deep-learning model for multiple tasks.

In this paper, we develop a general approach that can merge
multiple feed-forward neural networks having the same archi-
tecture. The merging process is a gradual ensemble method
that unifies the first several hidden layers of the networks
incrementally, while a traditional ensemble method only uses
the network’s collective output. The merged network can then
handle the original tasks simultaneously.

Note that when deep neural networks are learned, they often
have much redundancy in the network weights. To exploit
the redundancy, various works compress a neural network or
design newly a condensed architecture [11], [12], [13] so that
the network model can be executed more efficiently. In our
work, the underlying principle adopted is that we remove
the co-redundancy among the learned models for merging.
A more compact model can thus be conducted by using our
approach for efficient inference. When merging two networks,
the models are aligned layer by layer in our approach. The
layers are fused into a single layer with an error-minimized
initialization. Then the merged model is fine-tuned and the
performance can be recovered gradually.

The rest of this paper is organized as follows. Section II
reviews related works and motives for our approach. Sec-
tion III-A presents the details of our approach. Section IV
gives the experimental results. Finally, Section V concludes
this paper.

II. RELATED WORK AND METHOD OVERVIEW

We briefly review multitask learning. Then, we motivate the
idea of our approach and give an overview of it.

A. Multitask Deep Learning

Multitask learning is widely used in multimedia signal pro-
cessing [14], [15], which aims at making the model increase
the generalization power through sharing similar representa-
tions from related tasks. To achieve multitask deep learning, a

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1594978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

typical way is to build a network with numbers of task-specific
output nodes. However, this naive strategy assumes that all
tasks are relevant enough to prevent the negative transfer from
deteriorating the performance of the multitask network. To
relax the constraint, [15] designs a multitask network where
lower layers are shared and upper layers are task-specific sub-
networks, not just a task-specific node.

Nevertheless, despite such a partial sharing strategy works
in some cases, it requires prior knowledge like task affinity
and weighted loss for each corresponding task in advance.
To further address the issue of relatedness among tasks, [16]
proposes a task grouping mechanism to search a multitask
network architecture adaptively through estimating affinity
among tasks. To determine an appropriately weighted loss,
some works [17], [14] propose different strategies to alter the
loss-weight for each task dynamically during training.

To delve into the branches of multi-task learning, multi-
modal learning is also discussed in some cases like [18],
[19], [20], [21]. Unlike the aforementioned approaches using
a single modality only, multi-modal multitask learning is
to make the learner handle multiple tasks using multiple
modalities. In emotion recognition, [22] proposes an approach
to predict continuous emotion in terms of arousal, valence,
and likability using acoustic, visual, and texture features from
human simultaneously.

B. Motivation of Our Approach

To handle multiple tasks with a single model, a straightfor-
ward way is to use a single network and fork multiple outputs
associated with the tasks.

When well-trained models are provided for the tasks, we
could choose one task as the pre-trained model and fine-tune
the output-branching network for all tasks to build a multitask
model. An illustration of this baseline approach is given in
Figure 1(b). The approach is easily realizable but implicitly
assumes that the deepest feature representations are shared,
which would work only when the tasks are highly related.
Besides, the initial weights are set from one of the models,
which could be biased for that task.

Better performance can likely be achieved by sharing part
(instead of all) of the layers only. To address the problem,
we propose a “zippering” approach that allows using part of
the previous layers to form the common backbone network.
Since the number of previous layers suitable to be shared is
unknown in advance, we manage a progressive process (the
zippering process) that merges the first k layers incrementally
for k = 1, · · · , L, where L is the number of total layers of the
network. The zippering process can, therefore, find a suitable
number of layers for sharing automatically.

III. ZIPPERING NEURAL NETWORKS

As mentioned, the models to be merged are assumed to
be of the same architecture and have been well trained for
individual goals. We set the same layer of the two models as
a pair to be fused, where the weights (or filters) of the layers
in a pair are different initially. In the zippering process, we

Task One

Layer 𝑙

…
…

Layer 𝐿 − 1

Layer 𝐿

Layer 1

Layer 2
…
…

Output
Layer

Output
Layer

Task Two

Layer 𝑙

…
…

Layer 𝐿 − 1

Layer 𝐿

Layer 1

Layer 2

…
…

Layer 𝑙

…
…

Layer 𝐿 − 1

Layer 𝐿

Layer 1

Layer 2

…
…

Task One

Output
Layer

Output
Layer

Task Two

Shared

(a) (b)

Fig. 1. (a) Two original models. (b) Baseline method: merged the models with
the deepest features shared for the two tasks.

develop a filter permutation procedure to align the convolution
kernels (filters), so that similar filters can be matched and
coupled. Then, we fuse the two layers with the permuted
filters and initialize the common filter weights of the fused
layer. Finally, we fine-tune the merged model by minimizing
the classification loss through fine-tuning. In the zippering
process, the previous layers are fused and fine-tuned in the
beginning, and then the later layers are fused sequentially.
Hence, an incrementally merged model can be obtained. An
overview of the zippering process is illustrated in Figure 2.
In round l of the iteration, we merge the previous l layers.
The merged layers serve as a common network for feature
extraction of the subsequent branches of tasks, as illustrated
in Figure 2(b). In each round, three operations are performed.
Filter Alignment: First, to minimize the error of the merged
layer, the best order of filters is found.
Shared-weight initialization: Second, unified weights are
initialized to be used concurrently for different networks.
Model Calibration: Third, the weights of the merged models
are calibrated to reclaim the performance.

A. Filter Alignment

In convolutional neural networks (CNNs), a set of convolu-
tion kernels (filters) are applied to the input tensor in a layer.
Assume that there are N such filters in a convolution layer. If
we permute these N filters, the channels in the output tensor
of this layer are permuted accordingly. Note that the output
tensor of the current layer is the input tensor of the next layer
in general (except that the current layer is the final layer). If we
permute the filters in the current layer and shuffle the channels
of the filters in the next layer with the same permutation order,
the final output of the CNN remains invariant.

More specifically, let us consider a typical convolution layer
in a feed-forward neural network (without loss of generality,
assume that a padded convolution of stride 1 is used):
Input x ∈ RC×W×H : the tensor fed to this layer, with W,H
the spatial size and C the depth (i.e. number of channels).

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1595

Task A

…

Layer 𝐿

Layer 2

…

Output

Layer

Output

Layer

Task B

Layer 𝐿

…
…

Task A

Layer 𝑙

…

Layer 𝐿

Layer 1

Layer 2

…

Output

Layer

Output

Layer

Task B

Layer 𝐿

…

…
Task A

Output

Layer

Output

Layer

Task B

Layer 𝑙

…
Layer 1

Layer 2

…

Layer 𝐿

…

Task A

Layer 𝑙

…

Layer 1

…

Output

Layer

Output

Layer

Task B

Layer 𝑙

Layer 𝐿

Layer 2

…
…

Layer 1… …

Layer 𝑙

Layer 1

Layer 𝑙

Layer 2Layer 2

Layer 𝐿

Merged

Merged

Merged

(a) (b)

Fig. 2. The zippering process of merging two feed-forward networks. (a) Original neural networks. (b) The ”Zippering” process. The merging is done
sequentially from the first layer, and then iteratively fusing the later layers. At the beginning of the merging layers, the alignment of filters is done via the
Hungarian algorithm with l1 distance. The aligned filters are then initialized and calibrated with the training data to obtain the merged layer weights. Then
the process is repeated for the subsequent layers until all layers are merged. A sequence of merged models is generated for selection; one of them can be
chosen for the deployment according to the memory budget and accuracy requirement.

Filter
Alignment

Filter Merge

Filters 𝑾𝐴𝑖
= {𝑭𝐴𝑖

1 , … , 𝑭𝐴𝑖
𝑁 }

Filters 𝑾𝐵𝑖
= 𝑭𝐵𝑖

1 , … , 𝑭𝐵𝑖
𝑁

Initial shared weights

𝑭𝐴𝑖
1 𝑭𝐴𝑖

2 𝑭𝐴𝑖
3 𝑭𝐴𝑖

4 𝑭𝐴𝑖
5

𝑭𝐵𝑖
1 𝑭𝐵𝑖

2 𝑭𝐵𝑖
3 𝑭𝐵𝑖

4 𝑭𝐵𝑖
5

Merged Filters 𝑾𝑀𝑖

Fig. 3. Filter alignment process. To minimize the difference of the merged
model, the order of the merged filters may change in our approach. The best
matching of the filters is modeled as an assignment problem; this can be done
by the Hungarian algorithm using l1 distance.

Filter Fi ∈ RN×C×w×h (i = 1 · · ·N): N filters applied; each
has C channels of spatial size w × h.
Output y ∈ RN×W×H : a tensor consisting of N channels
with each channel yi = Fi(x) ∈ RW×H , for i = 1 · · ·N .

If we reshuffle the filters of this layer as Fσ(i) (i = 1 · · ·N),
with σ(·) a permutation on {1 · · ·N}, then the output remains
the same but is permuted accordingly, yi = Fσ(i)(x), i =
1 · · ·N . Full-connection layers hold a similar property. This
property can be extended to the whole feed-forward network.
Suppose we are given a network having L layers. If a
permutation σl(·) is applied to the filters of the l-th layer, the
output of this layer is then applied with the same permutation.

Hence, the filters in the next layer (the (l + 1)-th layer)
should be pre-permuted via σl(·) in advance to ensure the
invariance of the output. Iterating this idea yields that, if
we apply the permutations σ1(·), σ2(·), · · · , σL−1(·) to the
filters of the respective layers and hope that the final output
remains the same, then we have to apply actually σ1(·) to
the 2nd-layer filters, σ1 ◦ σ2(·) to the 3rd layer filters, ..., and
σ1 ◦ σ2 ◦ · · · ◦ σ(L−1)(·) to the L-th layer filters, respectively,
where ◦ denotes the function composition.

Leveraging this property, given two convolution layers as a
pair to be fused, we propose to permute the filters so that
similar filters are aligned to enforce a better initialization
of model fusion. More specifically, consider two models A
and B that have been well-trained in advance. We permute
the filters in model A and then merge them with the filters
of model B. For the l-th layer, we change the order of the
filters in model A with the permutation σl(·), and hope that
similar filters FAσl(i)

and FBi can be paired together. To achieve
this, we calculate the score of each filter by summarizing the
absolute values of weights. And then, we use a distance metric
to measure the similarity between filters based on scores,
where the l1 distance between filters is adopted in this work.
When the order of the filters changes, the error of merging
may be reduced. Since this best order can be formulated as
an assignment problem, the best matching of models can be
found by the Hungarian algorithm [23]. The time complexity
of the Hungarian algorithm is O(N3). Figure 3 shows the
illustration of the alignment process. After the best order of
filters is found, we adjust the channel order in the next layer
accordingly as mentioned above. This will make the feed-
forward neural network generate the same outputs as those
that before the filter alignment.

B. Shared Weight Initialization
To effectively initialize the filter weights of fused layers, a

promising way is to leverage the well-trained models given.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1596

Consider a pair of convolution layers in model A and model B
with N ×C×w×h convolution kernels. We simply initialize
the merged filter weights by averaging the original weights,
which yields the least quantization error of the weights:

µi = (FAσ̂(i) + FBi)/2, i ∈ {1 : C} , (1)

where σ̂(·) is the optimal permutation found by the Hungarian
matching algorithm for this layer, and µi denotes the initial
fusion weights, i = 1 · · ·C.

C. Weight Calibration

Once the fused weights are available, they are set as initial
values to merge the models for multiple tasks. The entire
model is fine-tuned with a portion (10% in our experiments)
of randomly selected training data through end-to-end back-
propagation learning. The original losses (such as cross-
entropy losses) of both tasks are summed to fine-tune the fused
model. Accordingly, the optimization problem is

w∗ = min
w

[·LosscA(w) + ·LosscB(w))] (2)

where w are the parameters of the convolutional filters, and
Lossc are the individual losses. We refer this to as the model
calibration procedure.

Shared-weight initialization and weight calibration are al-
ternatively performed when the top l layers are fused in our
zippering process, as shown in Figure 2(b). A sequence of
merged models are obtained after finishing the zippering pro-
cess. Users can flexibly choose one of them for the inference
stage via the trade-off between resource/speed and accuracy.

IV. EXPERIMENTS

We evaluate our method on three scenarios with different
benchmarks. First, we use the facial images as input for three
tasks: face recognition, gender identification, and expression
classification. Second, we examine the effectiveness under
different modalities, including face recognition (image) and
speaker verification (voice). Finally, we show the performance
of merging object and clothing detection models.

A. Face Verification, Gender and Expression

To verify the effectiveness of our method on merging mul-
tiple facial-informatic tasks, three CNN models respectively
trained for face recognition, gender identification and expres-
sion classification are merged. The accuracy of these well-
trained models are 99.4% (face recognition), 91.5% (gender
identification) and 57.6% (expression classification), respec-
tively. In this experiment, four benchmarks are used:
VGGFace2 dataset [25] contains approximately 3.3 millions
facial images, including 8,631 identities spanning a wide range
of ethnicities, accents, professions, and ages.
LFW dataset [26] contains more than 13,000 facial images
and approximately includes 1.680 identities.
FotW dataset [27] is used for gender identification in
Chalearn big challenge [27]. It contains 9,258 facial images;
6,171 facial images for training and 3,087 for validation.
AffectNet dataset [28] contains 287,401 facial images;

97

98

99

0 1 2 3 4 5 6 7 8 9 10 11 12

ZipperNet-Face
Naive-Face

86

88

90

92

0 1 2 3 4 5 6 7 8 9 10 11 12

ZipperNet-Gender
Naive-Gender

A
cc

u
ra

cy
(%

)

45

50

55

0 1 2 3 4 5 6 7 8 9 10 11 12

ZipperNet-Emotion
Naive-Emotion

Fig. 4. Evaluation of face recognition, gender identification, and emotion
classification, respectively. ZipperNet is our proposed method while the naive
network is a baseline illustrated in Figure 1, where the face-recognition model
is used as the pre-trained model. The backbone network are CNN-20 [24]. The
values at the 0-th merged block are generated by the individual well-trained
model for the three tasks.

R
at

e

0

0.5

1

1.5

2

2.5

3

A
ve

ra
g

e
A

cc
u

ra
cy

 D
ro

p

0

0.5

1

1.5

2

2.5

3

Number of Merged Blocks
0 1 2 3 4 5 6 7 8 9 10 11 12

Runtime Memory Redu.
Speedup
Average Accuracy Drop

Fig. 5. The left vertical axis is the rate of speedup and run-time memory
reduction, while the right vertical axis is the average accuracy drop of Zip-
perNet, which handling face verification, gender identification and expression
classification tasks simultaneously

283,901 for training and 3,500 for validation. Its labels are
seven primary expressions, Neutral, Happy, Sad, Surprise,
Fear, Disgust and Anger; each has 500 images for validation.

CNN-20 architecture is employed in this experiment as
it achieves high performance (higher than 99%) on face
recognition [24] and is verified by a wide variety of data.

We merge the three individual models and call the merged
network ZipperNet that can achieve the three tasks with a
single model. When applying our zippering procedure, we
group the 21 layers of CNN-20 into 12 blocks (according to
the shortcut locations) to simplify the merging process. The
12 blocks correspond to the 1st, 2nd-3rd, 4th, 5th-6th, 7th-8th,
9th, 10th-11th, 12th-13th, 14th-15th, 16th-17th, 18th-19th and
20th-21st layers in CNN-20. Then we fuse the blocks, from
the first to the 12th, incrementally.

The results are shown in Figures 4 and 5. The well-trained
model for each individual task is expressed as the 0-th merged
block (i.e., the initial model before merging). In Figure 4,
the performance with respect to the number of merged blocks

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1597

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11 12

ZipperNet-Speaker
Naive-Speaker

H
T

E
R

*The lower HTER represents the better performance.

A
cc

u
ra

cy
(%

)

97.5

98

98.5

99

99.5

Number of Merged Blocks
0 1 2 3 4 5 6 7 8 9 10 11 12

ZipperNet-Face
Naive-Face

ZipperNet-Face
Naive-Face

Fig. 6. Evaluation of speaker and face verification. The upper-left axis is the
Half Total Error Rate (HTER) for speaker verification, while the lower-left
axis is the LFW accuracy for face verification. The backbone network of
ZipperNet and the naive network is CNN-20 [24].

are shown via hollow circles, triangles, and diamonds for the
tasks of face, gender and emotion, respectively. In Figure 5,
compared to that of 0-th merged block, the average accuracy
drop of the three tasks are plotted by stars, and the runtime
memory-reduction and speedup rates are drawn with squares
and pentagons, respectively. The performance of the naive
model (obtained from the baseline method in Figure 1) are
shown via solid circle, triangle, and diamond in Figure 4 for
the three respective tasks.

As can be seen, when merging the models gradually, the
accuracy is getting decreased slowly, but the runtime memory
required is reduced and the inference speed is increased.
ZipperNet thus provides a flexibility of trade-off between
the model complexity and the inference speed for the model
deployment. It yields a sequence of getting-condensed mul-
titask models via removing the joint redundancy between
the merged layers. In Figure 5, we observe that ZipperNet
can achieve up to three times speedup and run-time memory
reduction when merging all of the 12 blocks, while the average
accuracy drop of tasks is less than 3%. The optimal choice for
an application can be dependent to the resource budget and
accuracy requirements for end platforms (such as mobile or
embedding devices) to be deployed.

As no similar approach has been done on publicly available
platform (we use PyTorch [29]) before, we compare our
approach to the naive baseline (illustrated in Figure 1) that uses
one model as the pre-trained and fine-tunes it to the three-tasks
outputs. In this experiment, the face-recognition model weights
serve as the pre-trained initials for the naive (i.e. baseline)
approach. As shown in the figure, when merging only the
blocks from 1 to 4, the accuracy is 99.27 (ZipperNet-Face),
91.09 (ZipperNet-Gender), and 57.28 (ZipperNet-Emotion),
respectively, which remain very close to that of the well-
trained individual models and outperforms the naive baseline
model. When merging the blocks from 1 to 11, ZipperNet still
performs more favorably than Naive-Face, Naive-Gender and
Naive-Emotion. After merging all 12 blocks, despite the ac-
curacy of Naive-Face is slightly better, ZipperNet outperforms

R
at

e

0

0.5

1

1.5

2

2.5

A
ve

ra
g

e
A

cc
u

ra
cy

 D
ro

p

0

0.5

1

1.5

2

2.5

Number of Merged Blocks
0 1 2 3 4 5 6 7 8 9 10 11 12

Runtime Memory Usage Redu.
Speedup
Average Accuracy Drop

Fig. 7. The accuracy, speedup, and compression versus the number of merged
blocks of the merged CNN (ZipperNet) for face and speaker recognition. The
left axis is the rate of speedup and run-time memory reduction, while the
right axis is the average accuracy drop of ZipperNet.

Naive-Gender by 1.7% and Naive-Emotion by 9.4%, and
has superior average accuracy. Generally, ZipperNet achieves
more satisfiable performance and provides better flexibility
for practical use. As shown in the results, the naive baseline
roughly maintains the accuracy of the task from which it
is pre-trained (Face Verification), but suffers from serious
accuracy degradation on the others (Gender and Expression
classification). The performance are thus quite imbalance. This
reveals the niche of our zippering approach.

Besides, since the training starts from the shared weight
initialization in the zippering process, we find that the con-
vergence is fast due to the good initialization. Thus, to realize
the zippering approach, the merged model is fine-tuned with
only one epoch per one block during merging in our imple-
mentation. In this way, the total epochs required (from the
individual well-trained models) depends only on the number
of blocks merged. Hence, calibration training of the ZipperNet
is efficient although multi-stages merging is needed.

B. Face and Speaker Verification

We also utilize our ZipperNet to achieve face and speaker
verification tasks simultaneously. The well-trained model
(CNN-20) for face verification and speaker verification achieve
the accuracy of 99.2% (higher is better) and Half Total Error
Rate (HTER) of 1.86% (lower is better), respectively. We
follow the same evaluation metric for face recognition as
before. For speaker verification, we conduct an experiment
on the chosen speakers from VoxForge (//www.voxforge.org/),
an open source speech corpus collected transcribed speech
data recorded at 16 bit, 16kHz from volunteer speakers.
Following the settings of [30], 300 speakers with at least
20 utterances are chosen and further split into three subsets:
training, development, and evaluation.

For speaker verification, the HTER values obtained from
ZipperNet (merging from the first to the 12th blocks) and
the naive baseline are shown on top of Figure 6. For face
recognition, the results are shown on bottom of the figure.
As can be seen, all HTER values (lower is better) of Zipper-
Speaker when merging from the first to the 12th blocks

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1598

are lower than that of Naive-Speaker. Besides, the accuracy
(higher is better) of Zipper-Face during merging from the first
to the 8th are better than that of Naive-Face, but when merging
from the 9th to 12th, Naive-Face is slightly better. We owe that
the signal sources are heterogeneous (images and voice), and
thus merging the intermediate CNN layers of them are more
demanding. However, it still reveals that ZipperNet provides
a flexibility of trade-off between the compression rate and
accuracy in the zippering process.

C. Object and Clothes Detection

Finally, we apply our approach to object- and cloths-
detection models (using RFBNet300 [31]) on PascalVOC 2007
and 2012 [32] and DeepFashion2 datasets [33], respectively.
The accuracy of the two well-trained models are mAP0.5 =
79.97% and mAP0.5:0.95 = 60.6%, respectively, which are
fined-tuned from the ImageNet pre-trained weights.

Table I shows the accuracy of each task and the ratios
of model size (parameter) compression, memory reduction
and speedup when the layers are merged from 1 to 10
incrementally. Compared to the individual models (layer-0),
we observe that the accuracy can even be better when merging
lower layers, and is gradually decreased and becomes worse
when merging deeper layers. We conjecture that lower-layer
features of these two tasks are common and thus can be
fused more easily to yield a unified feature representations;
deeper features are learned with higher semantic information
of the tasks, and thus will be exclusive to each other. Besides,
the ratios of memory reduction and speedup on inference are
increased slowly and smoothly when merging more layers.

V. CONCLUSION

We introduced a new approach, ZipperNet, to merge well-
trained deep models. ZipperNet removes the co-redundancy
among the models in a gradual manner. The merged model can
reduce the inference time with little accuracy drop compare
to original models for multitasks. It generatess a sequence of
merged models via trade-off between speedup and accuracy-
drop. ZipperNet therefore provides a flexible choice for the
model deployment on resource-limited edge devices which
meets memory budget and accuracy requirement. We verify
our method using different network architectures on various
source of inputs. Experimental results on a plenty of bench-
marks demonstrate its effectiveness.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial sup-
port from the Ministry of Science and Technology, Tai-
wan (MOST 109-2634-F-001-009) and National Center for
High-performance Computing (NCHC) of National Applied
Research Laboratories (NARLabs) in Taiwan for providing
computational and storage resources.

TABLE I
THE DETECTION RESULTS OF MERGING THE FIRST LAYER TO THE 10TH

LAYER INCREMENTALLY ON PASCAL VOC (2007 AND 2012) AND
DEEPFASHION2 DATASETS, WHICH SHOW MAP (MEAN AVERAGE
PRECISION), COMPRESSION OF THE MODEL PARAMETERS RATIO,

REDUCTION OF THE RUN-TIME MEMORY USAGE RATIO, AND SPEEDUP
RATIO.

of merged layers mAP0.5

(VOC 2007)
mAP0.5:0.95

(DF2)
Mem.
Redu. Speedup

0 (Individual) 79.97 60.60 1.00 1.00
1 80.53 61.10 1.18 1.09
2 80.39 61.50 1.20 1.20
3 80.50 61.50 1.23 1.26
4 80.30 61.50 1.26 1.33
5 80.55 61.30 1.27 1.37
6 80.53 62.00 1.27 1.41
7 80.12 60.00 1.29 1.45
8 79.20 60.70 1.31 1.47
9 77.61 58.50 1.34 1.50
10 76.07 57.30 1.36 1.52

REFERENCES

[1] C.-P. Chen and C.-S. Chen, “Lighting normalization with generic
intrinsic illumination subspace for face recognition,” in Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1,
vol. 2. IEEE, 2005, pp. 1089–1096.

[2] H.-R. Chou, J.-H. Lee, Y.-M. Chan, and C.-S. Chen, “Data-specific
adaptive threshold for face recognition and authentication,” in 2019
IEEE Conference on Multimedia Information Processing and Retrieval
(MIPR). IEEE, 2019, pp. 153–156.

[3] W.-S. Chu, C.-R. Huang, and C.-S. Chen, “Identifying gender from
unaligned facial images by set classification,” in 2010 20th International
Conference on Pattern Recognition. IEEE, 2010, pp. 2636–2639.

[4] J.-H. Lee, Y.-M. Chan, T.-Y. Chen, and C.-S. Chen, “Joint estimation
of age and gender from unconstrained face images using lightweight
multi-task cnn for mobile applications,” in 2018 IEEE Conference on
Multimedia Information Processing and Retrieval (MIPR). IEEE, 2018,
pp. 162–165.

[5] K.-Y. Chang, C.-S. Chen, and Y.-P. Hung, “Intensity rank estimation of
facial expressions based on a single image,” in 2013 IEEE International
Conference on Systems, Man, and Cybernetics. IEEE, 2013, pp. 3157–
3162.

[6] H.-F. Yang, B.-Y. Lin, K.-Y. Chang, and C.-S. Chen, “Joint estimation
of age and expression by combining scattering and convolutional net-
works,” ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM), vol. 14, no. 1, pp. 1–18, 2018.

[7] T. S. Wan, J.-H. Lee, Y.-M. Chan, and C.-S. Chen, “Co-compressing
and unifying deep cnn models for efficient human face and speaker
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2019, pp. 0–0.

[8] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Under-
standing and simplifying one-shot architecture search,” in International
Conference on Machine Learning, 2018, pp. 550–559.

[9] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” in ICLR, 2019.

[10] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture
search on target task and hardware,” in ICLR, 2019.

[11] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” International Conference on Learning Representations, 2016.

[12] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1389–1397.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[14] K. He, Z. Wang, Y. Fu, R. Feng, Y.-G. Jiang, and X. Xue, “Adaptively
weighted multi-task deep network for person attribute classification,” in
Proceedings of the 25th ACM international conference on Multimedia,
2017, pp. 1636–1644.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1599

[15] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chellappa,
“An all-in-one convolutional neural network for face analysis,” in 2017
12th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2017). IEEE, 2017, pp. 17–24.

[16] Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. Feris, “Fully-
adaptive feature sharing in multi-task networks with applications in
person attribute classification,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 5334–5343.

[17] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7482–7491.

[18] K. Thung, P.-T. Yap, and D. Shen, “Multi-stage diagnosis of alzheimer’s
disease with incomplete multimodal data via multi-task deep learning,”
MICCAI Workshop, 2017.

[19] Y. Ning, J. Jia, Z. Wu, R. Li, Y. An, Y. Wang, and H. M. Meng, “Multi-
task deep learning for user intention understanding in speech interaction
systems,” in AAAI, 2017.

[20] C. Cadena, A. R. Dick, and I. D. Reid, “Multi-modal auto-encoders as
joint estimators for robotics scene understanding,” in RSS, 2016.

[21] Q. Liu, Y. Zhang, Z. Liu, Y. Yuan, L. C. Cheng, and R. Zimmermann,
“Multi-modal multi-task learning for automatic dietary assessment,” in
AAAI, 2018.

[22] S. Chen, Q. Jin, J. Zhao, and S. Wang, “Multimodal multi-task learning
for dimensional and continuous emotion recognition,” in ACM MM
Workshop, 2017.

[23] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[24] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep
hypersphere embedding for face recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
212–220.

[25] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2:
A dataset for recognising faces across pose and age,” in 2018 13th IEEE
International Conference on Automatic Face & Gesture Recognition (FG
2018). IEEE, 2018, pp. 67–74.

[26] E. Learned-Miller, G. B. Huang, A. RoyChowdhury, H. Li, and G. Hua,
“Labeled faces in the wild: A survey,” in Advances in face detection
and facial image analysis. Springer, 2016.

[27] S. Escalera, M. Torres Torres, B. Martinez, X. Baró, H. Jair Escalante,
I. Guyon, G. Tzimiropoulos, C. Corneou, M. Oliu, M. Ali Bagheri
et al., “Chalearn looking at people and faces of the world: Face analysis
workshop and challenge 2016,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2016, pp. 1–8.

[28] A. Mollahosseini, B. Hasani, and M. H. Mahoor, “Affectnet: A database
for facial expression, valence, and arousal computing in the wild,” IEEE
Transactions on Affective Computing, vol. 10, no. 1, pp. 18–31, 2017.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems, 2019, pp. 8024–8035.

[30] H. Muckenhirn, M. M. Doss, and S. Marcell, “Towards directly modeling
raw speech signal for speaker verification using cnns,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 4884–4888.

[31] S. Liu, D. Huang et al., “Receptive field block net for accurate and
fast object detection,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 385–400.

[32] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[33] Y. Ge, R. Zhang, X. Wang, X. Tang, and P. Luo, “Deepfashion2:
A versatile benchmark for detection, pose estimation, segmentation
and re-identification of clothing images,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
5337–5345.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1600

