
A Design Framework of Automatic Deployment for

5G Network Slicing

Wen-Ping Lai
*,#

, Hong-Lun Lai* and Ming-Jay Lai
+

*Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan
+
Department of Communication Engineering, National Central University, Taoyuan, Taiwan

#
Email: wpl@saturn.yzu.edu.tw

Abstract— Differential services driven user-end and operator-

end challenges have been the main driving forces behind the 5G

network, which is well perceived as an innovative platform for

digital convergence of information, control and management.

With both the network slicing (NS) and service slicing (SS)

technologies, precious physical resources can thus be shared

among multi-tenant mobile virtual network operators, such as

over-the-top (OTT) service providers. This paper proposes a

three-stage design for automatic slice deployment called LMA,

namely (1) LCP: local charm provision for VNF services, (2)

MSP: model-based slice planning for service chaining, and (3)

ASD: automatic slice deployment for flexible and virtual resource

allocation. The LMA is a model-based slice-specific platform-

neutral design framework for deploying the NS and SS, not only

automatically deployable on both the x86-based desk-top

computers and data-center bare-metal servers, but also on

public or private clouds, as well as the 5G mobile edge. Our

design framework adopts the Juju-as-a-Service and Eurecom-

Mosaic5G software technologies, where several customizable

virtual network function (VNF) components can be flexibly

chained together to form a desired NS or SS. This paper studies

and presents two successful deployment showcases: a web-blog-

database based SS and a virtual-evolved-packet-core based NS.

Our preliminary results of performance benchmarking show a

strong effect of the number of CPU cores on the average latency

response of SS, in particular during congestions caused by

concurrent user requests.

Keywords— 5G, service slicing, network slicing, auto

deployment, DevOps

I. INTRODUCTION

The novel landscapes of the fifth generation communication

[1, 2] are not only remarked by the technology milestones in

communication, but also by the ones in networking, which

jointly open a brand new vision for creative and versatile

applications over human-to-human, human-to-thing, or even

thing-to-thing networks. From the perspective of customer

premise equipment, these applications are expected be

characteristic of very high data rates for wonderful user

experiences in mobile broadband, extremely-low latency and

ultra-high reliability for connected vehicles and tactile

internets, and massive-but-seamless machine type

communications everywhere for internet of things. On the

other hand, from the perspective of telecom operators, the

technologies to achieve these application scenarios should be

of low cost in capital expenditure (CAPEX) and operating

expenditure (OPEX), but still of high operation efficiency or

even of zero-maintenance agility in response to versatile and

differential user demands. These user-end and operator-end

challenges have been the main driving forces of the 5G

networking innovations, such as software defined networking

(SDN), network functions virtualization (NFV) [3], mobile or

multi-access edge computing (MEC) [4-6] etc.

Rooted from SDN, which decouples the control and user

planes, NFV mainly addresses the decoupling of software and

hardware, i.e., it completely releases those conventional

physical network functions (PNFs) from the vendor-lock-in

proprietary hardware, and amplifies the power of virtual

network functions (VNFs) in terms of modulization,

softwarization and virtualization. These make wireless or

radio democracy based market places [7, 8] possible and

feasible via open or COTS hardware design and open-source

software implementation. Furthermore, NFV-based network

slicing (NS) [9-11] and service slicing (SS) allow for

customized and agile chaining of VNFs based on those

differential and even real-time user demands. In other words,

different service slices or network slices can coexist on the

same system and network architecture, physically sharing

computing and storage resources as well as network

bandwidths, and yet logically independent of each other.

However, the major open and challenging problem to network

slicing is the resource orchestration among slices in harmonic

slice scheduling for virtual computing power, slice allocation

for virtual memory space, and slice arrangement for virtual

network bandwidth, all under the balance constraints between

maximizing the user-end satisfaction level and minimizing the

operator-end resource consumption such that it can

accommodate the largest number of multi-tenant application

demands.

Research works on network slicing were mainly initiated

by 3GPP and ETSI-NFV, where the former focuses on the

impact of network slicing to network functions such as

mobility, connection choices, charging rates etc., while the

latter emphasizes the life-cycle management of virtual

networking resources, i.e., management and network

orchestration (MANO) [12]. In recent years, the ETSI-NFV-

MANO issues have become a hot area attracting many studies

and collaborative implementation efforts, such as OPNFV

[13], ONF-MCORD [14], and Eurecom-Mosaic5G [15] etc.

Although implemented on different hardware and software

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1571978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020

Fig. 1 The concept of Network Store proposed by Eurecom [18].

platforms, it is expected that the ETSI NFV-MANO-

compliant and VNFs-based NS/SS systems be interoperable

[16], which is feasible via loose coupling, e.g. RESTful APIs.

The Eurecom open air interface (OAI) [17] is an open-

source software technology for 4G/5G. Eurecom also

proposed an innovative concept called Network Store [18], as

shown in Fig. 1. The basic idea of Network Store is to create

an APP-like market place of telecom VNFs so as to speed up

the innovation of telecom via NFV-MANO. The idea has

spread out, and an international collaboration from academia

and industry has been formed, known as the Eurecom-

Mosaic5G Ecosystem, which is continuing the efforts toward

an orchestrated 5G network.

This paper proposes a platform-neutral design framework

for implementing both NS and SS, not only automatically

deployable on both the x86-based desk-top computers and

data-center bare-metal servers, but also on both the public and

private clouds, and even the 5G mobile edge. Our design

framework adopts the Canonical Juju-as-a-Service (JaaS)

technology and the Eurecom-Mosaic5G open software, where

customizable service or network function components (from

Canonical's Juju Charm Store [19] or Eurecom's Network

Store of Charmed VNFs) can be flexibly modified and

chained together to form a desired NS or SS.

This paper proposes a three-stage design for automatic slice

deployment called LMA, with stage-specific mechanisms for

slice provision, slice modeling, slice deployment and further

operations of slice resources. In addition, two showcases are

presented based on such a multi-stage design process: (1) a

simple user-space SS, exemplified by a web-blog-database

system, and (2) a complex and kernel-space-involved NS,

demonstrated by a virtual evolved packet core (vEPC) system

of LTE.

The remainder of this paper is organized as follows.

Section II details the multi-stage mechanisms of the proposed

LMA design. Section III presents the two showcases, as

aforementioned. Section IV concludes this paper.

Fig. 2 The 3-stage design of the proposed LMA for automatic deployment

of network slicing: from provision and planning to deployment and operation.

II. PROPOSED MULTI-STAGE DESIGN (LMA)

This paper proposes a 3-stage design called LMA for

automatic slice deployment, as shown in Fig. 2, consisting of

the LCP-MSP-ASD stages sequentially, i.e., (1) LCP: local

charm provision for VNF services, (2) MSP: model-based

slice planning for service chaining, and (3) ASD: automatic

slice deployment for flexible and virtual resource allocation.

The following firstly describes the selection considerations of

Linux Container (LXC) for the virtualization layer over the

physical infrastructure, followed by three sub-sections giving

the details of stage-specific design mechanisms and

underlying principles for LMA in three stages.

In terms of virtualization, conventionally the provision of a

VNF can be based on a virtual machine (VM). VMs can be

divided into two categories: user-space VMs (such as

VMware, VirtualBox, Xen etc.) and kernel-space VM (aka

Linux KVM), where the latter is less user-friendly but faster

in the run time. In terms of virtualization, each VM has its

own well-defined boundary so that its system resources such

as computing and storage will need to be predefined before

booting, which also means that run-time resource adjustment

is not possible. In addition, due to the need of a guest OS, the

resource consumption levels of a VM is usually heavy and

inefficient. In addition, the booting of the guest OS is usually

intolerably slow to the timely user-demands. A new trend to

avoid the above problems is to adopt the Container-based

technology, such as Docker or LXC Containers [20-22].

Instead of OS confinement in the case of VMs, Containers can

be viewed as process confinement due to the fact that they get

rid of the need of a guest OS in order to be light-weight in

system operations and resources consumption. However,

different containers on the same physical host still share the

same Linux kernel.

In fact, both Docker and LXC actually stemmed from two

important virtualization concepts and techniques of Linux,

namely the kernel-space supported namespace and control-

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1572

group, where the former is responsible for the isolation

among containers (basically, there are 6 different types of

namespaces, and network namespace is the typical one), and

the latter for the control and management of containers,

including the CPU, memory, I/O subgroups etc.

In this design, either LXC or KVM can serve as the

infrastructure virtualization layer since the adopted VNF

manager (VNFM) Juju supports both. In other words, Juju

can manage their corresponding virtual infrastructure manager,

i.e., the LXD or KVM server. For simplicity, the paper

focuses on the studies of LXC/LXD to magnify the

functioning of the Container-based technology. However, for

those slices consisting of a component service involving any

kernel-space function module or device driver, KVM would

be the preferred choice since LXC will need some extra effort

for importing those kernel modules or device drivers from the

host directory trees, such as /lib/modules or /dev. This issue

will be further discussed in Showcase 2, which deals with the

deployment of a vEPC slice, where the LXC based VNF

functioning of its SPGW cannot work without considering the

above.

A. Local Charm Provision (LCP) for VNF Services

The first stage of the proposed design is the provision of

the component VNFs of a target slice. Each component VNF

is usually a unique service, working with other component

VNFs or services to customize the target slice functions in

terms of service chaining of multiple component VNFs.

In order to allow for life-cycle management of VNFs, each

VNF should be provisioned with an accompany package

dealing with the various states and state transitions in its life

cycle, including installation, build, configuration, running,

and even future upgrades. This design adopts the Canonical

Charm toolset to provide the above needs for generating a

Charmed VNF, denoted as a Charm in short. Many popular

Charm templates have been prepared in public repositories

such as the Canonical Juju Store, since no need for re-making

the wheels. Furthermore, these Charm templates can be

modified as wished if one understands its technical details.

The proposed design leverages our understanding of the

Charm toolset and proposes a concept called local charm

provision (LCP). The basic mechanism of LCP is described

below:
a.1 Pre-downloading the target VNF Charm to save the run-

time downloading latency of a remote Charm from the
Charm Store via networking, in particular to avoid any
potential network congestion or unexpected server
malfunction of the Charm Store.

a.2 Once a Charm is located locally, its life-cycle
management package can thus be modified as desired.

a.3 When a modified Charm is ready, say charm-1, it can
thus be deployed locally from a local provider, i.e., from
a Charm-based directory tree, as shown in Fig. 3 for a
typical Charm's directory structure, where the basic
functions of each file and sub-directory are explained
below:

 config.yaml: This file is a hierarchical key-value
configuration file for describing the default values of
various system parameters in the YAML file format.

 hooks: This is a subdirectory for the life-cycle
management package of the target Charm, including
how to install relation-based events (broken, changed,
departed, joined) with other Charms, how to start,
stop, react to config-changed events, and how to
upgrade the target Charm.

 icon.svg: This is the icon of the target charm in the
SVG format.

 metadata.yaml: This file describes all the provider-
requirer relations and/or the peer relations of the
target Charm with others.

 README.ex: This file describes the intended usage
of the target Charm and how it relates to others.

 revision: This is the revised number of the target
Charm.

a.4 The target Charm can also be generated from scratch in
different programming language styles such as Linux
Shells or Python etc.

Fig. 3 The directory structure of a typical Charm.

Fig. 4 The interface for the link relation between a web-blog server

(Wordpress, the W icon) and its associated database (MySQL, the Dolphin

icon), where the left end is wordpress:db and the right end is mysql:db.

Fig. 5 The cloud types that Juju supports, including the major public clouds

(e.g. Amazon AWS, M.S. AZURE, Google GCE), the private cloud (e.g.

Rackspace OpenStack), and the LXD on the localhost adopted by this paper.

Fig. 6 The two initial models after the bootstrapping of the Juju-based

VNFM: (1) the controller model, where the controller called yzu (Yuan Ze

University) lives, and (2) the default model, which is empty initially. Note

that more models such as slice-1 and slice-2 can be added for slice

deployments later on, one for each slice.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1573

Fig. 7 A typical content of a Bundle template file, say called bundle.yaml,

consisting two VNF services: wordpress and mysql, corresponding to the

slice-specific model planning for Fig. 4.

B. Model-based Slice Planning (MSP) for Service Chains

The second stage of the proposed design is to deal with the

service chaining and slice planning of the Charmed VNFs. At

this stage, a slice is formed by a chain of VNFs, considering

their mutual relations to be established based on each pair of

provider-requirer relationship, which can be realized based

on some predefined interface protocols. A typical example

can be the link relation between a web-server and its

associated database, as shown in Fig. 4, or the HTTP protocol

between web clients and the web server. A more complicated

example can be the control-plane and user-plane signaling

systems among the component functions of an EPC slice, as

discussed in Showcase 2.

In order to achieve slice-specific deployment and

management, this design proposes a concept called Model-

based slice planning (MSP). Such a concept is inspired from

our understanding of the Canonical Juju and Charm toolsets.

As a companion of the Charm toolset designed for the

creation of VNFs, the Juju toolset is designed to achieve the

deployment of a Charmed VNF or a bundle of Charmed

VNFs, which can be pre-planned in terms of a Bundle

template. Again, the Canonical Juju Store also prepares some

popular Bundle templates, which can be referenced for

implementation. As shown in Fig. 5, these Bundle templates

can be deployed onto all the cloud types supported by Juju,

including public or private clouds if the cloud credentials are

provided, or onto a desk-top localhost, which is the adopted

case by the paper.

This design takes the local provider as the example of the

deployment platform. Once the Juju toolset is initialized, it

will come up with two basic Models: the controller Model

and the default Model, where the former is exclusively

designed for the Juju Controller application to live on top of

an LXC machine, and the latter is empty and waiting for

further deployment of a Service Bundle. More Models can be

added and named as wished to deploy more Bundles.

However, one model should be prepared specifically for the

deployment of one Bundle to serve as one Slice. In other

words, from our understanding on the operational behaviors

of Juju Models, this design proposes the following concept: a

Juju Model can serve as a unique canvas for the deployment

of NS or SS, with its detailed mechanism listed below:
b.1 A bundle of Charmed VNFs, or a Bundle in short, can be

planned in advance on a Bundle Descriptor, say
bundle.yaml as shown in Fig. 7., to serve as a slice
template for the provision of a slice. Such a Bundle
Descriptor is responsible for describing the identities of
component VNFs from the Juju Store, the interfaces
among them, and the (x, y) positions on the Model
canvas. Optionally, the system resources can also be
assigned in this descriptor, such as the allowed
constraints on the limits of CPU cores and memory space.
The Bundle Descriptor template can either be built up by
oneself or just be downloaded from the Juju Store, and
then be modified to be the desired one. To gain the speed
during the deployment, the aforementioned concept of
LCP at the first stage should also come in to play in this
descriptor to reduce the deployment time of each
Charmed VNF so as to achieve a great reduction in the
overall slice deployment time.

b.2 Once different slices are deployed on their specific Juju
Models, these slices are expected to be well separated
during their own run time since Juju creates and visits
these Models in a well-separated way spatially and
temporally. Namely, the life cycle of each slice, including
its creation and destroying, as well as its resource
constraints or scalability adjustment can thus be
manipulated in such Model-based planning to pursue fast
and automatic slice deployment.

C. Automatic Slice Deployment (ASD) for Flexible and

Virtual Resource Allocation

The third stage of the proposed design is to achieve an agile

deployment for a slice demand and maintain its operational

health and scalability to the external stress. Such a scalable

slice deployment scheme is denoted as ASD, and its

mechanism for flexible and virtual resource allocation is

detailed below:
c.1 Slice-specific resource allocation for limiting the use of

CPU cores and memory space can be achieved by the
model-based constraints in the Juju toolset via the set-
model-constraints and get-model-constraints options,
where the former option is for resource allocation, and
the latter option is for status checking of resources.
However, such a model-based slice-specific allocation
scheme is somewhat tricky because the model-based
resource constraints should be assigned on the target
model before deploying the target slice, otherwise no
effect will actually happen even if the check by get-
model-constraints says so, which is quite misleading.

c.2 The reasoning of the above misleading is that the
constraints at the level of Model will also passed onto the
level of Machine, e.g. the level of Container. But the key
is that constraints need to be set before the deployment of
the target slice.

c.3 The Slice-specific resource allocation is certainly no
problematic to static allocation of resources. But how

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1574

about dynamic allocation? It seems to be a big trouble.
For the moment, one should pray for a further
improvement of the Canonical Juju toolset, or do it in
another way, namely change the resource constraints
from the level of Machine, which is also achievable by
the Juju or LXC toolsets.

c.4 The real issue following dynamic allocation is how to get
the decision-making rules for a better or even optimal use
of the system resources. The solution may be obvious but
uneasy. It is obvious from the viewpoint of a single slice
when the remaining system resources are still enough:
traffic adaptation based dynamic reallocation is the key.
On the other hand, resource orchestration among slices
is an uneasy task, which may involve a choice dilemma
between fairness and priority, and even among multi-
tenants. These are beyond the scope of this paper, and
more future studies are definitely needed.

III. SHOWCASES AND ANALYSES

A. Experimental Setup

This section presents two showcases for the proposed 3-

stage design called LMA (formed by the LCP, MSP, ASD

stages sequentially) for slice deployment on the two sample

models of Fig. 6, namely slice-1 and slice-2, with both the

component Charmed VNFs from the Juju Charm Store, where

n in the VNF-n notation system stands for the revised number

of the target Charm for the purpose of version control on

Charmed VNFs.
 Showcase 1: a simple and user-space service slice

(formed by two Charmed VNFs: wordpress-0 and mysql-
58) was deployed on the slice-1 model.

 Showcase 2: a more complex and kernel-space-involved
network slice (formed by four Charmed VNFs in the
SNAP [23] version of the Eurecom OAI-CN: mysql-56,
oai-hss-17, oai-mme-19, oai-spgw-19) was deployed on
the slice-2 model.

Both the slices were built and operated on a physical x86

machine installed with the LXC/LXD and Juju environments.

For simplicity and focusing on the Container technology, the

KVM technology was avoided. However, the proposed design

should still apply to KVMs in principle.

B. Showcase 1: Application Slicing of Web-Blog-Database

Showcase 1 demonstrates a simple and user-space service

slice (slice-1) consisting of two Charmed VNFs: one is the

wordpress Charm serving as a Web-Blog, and the other is the

mysql Charm serving as the database behind. The objective of

Showcase 1 is to observe the modeling, deployment and

operational behaviors of slice-1's VNFs.

Fig. 8 presents a typical GUI view of the two Charmed

VNFs of Showcase 1, which was successfully deployed on the

slice-1 model, based on the model planning of bundle.yaml, as

aforementioned and discussed for Fig. 7. From the top-left

corner, it can be seen easily that 2 applications (wordpress

and mysql) consume 2 machines in total, namely 1 machine

for each application, as pre-planned by bundle.yaml. The

second thing noteworthy is the green circular button with a

sign of +, which actually means that it allows for adding some

other external VNFs from the Juju Store to extend the extra

functionalities of slice-1, or more VNF(s) of the same type to

enhance slice-1's scalability. Both of the above are beyond the

pre-planning by bundle.yaml, making the slice modeling

flexible and scalable. However, manual scalability is actually

not practically useful to timely changes of the external traffic,

and thus automatic scalability is much more preferred but will

take more research efforts. The third thing (not so visible

before pulling down the rectangular button labeled with: 2

applications) is a pull-down online form containing

application-specific tunable running parameters, which allows

for continuous delivery, namely without service disruption

during system tuning.

A click on the status button of Fig. 8 gives another GUI

view of the statuses of both the deployment and the operation

stages, as shown in Fig. 9. This GUI view presents almost-

identical contents when compared to those presented in the

command-line-interface (CLI) view from Fig. 10. Although

both the views present mostly the same contents from bottom

to top, namely in terms of the Relation level, the Machine

level, the Unit level, and the Application level. The key

difference between them lies in the presented views: GUI

offers a more friendly interface than CLI, in particular to

those telecom operator employees not engineering-based. In

Fig. 8 A typical GUI view of the wordpress and mysql Charmed VNFs after

a successful deployment on the slice-1 model, provided by the Juju controller

running on a local LXC container and serving as a Web server at

10.80.253.152 via the 17070 port, whose password can be provided by

delivering 'juju gui' on the Linux command line interface.

Fig. 9 Another GUI view of slice-1, offering the statuses of deployment and

operation for each component Charmed VNF, with different levels in

Relation, Machine, Unit and Application respectively.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1575

Fig. 10 A CLI view of slice-1, with nearly identical information levels and

messages of running statuses to those presented by the GUI view.

Fig. 11 The resource-constraint effect of CPU cores on the average latency

of ab tests.

Fig. 12 A GUI view of an OAI-based network slicing of vEPC deployed on

the slice-2 Model, with 4 Charmed VNFs: mysql, oai-hss, oai-mme, and oai-

spgw.

Fig. 13 A CLI view of the slice-2 Model, offering the statuses of deployment

and operation for each component Charmed VNF, with different levels in

Relation, Machine, Unit and Application respectively.

addition, a much shorter training time is also achievable,

making operational cost-down and experiences-inheritance

possible. On the other hand, CLI is still quite valuable to

engineers since both the LXC and Juju toolsets come with

very rich, unique and complementary functional options,

allowing for innovative joint development and operation.

Lastly but not least, Fig. 11 summarizes the resource-

constraint effect of CPU cores on the average latency of the

wordpress Charm in slice-1 based on the well-known apache

benchmarking (ab) tests. Every data point stands for the

average of 3 data sets, with each running for 10,000 HTTP

requests under the con-currency level of 100 requests to

generate some level of congestion. The slice-specific

constraint on the number of CPU cores (Ncores) runs from 1 to

8, which is feasible and checkable via both the set-model-

constraints and get-model-constraints options of the Juju

toolset. It is clearly seen that such slice-specific constraints do

have the largest impact when Ncores is relaxed from 1 to 2, and

the slope gets much smaller as Ncores continues to increase.

Finally, it is no more helpful when Ncores ≧4 since the con-

currency level is no more dominant, and the max-latency

event becomes randomly and uncertainly large, giving a

slight but un-expected fluctuation in the average value of

latency.

C. Showcase 2: Network Slicing of vEPC

Showcase 2 demonstrates a more complex and kernel-

space-involved network slice (slice-2) based on the Eurecom

OAI-CN software to perform as a virtual evolved packet core

(vEPC) of LTE, consisting of four Charmed VNFs: (1) mysql

(with the oai-db) as the back-end server of SIM database, (2)

oai-hss as the Home Subscriber Server, formed by the

apache2 web server as the front-end, (3) oai-mme as the

Mobility Management Entity, in charge of the S1-Control

(S1C) plane for the eNodeB and UE, aided by the S6a

protocol interface with oai-hss, and interfacing with the user-

plane of oai-spgw via S11, (4) oai-spgw as the joint S-

Gateway and P-Gateway (via omitting the S5/S8 interface),

where the former is in charge of the S1-User (S1U) plane for

the eNodeB and UE and the latter is in charge of the Internet

connection via the SGi protocol.

Similar to Fig. 8, Fig. 12 also presents a GUI view of slice-

2, where all the above Charmed VNFs and their necessary

interfaces were successfully modeled and deployed. All the

benefits of deploying and operating slice-1 as mentioned for

Fig. 8 also apply to the case of slice-2. Again, similar to Fig.

10, Fig. 13 provides a CLI view of the deployment and

operational statuses of slice-2.

However, the domain knowledge to successfully deploy

and operate slice-2 is more complex in the sense that not only

more interface protocols are needed among the Charmed

VNFs, but also the GPRS tunneling protocol of user plane

(GTP-U) needed by the oai-spgw Charm cannot be

provisioned in advance because the function of GTP-U is

played by a Linux kernel module called gtp.ko, which should

be inserted during the run time at the Machine level (in terms

of LXC). In other words, failing in doing so will lead to an

error message at the stage of configuration. Another

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1576

configuration error type comes from the incompatible device

names of network interface cards (NICs) due to the change of

interface naming convention of NICs, particularly for Ubuntu

Linux versions 16.04. In this design, both the /lib/modules and

/dev directory trees in the host namespace should be imported

and shared by the guest namespace of the oai-spgw container,

in terms of the LXC volume-based sharing and mounting.

Hence, the domain knowledge still plays some important

role for a successful design of slice deployment of operation

like slice-2. However, this is again an engineering problem.

Once it is conquered, slice-2-like deployments and operations

should be as easy and convenient as slice-1's.

IV. CONCLUSION AND OUTLOOK

In this paper, a three-stage design for automatic slice

deployment called LMA has been proposed, namely (1) LCP:

local charm provision for VNF services, (2) MSP: model-based

slice planning for service chaining, and (3) ASD: automatic slice

deployment for flexible and virtual resource allocation. Based on

LMA, two showcases have also been successfully presented:

(1) a simple user-space SS, exemplified by a web-blog-

database system, and (2) a complex and kernel-space-

involved NS, demonstrated by a vEPC system of LTE. These

two showcases together deliver the following important

messages:
 From the perspective of development for successful slice

deployment, the domain knowledge of each slice type is
important and may be as tricky as those encountered in
slice-2. But it is always a challenge to engineers, not to
telecom operator employees.

 From the perspective of operation for slice deployment,
automation is the key and will lead to easy training of
telecom operator employees and conveniently meet those
on-demand differential requirements from multi-tenants,
such as those OTT service providers.

 The LMA is a platform-neutral design in the sense that a
successful slice deployment of Charmed VNFs locally on
a physical machine can be easily transplanted onto other
platforms, including public/private clouds and even the
5G mobile edge cloudlets, since the Juju toolset is
universal to these platforms.

As an outlook, end-to-end network slicing would be even

more challenging because it involves slicing the RAN [24]

and the Mobile Edge, where the former needs to handle the

Cloud-RAN (C-RAN) related issues while the latter needs to

combine both parts from the C-RAN and the micro-services

driven service based architecture of 5G core networking [25].

ACKNOWLEDGEMENT

This work was supported by Taiwan's Ministry of Science

and Technology under grants 107-2221-E-155-013 and 108-

2221-E-155-022-MY2.

REFERENCES

[1] System Architecture for the 5G system Stage 2, 3GPP TS 23.501

v15.00, Dec. 2017.

[2] View on 5G Architecture, 5GPPP White Paper v2.0, Dec. 2017.

[3] Network Functions Virtualization (NFV) Ecosystem Report on

SDN Usage in NFV Architectural Framework, ETSI NFV-EVE

White Paper 005, Dec. 2015.

[4] M. Patel et al., Mobile-Edge Computing - introductory technical

white paper. ETSI White Paper, Sep. 2014.

[5] Heli Zhang, Jun Guo, Lichao Yang, et al., “Computation

offloading considering fronthaul and backhaul in small-cell

networks integrated with MEC,” IEEE Conf. on Computer

Communications Workshops, Atlanta, GA, USA, May 2017, pp.

115–120.

[6] W.P. Lai and K.C. Chiu, “NUMAP: NUMA-aware multi-core

pinning and pairing for network slicing at the 5G mobile edge,”

Proc. APSIPA Annual Summit and Conference 2019 (APSIPA

ASC'19), Lanzhou, China, Nov. 2019, pp. 22–27.

[7] Crowd Supply Market Place,

https://www.crowdsupply.com/lime-micro/limesdr

[8] Lime Microsystems, https://limemicro.com/

[9] Description of Network Slicing Concept, NGMN White Paper,

Jan. 2016.

[10] X. Foukas, G. Patounas, A. Elmokashfi and M. K. Marina,

“Network slicing in 5G,” IEEE Comm. Magazine, vol. 55, no. 5,

pp. 94–100, May 2017.

[11] Network Functions Virtualization (NFV) Release 3 on

Management and Orchestration; Network Service Templates

Specification, ETSI GS NFV-IFA 014 v3.4.1, June, 2020.

[12] Network Functions Virtualization (NFV) Release 3 on

Management and Orchestration; Functional Requirements

Specification, ETSI GS NFV-IFA 010 v3.4.1, June, 2020.

[13] OPNFV, the Linux Foundation Projects, https://www.opnfv.org/

[14] ONF, the M-CORD project, https://www.opennetworking.org/

[15] Eurecom, the Mosaic-5G project, http://mosaic-5g.io/

[16] Network Functions Virtualization (NFV) Release 2 on Testing; ,
Guidelines on Interoperability Testing for MANO, ETSI GR

NFV-TST 007 v2.6.1, Jan, 2020.

[17] N. Nikaein, M. K. Marina, S. Manickam et al.,

“OpenAirInterface: a flexible platform for 5G research,” ACM

SIGCOMM Computer Communication Review, vol. 44, no. 5,

pp. 33-38, 2014.

[18] N. Nikaein et al., “Network store: exploring slicing in future 5G

networks,” Proc. 10th Int. Workshop on Mobility in the

Evolving Internet Architecture (MobiArch '15), Paris, France,

Sep. 2015, pp. 8–13.

[19] Canonical, Juju Charm Store, https://jaas.ai/store

[20] W.P. Lai, Y.H. Wang and K.C. Chiu, “Containerized design and

realization of network functions virtualization for a light-weight

evolved packet core using OpenAirInterface,” Proc. APSIPA

Annual Summit and Conference 2018 (APSIPA ASC'18),

Honolulu, Haiwaii, USA, Dec. 2018, pp. 472–477.

[21] I. Miell and A. H. Sayers, Docker in Practice. New York:

Manning, 2016.

[22] D. Bernstein, “Containers and cloud: from LXC to Docker to

Kubernetes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84,

2014.

[23] Canonical, Snapcraft, https://snapcraft.io/docs/getting-started

[24] Chia-Yu Chang and Navid Nikaein, “RAN runtime slicing

system for flexible and dynamic service execution

environment,” IEEE Access, vol. 6, pp. 34018–34042, July 2018.

[25] T. Li, L. Zhao, R. Duan and H. Tian “SBA-based mobile edge

computing,” Proc. IEEE Globecom Workshops 2019

(Globecom'19), Waikoloa, Hawaii, USA, Dec. 2019.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1577

