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Abstract—In the past, a malware epidemic model based on
overlay networks consisting of hosts has been considered. Fur-
thermore, based on the epidemic model, the degree of infection
spreading has been estimated through simulation experiments.
However, the computation time of the simulation experiment is
very long for large-scale networks. To resolve this problem, a
prediction method of malware infection spreading using a con-
volutional neural network (CNN) has been proposed, assuming
that the method is applied to fixed-size networks. To extend
this work, in this paper, we propose a method to predict the
malware spreading with CNN, considering the network scale.
The proposed method resizes images without losing information
on network structures. By using the resized images as input data
to CNN, the proposed method predicts the malware spreading for
networks of different scales based on the information on the small
networks. Through experimental evaluation, this paper shows the
effectiveness of the proposed method.

I. INTRODUCTION

With the rapid growth of the Internet, the evolution of mal-
ware such as computer virus, worm, Trojan horse, botnet have
become serious threats to the current information society [2],
[3], [7]. In [6], an epidemic model of malware considering
network structures has been considered. The epidemic model
represents infection dynamics on overlay networks, which
consist of hosts. The authors have revealed the behavior of
malware infection spreading through simulation experiments
based on a continuous-time Markov chain. Specifically, the
infectious capacity of malware depends on overlay network
structures and infection sources. However, the computation
time of the simulation experiments considerably increases as
the network size becomes large.

In [5], a prediction method of malware infection spreading
with the use of a convolutional neural network (CNN) [4]
has been proposed in order to resolve the computation time
problem. This method prepares gray-scale images made from
adjacency matrices, which represents the infectivity between
each host pair, as input data for the CNN. The CNN outputs the
infectious capacity of malware in a short time. This method,
however, assumes that the sizes of networks (i.e. the sizes of
images) are fixed in terms of the number of hosts. In particular,
the sizes of adjacency matrices for all training data and test
data are the same. Therefore, it cannot be directly applied to
data sets for networks of different sizes.

To extend the work discussed in [5], in this paper, we
propose a method that predicts the infectious capacity of
malware with the use of a CNN, accommodating networks of
different sizes. The proposed method assumes that the CNN
is trained by data sets of small networks. Then it predicts the
infectious capacity of malware in larger networks, using the
trained CNN. When creating data sets for large-scale networks,
the proposed method diminishes the sizes of their adjacency
matrices and makes gray-scale images of the same size as the
training data sets, without losing information on the network
structure. By using the gray-scale images of the diminished
adjacency matrices as input data to CNN, the proposed method
predicts the infectious capacity of malware in the large-scale
networks based on the information on the small size networks.
Through experimental evaluation, this paper shows that the
proposed method has superior performance over the bi-linear
interpolation method, which is a popular image scaling tech-
nique.

II. PREDICTION OF MALWARE INFECTION SPREADING
WITH CNN [5]

A. Epidemic model on overlay networks

In [6], the authors have introduced a malware epidemic
model based on a continuous-time Markov chain on an overlay
network consisting of hosts. They have assumed a new type
of botnets named self-evolving botnets as a target of the
epidemic model. The self-evolving botnets discover unknown
vulnerabilities by performing distributed machine learning
with computing resources of infected hosts. Based on the
discovered vulnerabilities, they infect normal hosts, and then
make themselves bigger by taking in the newly infected hosts.

In the epidemic model, the state of each host transitions
based on a Susceptible-Infected-Recovered-Susceptible (SIRS)
model. In the SIRS model, “S” is a state where some vulnera-
bilities exist in the host (susceptible state). “I” is a state where
the host is infected with the botnet malware (infected state).
“R” is a state where the host has no known vulnerabilities
(recovered state). The host in the susceptible state transitions to
the infected state when a host infected with the botnet malware
attacks the susceptible host. The epidemic model assumes that
the infected host can attack only adjacent hosts on the overlay
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Fig. 1: Infectious capacity against the degree and the closeness
centrality of infection sources.

network. On the other hand, it transitions to the recovered
state when repairing its own vulnerabilities. The host in the
infected state can transition to the recovered state by removing
the botnet malware from itself. The host in the recovered state
transitions to the susceptible state after the botnet malware
discovered a new vulnerability. The botnet malware can infect
the host by attacking the vulnerability.

The authors in [6] have conducted simulation experiments
based on a continuous-time Markov chain, where the occur-
rence of each event defined by the SIRS model follows a Pois-
son process with given transition rates. As overlay networks,
two types of networks are constructed by the Watts-Strogatz
(WS) model [8] and the Barabasi-Albert (BA) model [1],
respectively. They have special characteristics such as the
small world property and the scale-free property. It is known
that many actual networks have these properties. To evaluate
the impact of each host on the overlay networks consisting N
hosts, it is assumed that one host is infected and the remaining
N − 1 hosts belong to the susceptible state, as the initial state
at time t = 0. The infected host at time t = 0 is referred to as
the infection source. The number N of hosts is set to 1,000
and the average degree k is set to 20 in each network.

Fig. 1(a) represents the infectious capacity of the botnet
malware as a function of the degree of infection sources. The
infectious capacity is defined by the probability that there
still exist one or more infected hosts after a sufficient amount
of time (i.e., stationary state). Also, Fig. 1(b) represents the
infectious capacity of the botnet malware as a function of
the closeness centrality of infection sources. The closeness
centrality of a host is an index indicating the distance from
the host to every other host. The high value of the closeness
centrality means that the host is located at center of the
network. We observe that the infectious capacity of the botnet
malware increases with the degree and the closeness centrality
of infection sources. We also observe that it depends on the
overlay network structures (i.e., the BA and WS models).

B. Prediction method using CNN

The computation time of the simulation experiments con-
siderably increases as the network size becomes large. In order
to overcome this issue, in [5], the authors have proposed the
prediction method of the infectious capacity of the botnet
malware with the use of CNN. Note that the prediction method

Fig. 2: Example of created images.

can be also applied to other epidemic models in addition to the
self-evolving botnet model. The prediction method represents
the structure of an overlay network with a weighted adjacency
matrix. Let G = {N ,L} denote an overlay network, where N
and L denote the sets of hosts and links. The overlay network
has N (= |N |) nodes. The weighted adjacency matrix AG of
the overlay network G is an N × N square matrix, which is
given by

AG =


a1,1 a1,2 . . . a1,N
a2,1 a2,2 . . . a2,N

...
...

. . .
...

aN,1 aN,2 . . . aN,N ,

 (1)

where ai,j denotes the connection relation between host i-j.
In the prediction method, the infection rate between host i-j
is used as the connection relation. The infection rate ai,j is
defined as the rate at which host i infects adjacent susceptible
host j on the overlay network. Note that ai,j = 0 if host i is
not adjacent to host j on the overlay network.

Based on the weighted adjacency matrix, the prediction
method creates an N ×N -size gray-scale image that is input
to the CNN. Each pixel of the gray-scale image corresponds to
the infection rate. Specifically, the value of ai,j is normalized
and quantized by ⌈255 × ai,j/amax⌉ because the pixel value
is an integer in the range from 0 to 255, where amax =
max{α, {ai,j | i, j = 1, . . . , N}} and α is a parameter.
Each pixel value becomes close to 255 as the connection (i.e.,
infection rate) between the corresponding host pair becomes
strong.

The infectious capacity depends on not only the structure of
an overlay network but also an infection source. We suppose
that host i = 1 is the infection source in order to distinguish
the infection source from other hosts on the overlay network.
In particular, the first row and the first column of the weighted
adjacency matrix represents the connection relation of the
infection source. The image for each host when it is selected
as an infection source is created as follows. First, an image is
created from the original adjacency matrix. A new adjacency
matrix is then made by updating the indices of hosts as
i← i−1 for each host i ( ̸= 1) and i← N for host i = 1. The
new adjacency has a shape in which the previous adjacency
matrix is shifted to the upper left. By repeating this process
N − 1 times, N images each of which expresses each host as
an infection source are created. Fig. 2 illustrates an example of
images created by this process in the case of N = 50. In this
figure, we can see that the pixels are shifted from the lower
right to the upper left.
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III. PROPOSED METHOD

A. Image resizing

In the prediction method using CNN, the sizes of images
created by the above procedure depend on the network scale
(i.e., the number of hosts). Specifically, the size of each gray-
scale image made is N ×N pixels. However, the input size of
the CNN is fixed. Therefore, images of different sizes which
has different network scales should be resized and made the
same size when they are input to the CNN. The use of general
image resizing methods such as bi-linear interpolation for the
prediction method could decrease the prediction accuracy of
the CNN because they do not consider the network structures.
To resolve this problem, our proposed method aims to enhance
the prediction accuracy by resizing images without losing
information on the network structures.

Furthermore, it is not desirable to train the CNN with
images of large-scale networks. Each training data consists of
a gray-scale image and its infectious capacity which is a label
calculated by a simulation experiment. We need much time
to calculate the infectious capacity for large-scale networks
through simulation experiments. Therefore, in the proposed
method, we make data sets from small-size networks and train
the CNN with the data sets. When predicting the infectious
capacity of the botnet malware on a large-scale network, the
proposed method creates resized images as follows:

1) For each host i ∈ N , calculate Si =
∑

j∈A(i) ai,j , where
A(i) denotes the set of hosts adjacent to node i.

2) Select a host i1 with the smallest Si.
3) Select a host i2 that has the smallest Si from among the

hosts adjacent to host h1.
4) For each host i ∈ A(i1) \ {i2}, make a link between it

and host i2 if they are not adjacent to each other.
5) For each host i ∈ A(i1) \ {i2}, the infection rate ai2,i

(=ai,i2 ) is updated by

ai2,i ← ai2,i +
ai2,i1 + ai1,i

2
.

6) Remove host i1 from the overlay network.
7) Until the number of hosts is equal to the target value,

the above steps 1)-6) are repeated. Finally, make a
gray-scale images from the resulting weighted adjacency
matrix, using the way discussed in Section II-B.

Fig. 3 illustrates an example of the procedure of the pro-
posed method. First, in steps 1) and 2), the host with the
smallest Si = 0.4 is selected. In step 3), then, another host
adjacent to the selected host with the smallest Si = 1.0 is
selected. In step 4), a link between the host selected in step
3) and a host adjacent to the host selected in step 2). The
infection rate is updated by (0.3+ 0.1)/2 = 0.2 in step 5). In
this step, we use the average of the infection rates because we
consider the strength of the connection through the removed
host. The host selected in the step 2) is removed from the
overlay network in step 6). By repeating this procedure, the
proposed method can decrease the number of hosts without
losing information on the overlay network structure, and create

Fig. 3: Proposed method.

Fig. 4: Resized image.

a resized image from the resulting overlay network. Fig. 4
shows an example of a resized image.

B. Training and prediction

The proposed method prepares a training data set by means
of the following procedure.

1) Make an overlay network G = {N ,L} consisting of a
relatively small number of hosts, where N = |N |.

2) Let A[i]
G denote an N × N weighted adjacency matrix

assuming that host i is the infection source on the over-
lay network. For each infection source i ∈ N , calculate
the infectious capacity C(A

[i]
G ) of the botnet malware,

which is a label, through simulation experiments.
3) For each infection source i ∈ N , convert the weighted

adjacency matrix of the overlay network into a gray-
scale image I(A

[i]
G ).

4) Obtain training data (I(A
[i]
G ), C(A

[i]
G )) for each infec-

tion source i ∈ N .
By repeating the above procedure, a training data set
{(I(A[i]

G ), C(A
[i]
G ))} for a sufficiently large number of net-

works with different structures but the same size is prepared.
The CNN is trained by the training data set.

The proposed method predicts the infectious capacity of
the botnet malware on large-scale overlay networks, using the
trained CNN. The prediction process for an overlay network
is as follows.

1) Make an overlay network G∗ = {N ∗,L∗} whose size is
equal to or larger than the networks of the training data
set.

2) For each infection source i ∈ N ∗ on the overlay
network, create a resized image I(A

∗[i]
G∗ ) by means of

the procedure discussed in Section III-A, where A
∗[i]
G∗

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1543



TABLE I: Running time of simulation experiments.

# of hosts 100 200 300
Time 00:30:22 03:33:57 9:51:17

TABLE II: Time consumed for prediction by CNN.

# of hosts 100 200 300
Method N/A 1⃝ 2⃝ 1⃝ 2⃝

Time 25.9 sec 23.4 sec 24.1 sec 24.3 sec 24.1 sec
1⃝Bi-linear 2⃝Proposed method

denotes a resulting N × N weighted adjacency matrix
made from A

[i]
G∗ in the procedure.

3) Input the created images {I(A∗[i]
G∗ ); i ∈ N ∗} to the CNN

as a test data set.
4) Obtain the estimated infectious capacity {E(A

∗[i]
G∗ ); i ∈

N ∗} as output of the CNN.
We can calculate the prediction accuracy by comparing
{E(A

∗[i]
G∗ ); i ∈ N ∗} with the correct infectious capacity

{C(A
[i]
G∗); i ∈ N ∗} obtained from simulation experiments.

IV. PERFORMANCE EVALUATION

A. Model

We examine the prediction performance of the proposed
method through performance evaluation using CNN trained
by results from simulation experiments. The CNN consists of
three pairs of a convolutional layer and a pooling layer. As
an activation function in each convolutional layer, we use the
ReLU function. We then use a fully connected layer to estimate
the infectious capacity, which is the output of the CNN. In
this paper, we prepare a training data set and test data sets for
overlay networks with the average degree k = 4, 6, 8, 10. The
overlay networks are constructed based on the WS model and
the BA model. The infection rate ai,j between each host pair
is randomly selected from among [0,1] and the parameter α
is set to 1.0. We prepare 19,200 images as the training data
set, which are equally created for each average degree k, and
the size of each image is 100×100 pixels (i.e., N = 100). As
test data sets, we prepare 4,800 images for different overlay
networks with N = 100, 200, 300 each. Note that the images
are resized to 100× 100 pixels by the proposed method. For
the sake of comparison, we use the bi-linear interpolation. The
correct results about the infectious capacity are calculated from
100 samples obtained in the simulation experiments.

B. Result

Table I shows the total running time in the simulation
experiments to calculate the infectious capacity for the 4,800
images of each test data set. Also, Table II shows the total
time spent predicting the infectious capacity for the 4,800
images by the CNN. As we can see from these results, the total
running time in the simulation experiments greatly increases
as the number of hosts increases. On the other hand, the CNN
can predict the infectious capacity in short time independent
of the number of hosts.

TABLE III: Prediction results.

# of hosts 100 200 300
Method N/A 1⃝ 2⃝ 1⃝ 2⃝

Mean error 0.090 0.236 0.143 0.238 0.144
Dev. 0.109 0.277 0.174 0.307 0.183

1⃝Bi-linear 2⃝Proposed method

Table III shows the mean absolute error and the standard
deviation. The mean absolute error (MAE) is given by

MAE =
1

M

M∑
m=1

|Cm − Em|,

where Cm denotes the correct infectious capacity for mth im-
age obtained from simulation experiments, which corresponds
to {C(A

[i]
G∗); i ∈ N ∗}, and Em denotes the infectious capacity

for mth image estimated by the CNN, which corresponds to
{E(A

∗[i]
G∗ ); i ∈ N ∗}. The small value of MAE indicates that

the CNN accurately predict the infectious capacity. From this
table, we observe that the proposed method can improve MAE,
compared with the bi-linear interpolation, regardless of the
number of hosts. This result implies that the proposed method
can create small-size images while keeping information on
network structures.

V. CONCLUSION

This paper proposed a prediction method of malware infec-
tion spreading considering the network scale, using CNN. The
proposed method resizes images without losing information
on network structures. The images are used as input data to
CNN. The proposed method predicts the malware spreading
for networks of different scales based on the information
on the small networks. Through experimental evaluation, this
paper showed the effectiveness of the proposed method.
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