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Abstract—In edge computing environments, edge servers are
deployed in networks in addition to cloud data centers. Designing
an edge computing system involves several issues such as edge
server deployment, virtual machine (VM) placement, and traffic
routing. This paper focuses on the VM placement problem, which
determines the location of VMs in edge servers, and proposes a
new VM placement method considering network and server load.
The proposed method formulates the VM placement problem as
mixed integer programming (MIP) problems. By solving the MIP,
the proposed method determines the optimal location of VMs so
as to minimize the network load generated by the communication
between users and VMs, and balance the load on edge servers.
Since it takes a large amount of computation time to solve the
MIP, the proposed method also introduces a heuristic algorithm
for finding an approximate solution. Numerical experiments show
the effectiveness of the proposed method.

I. INTRODUCTION

Recently, based on the concept of the Internet of Things
(IoT), the research and development of technologies aiming
to solve various problems in the real world have been actively
conducted. In IoT environments, a huge amount of information
with wide versatility will be generated by a wide variety of
interconnected devices [2]. For example, to date, main devices
connected to the Internet are smartphones and computers. With
the spread of the IoT environments, many kinds of devices
such as home appliances, automobiles, and sensors will be
connected to the Internet. Thus, the number of devices will
increase considerably, and the traffic load on the Internet will
increase accordingly.

IoT services are supported by cloud computing platforms.
Cloud computing processes data transmitted from IoT devices
in cloud data centers located away from the devices and
provides services to users through the Internet. Therefore,
various information is transmitted among IoT devices, cloud
data centers, and users. If the cloud data centers are located far
from the IoT devices, the network load becomes large because
data traffic pass through many network links. As the number
of IoT devices increases, the network load further increases,
which causes network congestion. As a technology resolving

the problem, edge computing now attracts much attention [3],
[6].

In edge computing environments, edge servers are deployed
at the edge of networks where there exist users and IoT
devices while cloud data centers are located far from them.
Instead of the cloud data centers, the edge servers process
data transmitted from the IoT devices. By doing so, network
load and communication delay are expected to be reduced. In
general, data processing in the edge servers is performed by
virtual machines (VMs) [5]. VMs are duplicated into multiple
edge servers in order to distribute the load for the VMs.
Each data sent from the IoT devices are processed by one
of the VMs as necessary. It is important to consider the VM
placement problem that determines which VMs are allocated
to edge servers [4], [7], [9]. The location of the VMs affects
the performance of the edge computing environments such as
the load on network links and edge servers.

In this paper, we propose a VM placement method that
aims to smooth the load on network links and edge servers
in edge computing environments. The proposed method first
formulates the VM placement problem of smoothing the load
as a mixed integer programming (MIP) problem. Furthermore,
the proposed method provides a heuristic algorithm for obtain-
ing approximation solution in relatively short time. Through
numerical experiments based on a realistic network model, we
show the effectiveness of the proposed method.

II. SYSTEM MODEL

Fig. 1 shows the system model assumed in this paper. Let
G = (V, E) denote a given network, where V denotes a
set of nodes and E denotes a set of links. Let S ⊂ V and
H ⊂ V denote a set of edge servers and a set of host (i.e.,
user or IoT device). VMs are duplicated into edge servers and
each host communicates with some VMs. Let N denote a
set of services provided by the VMs, assuming that VM n
provides service n. Each edge server can have one or more
VM unless its capacity is full and provide different services
according to the VMs. By duplicating VMs providing common
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Fig. 1. System model.

TABLE I
LIST OF SYMBOLS.

Symbol Meaning
G = (V, E) Network consisting of the set V of nodes and the set E

of network links
S ⊆ V Set of edge servers
H ⊆ V Set of hosts
N Set of VMs
Ni Set of VMs communicated with host i ∈ H
Pi,j Set of links on the shortest path from host i ∈ H to edge

server j ∈ S
λi,n Traffic demands between host i ∈ H and VM n ∈ Ni

Cj Capacity of edge server j ∈ S
Sn Size of VM n ∈ N
xi,j,n Binary variable that is equal to 1 if host i ∈ V

communicates VM n ∈ Ni in edge server j ∈ S;
otherwise, 0

δn,j Binary variable that is equal to 1 if VM n ∈ N is
allocated to edge server j ∈ S; otherwise, 0

A, B Weight parameters
α Real variable that indicates the maximum link load
β Real variable that indicates the maximum server load

services into multiple edge servers, we can balance the load
on network links and edge servers. When requiring a service,
each host communicates with a corresponding VM in one of
edge servers.

In this system, it is very important to consider the location of
the VMs. When allocating a popular VM into a small number
of edge servers, a lot of load are imposed on not only the edge
servers but also links around the edge servers. On the other
hand, duplicating a non-popular VM into many edge servers
could waste the capacity of the edge servers. Since the number
of VMs that the edge servers can have is limited, VMs should
be duplicated strategically according to their popularity and
traffic demands.

III. PROPOSED METHOD

The symbols used in this paper are listed in Table I. The
shortest path Pi,j from each host i ∈ H to each edge server
j ∈ U is prepared in advance. The host communicates with the
edge server along the path. In this section, we first provide MIP
that minimizes the maximum link load, i.e., smoothing the load
on the network links. We then provide MIP that minimizes the

maximum edge server load, i.e., smoothing the load on the
edge servers. Finally, we provide the heuristic algorithm that
determines location of VMs so as to smooth load on both the
network links and the edge servers. In the proposed method,
we aim to minimizing the maximum link load α and/or the
maximum server load β by coordinating the variables δn,j and
xi,j,n.

A. Network link load

We first provide the MIP that smooths the load on the
network links. The MIP determines edge servers to which
respective VMs are allocated. It also selects VMs with which
respective hosts communicate. The MIP is given as follows:

Minimize
α, (1)

Subject to

∀l ∈ E ;
∑
i∈H

∑
n∈Ni

∑
j∈S:l∈Pi,j

λi,nxi,j,n ≤ α, (2)

∀j ∈ S;
∑
n∈N

δn,jSn ≤ Cj , (3)

∀i ∈ H, n ∈ Ni;
∑
j∈S

xi,j,n = 1, (4)

∀n ∈ N ;
∑
j∈S

δn,j ≥ 1, (5)

∀i ∈ H, j ∈ S, n ∈ Ni; δn,j ≥ xi,j,n. (6)

(1) is the objective function, which aims to minimize the
maximum link load. (2) is a constraint ensuring that the load
imposed on each link is equal to or less than α. (3) is a capacity
constraint of each edge server, which represents that the total
size of VMs allocated to the edge server is equal to or less
than its capacity. (4) indicates that when requesting a service,
each host communicates with only one of VMs providing the
service. (5) ensures that each VM is duplicated into at least
one edge server. (6) is a constraint that each host accesses only
edge servers having target VMs.

B. Edge server load

We then provide the MIP that determines the VM location
and the VM selection so as to smooth the load imposed on
the edge servers, which is given as follows:

Minimize
β, (7)

Subject to

∀j ∈ S;
∑
i∈H

∑
n∈Ni

λi,nxi,j,n ≤ β, (8)

∀j ∈ S;
∑
n∈N

δn,jSn ≤ Cj , (9)
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Input: Set S of edge servers and set N of VMs
Output: VM placement
1: For each edge server j ∈ S,Mj ← N , C ′

i ← Ci

2: j ← 0
3: while Mj ̸= ∅ in each edge server j ∈ S do
4: if Mj ̸= ∅ then
5: Select VM n with the largest λj.n among Mj

6: Mj ←Mj − {n}
7: if there are no neighbors of server j having VM n

&& C ′
j ≥ Sn then

8: Place VM n on server j
9: C ′

j ← C ′
j − Sn

10: j ← (j + 1) mod |S|
11: end if
12: else
13: j ← (j + 1) mod |S|
14: end if
15: end while

Fig. 2. VM placement algorithm.

∀i ∈ H, n ∈ Ni;
∑
j∈S

xi,j,n = 1, (10)

∀n ∈ N ;
∑
j∈S

δn,j ≥ 1, (11)

∀i ∈ H, j ∈ S, n ∈ Ni; δn,j ≥ xi,j,n. (12)

(7) is the objective function, which aims to minimize the
maximum edge server load. In this paper we define the traffic
volume imposed on an edge server as the edge server load.
(8) is a constraint ensuring that the load imposed on each
edge server is equal to or less than β. (9)-(12) are the same
constraints as (3)-(6).

By solving these MIP, we can determine edge servers to be
allocated respective VMs (i.e., δn,j). At the same time, we can
select VMs to communicate with respective hosts (i.e., xi,j,n).

C. Network link and edge server load

We now consider how to smooth both the link load and the
edge server load. We formulate the problem as the following
MIP.

Minimize
Aα+Bβ (13)

Subject to

∀l ∈ E ;
∑
i∈H

∑
n∈Ni

∑
j∈S:l∈Pi,j

λi,nxi,j,n ≤ α, (14)

∀j ∈ S;
∑
i∈H

∑
n∈Ni

λi,nxi,j,n ≤ β, (15)

∀j ∈ S;
∑
n∈N

δn,jSn ≤ Cj , (16)

∀i ∈ H, n ∈ Ni;
∑
j∈S

xi,j,n = 1, (17)

∀n ∈ N ;
∑
j∈S

δn,j ≥ 1, (18)

∀i ∈ H, j ∈ S, n ∈ Ni; δn,j ≥ xi,j,n. (19)

(13) is the objective function, which aims to minimize the
weighted sum of the maximum link load and the maximum
edge server load. The maximum link load and the maximum
edge server load are given by (14) and (15), respectively. (16)-
(19) are the same constraints as (3)-(6).

Here, in order to reduce the computational complexity, we
provide another solution instead of solving the MIP directly.
We divide the problem into sub-problems: VM placement
and VM selection. The proposed method first solves the
VM placement sub-problem to determine which edge servers
should be allocated respective VMs to. To do so, the proposed
method introduces the heuristic algorithm, which is shown
in Fig. 2, where edge servers are randomly indexed by j
(j = 0, 1, . . . , |J | − 1). In the heuristic algorithm, VMs are
duplicated into edge servers in such a way that VMs providing
the same service are not allocated to edge servers adjacent to
each other. By doing so, the heuristic algorithm distributes the
load on edge servers.

The proposed method then solves the VM selection sub-
problem. Specifically, it determines which VMs communicate
with respective hosts by solving MIP based on the VM
location (i.e., δn,j) decided by the heuristic algorithm. The
MIP smooths the load on network links, which is given as
follows.

Minimize
α, (20)

Subject to

∀l ∈ E ;
∑
i∈H

∑
n∈Ni

∑
j∈S:l∈Pi,j

λi,nxi,j,n ≤ α, (21)

∀i ∈ H, n ∈ Ni;
∑
j∈S

xi,j,n = 1, (22)

∀i ∈ H, j ∈ S, n ∈ Ni; δn,j ≥ xi,j,n. (23)

The objective function (20) minimizes the maximum link load.
(21)-(23) correspond to (14), (17), and (19), respectively.

IV. PERFORMANCE EVALUATION

A. Model

In this paper, we evaluate the performance of the proposed
method through numerical experiments using networks created
based on the Watts-Strogatz (WS) model [8]. The WS model
can make networks having the small-world property that many
real networks have. Each node fills the role of a host, an edge
server, and an intermediate node. The amount λi,j of traffic
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Fig. 3. Maximum link load against the number of nodes in small-size
networks.
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Fig. 4. Maximum edge server load against the number of nodes in small-size
networks.

demands of hosts are randomly selected in such a way that the
average traffic demand is equal to Λ. There exist |N | = N
types of VMs in the network. The capacity Cj of each edge
server j is equal to

∑
n∈N Sn/2, where the size Sn of each

VM n is randomly selected from [7,10]. We use IBM ILOG
CPLEX [1] to solve the optimization problems formulated by
MIP.

B. Results

We first evaluate the performance of the proposed method
considering both the maximum link load and the maximum
edge server load, which is discussed in Section III-C. We here
use small-size networks where the number |V| = V of nodes
are [10,30]. Figs. 3 and 4 show the maximum link load and
the maximum edge server load as a function of the number
V of nodes, where the average traffic demand Λ is 250 and
the number N of VM types is 10. We plot the result (labeled
with CPLEX) obtained by the MIP given by (13)-(19), where
A = B = 1. We also the result (labeled with proposed method)
obtained by the heuristic algorithm shown in Fig. 2 and the
MIP given by (20)-(23). As we can see from these figures,
their performances are almost the same, which means that the
heuristic algorithm works well while reducing the computation
time.

We then evaluate the performance of the heuristic algorithm
in large-size networks where the number V of nodes are
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Fig. 5. Maximum link load against the number of nodes in large-size networks.
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Fig. 6. Maximum edge server load against the number of nodes in large-size
networks.

[50,250]. Figs. 5 and 6 show the maximum link load and
the maximum edge server load as a function of the number
V of nodes, where the average traffic demand Λ is 250
and the number N of VM types is 10. For the sake of
comparison, we plot the result (labeled with random) of the
method which places VMs on randomly selected edge servers
and hosts communicate with the nearest VMs. From Fig. 5,
we observe that the proposed method can efficiently improve
the maximum link load, compared with the random method.
On the other hand, the maximum edge server loads of the
proposed method is slightly smaller than that of the random
method. These results indicate that the proposed method can
suppress both the maximum link load and the maximum edge
server load.

Next, we compare the MIP formulations of the proposed
method. Figs. 7 and 8 show the maximum link load and the
maximum edge server load as a function of the number N of
VM types, where the average traffic demand Λ is 250 and the
number V of nodes is 50. In these figures, we plot the results
labeled with Link-load-only and Sever-load-only of the MIP
formulation given by Sections III-A and III-B, respectively.
The result labeled with Link-and-Sever-load is obtained by the
heuristic algorithm shown in Fig. 2 and the MIP formulation
given by (20)-(23). As we can see from Fig. 7, the maximum
link load of the Server-load-only method is very high because
it does not take the load on network links into account. On
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Fig. 7. Maximum link load against the number of VM types.
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Fig. 8. Maximum edge server load against the number of VM types.

the other hand, the Link-load-only method and the Link-and-
Server-load method efficiently reduce the maximum link load.
On the other hand, as shown in Fig. 8, the maximum edge
server load of the Link-load-only method is very high. The
maximum edge server load of the Server-load-only method is
the smallest. We also observe that the Link-and-Server-load
method relatively decreases the maximum edge server load,
which is close to that of the Sever-load-only method.

Figs. 9 and 10 show the maximum link load and the
maximum edge server load as a function of the average traffic
demand Λ, where the number N of VM types is 10 and the
number V of nodes is 50. From these figures, we observe that
the Link-and-Server-load method can efficiently suppress both
the maximum link load and the maximum server load.

V. CONCLUSION

In this paper, we proposed a VM placement method that
smooths the load on network links and edge servers in edge
computing environments. The proposed method first formu-
lates the VM placement problem of smoothing the load as a
mixed integer programming (MIP) problem. Furthermore, the
proposed method provides a heuristic algorithm for obtaining
approximation solution in relatively short time. Through nu-
merical experiments based on a realistic network model, we
showed the effectiveness of the proposed method.
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Fig. 9. Maximum link load against the average traffic demand.
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Fig. 10. Maximum edge server load against the average traffic demand.
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