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Abstract—LoRaWAN is one of the radio communication stan-
dards of low power wide area network (LPWA) using the chirp
spread spectrum. In uplink communication of LoRaWAN, packet
retransmission is used to compensate for packet loss due to packet
collisions caused by interference coming from other systems on
the same frequency band. However, simple packet re-transmission
increases packet collisions on the massive system condition since
collision avoidance is not considered in LoRaWAN. Therefore, in
this paper, we propose an adaptive transmission timing control
algorithm for avoiding periodic interference from other systems
by estimating their intervals. In our method, an environment with
multiple LoRa gateways and LoRa nodes are considered and the
received power of interference signals at each LoRa gateway is
shared among all LoRa gateways. LoRa gateways can distinguish
the system of interfering signals by comparing with the Euclid
distances between the data sets of the received power of the
interfering signals and the data sets of the received power of
the signals come from other interfering systems. In addition,
whether the interfering system communicates periodically or not
is figured out from the information of the interference interval.
LoRa gateways predict the timings that the LoRaWAN system
is less interfered considering the periodically interfering systems
and control the packet transmission timing of LoRa nodes. The
simulation results show the proposed method reduces the packet
loss rate compared to the existing system without a significant
decrease in throughput.

Index Terms—LPWA, LoRaWAN, spectrum sharing

I. INTRODUCTION

In recent years, the number of IoT devices has continued
to increase. According to the literature [1], it is expected that
approximately 50 billion terminals will be connected to the
Internet by 2020. IoT applications are characterized by low
data rates, power consumption, and costs. Therefore, LPWA
is focused on a solution to meet these requirements [2].

LPWA is a general category for technologies that provide
low-power communications over a wide area, and it enables
long-distance communications by using narrow-band com-
munication technologies, spread spectrum technologies and
other technologies. In addition, LPWA simplifies the network
topology and communication protocol to reduce the device
cost and power consumption [3]. In this paper, we focus on
an open standard LPWA, LoRaWAN.

The existing LoRa system cannot avoid interference, and
each LoRa node can ensure the delivery of messages by re-
transmitting against packet collisions [4]. However, increased
network traffic increases packet collisions and degrades the
communication quality. In order to avoid packet collision, it

is necessary to recognize the radio environment and to control
transmission timings of LoRa nodes appropriately. Adaptive
transmission timing control in LoRaWAN systems has been
the subject of much discussion because it reduces packet
collisions in LoRa systems and improves energy efficiency.

There are scheduling methods for LoRaWAN systems that
schedule transmission timing of LoRa nodes with an appro-
priate Spreading Factor and channel according to the radio
environment [5][6]. However, interferences from other inter-
fering systems are not considered in these scheduling methods.
It is necessary to recognize the interfering nodes separately in
order to avoid the interference based on the past interference
information.

There is a method to identify the interfering nodes from
a set of interference power obtained by sensing at multiple
locations. In [7], a method for estimating the location of
a transmitter based on the RSSI at multiple locations is
proposed. We use this idea to distinguish interfering signals.
In this paper, the clusterized received interference power are
considered as multidimensional coordinates and hierarchical
clustering with Euclidean distance is applied. Thus, we con-
struct interference signal clusters classified by the similarity
of the received power of the interference signals. In addition,
the interference interval of each interference signal cluster is
calculated by using the interference time of each interference
signal in the interference signal cluster. Interference avoidance
using this interference interval is expected to improve the
communication quality of the LoRa system.

Therefore, in this paper, we propose an algorithm to control
the uplink communication timings of LoRa nodes at a time
when packets are unlikely to collide with interference. In the
proposed method, multiple gateways recognize the interference
signals from the interfering nodes and cluster the interfering
nodes based on their interference power pairs. Then, the inter-
ference interval distribution is calculated for each interference
signal cluster. Based on the interference interval distribution,
the uplink communication of LoRa nodes is scheduled to a
timing that has a lower probability of interference arrival.

The proposed method is evaluated by average packet loss
rate and average throughput in a computer simulation. The
results show that the proposed method improves the packet
loss rate and does not significantly reduce the throughput even
when the communication timing is changed.

The rest of the paper is organized as follows. Section II
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explains the LPWA. In Section III, we describe hierarchical
clustering. Section IV shows the system model，and Section
V describes the proposed scheduling algorithm. Simulation
conditions are given in Section VI, and Section VII shows
simulation results. Finally, Section VIII concludes this work.

II. LPWA

LPWA (Low Power Wide Area) is the general term for
power-saving wide-area communication technology. LPWA
provides wide-area connectivity for low-power, low-data-rate
devices that are not provided by traditional wireless commu-
nication technologies [3]. Many LPWA systems use various
technologies to achieve long-distance communication, such
as spread spectrum and ultra-narrow band technologies. In
addition, many LPWA systems use a simple network topology
to save power. LoRaWAN uses a star topology where the
node and the gateway communicate directly with each other to
reduce power consumption. Also, the communication protocol
is also simplified, which helps to reduce device costs. These
features make LPWA very attractive for use in various sectors
such as transportation, healthcare, agriculture, and industry
[2]. LoRaWAN is an LPWA that communicates in the Sub-
GHz band using LoRa, a physical layer technology for long-
range, low-power wireless communication systems [2]. In
LoRaWAN, chirp spread spectrum (CSS) is used to improve
interference resistance and enable wide area communication.
In addition, the communicable distance and data rate in
LoRaWAN varies with the spreading rate. The spreading
rate is called Spreading Factor and can be selected from 6
integer values between 7 and 12. A higher spreading factor
extends the transmission distance while decreasing the data
rate. LoRaWAN uses the pure ALOHA-based communication
protocol for uplink communication [4]. In pure ALOHA,
each node performs uplink communication at an arbitrary
time and recognizes packet collision by an ACK packet from
the gateway. Since interference avoidance is not performed
in pure ALOHA, the probability of receiving a message is
increased by retransmitting packets. However, simple packet
retransmission increases packet collision in an environment
with many interfering nodes.

III. HIERARCHICAL CLUSTERING

Hierarchical clustering is a top-down or bottom-up cluster-
ing method that builds a hierarchy of clusters and continues
merging or splitting clusters until a stopping criterion is met
[8]. Fig. 1 shows an example and a dendrogram of hierarchical
clustering. In Fig. 1b, it shows that the clusters are merged
according to the distance between clusters. In this paper,
we use the average linkage to design the stopping criteria
according to the variation of the interference power.

A. Average linkage

Average linkage is a bottom-up hierarchical clustering
method. In the average linkage, a distance between clusters is
defined as the average of the distances between the elements
in each cluster. Therefore, when the distance between two
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(a) An example of clustering.
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(b) A clustering dendrogram.

Fig. 1: Hierarchical clustering.

elements p, q is denoted by d(p, q), the distance between
clusters X and Y is shown by the following formula,

1

|X| |Y |

|X|∑
p∈X

|Y |∑
q∈Y

{d (p, q)} . (1)

Here, we explain how to clustering using average linkage.
First, all elements are considered as independent clusters.
Next, the pairs of clusters with the minimum distance between
clusters are merged in order. This operation is continued until
the stopping criterion is satisfied, and then the hierarchy of
clusters is constructed. The clustering is stopped in the desired
hierarchy by stopping criteria such as the number of clusters
and the distance between clusters.

In this article, we cluster the interfering signals based on
the power pairs of the interfering signals observed at multiple
LoRa gateways. Here, we calculate the interference interval
distribution for each interfering signal cluster by using the
interference time of the interfering signals included in each
interfering signal cluster. Therefore, the interference timing
is estimated from the interference interval distribution of the
interference signal clusters.
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Fig. 2: System model.

IV. SYSTEM MODEL

Fig. 2 shows the system model assumed in this paper. In
this work, we assume that there are G (≥ 3) LoRa gateways,
L LoRa nodes, and Q interfering nodes. In addition, we
consider a situation where the uplink transmission of each
LoRa node is scheduled with fixed intervals. As shown in
Fig. 2, all the uplink transmissions of the LoRa nodes are
scheduled so that they do not collide with each other. In the
first step of the proposed method, received power pairs and
the interference times from the interference signals observed
at multiple LoRa gateways are stored in the database. Next,
interference signal clusters are constructed by clustering the
stored power pairs. Thereafter, the distributions of the inter-
ference interval are created from the interference time for each
interfering signal cluster. Here, the previous interference time
and the interference interval distribution for each interference
signal cluster are used to estimate the timing with high
interference probability. Finally, the LoRa nodes scheduled
for the transmission timing with high interference probability
are scheduled for the timing with low interference probability.
Scheduling information is sent to the LoRa nodes via periodic
downlink transmissions.

V. ADAPTIVE TRANSMISSION TIMING CONTROL
CONSIDERING INTERFERENCE INTERVAL

In this paper, we control the communication time of LoRa
nodes based on the estimated interference time. The scheduling
procedure is described below.

A. Creating interference signal clusters by sensing at multiple
gateway

First, the received power pairs POj
(p1, p2, . . . , pG) of the

j-th interfering signal Oj are determined using G gateways
and stored in the database with the interference time tOj

.
Then, average linkage is applied to the Euclidean distance
of each power pair PO1 , . . . ,POJ

for all interference signals
O1, . . . , OJ . Fig. 3 shows an example of clustering in the case
of G = 3. In this example, the stored interfering signals are
classified into three interfering signal clusters by their power
pairs.
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Fig. 3: An example of interfering cluster.

Algorithm 1 Calculate Dm[x]

all elements of Dm[x] are initialized to 0
for r = 0 to k − 1 do

for f = 0 to ⌈ τo
S ⌉ do

DA[⌊ Ir
S + f⌋] ⇐ DA[⌊ Ir

S + f⌋] + 1
end for

end for

B. Construction of interference interval distribution

Next, interference interval distribution are calculated in
each interfering signal cluster. Based on the interference time
tO0

, . . . , tOk
of the interfering signals O0, . . . , Ok in the inter-

fering signal cluster m, the interfering intervals I0, . . . , Ik−1

are calculated. Here, the resolution of interference interval
distribution and the packet length of the interference signal
are defined as S and τo. Therefore, the interference interval
distribution Dm[x] of the interference signal cluster m is
constructed by the Algorithm 1. The interference interval
distribution Dm[x] represents how many packets are observed
at the interference interval x/S in the interfering signal cluster
m. In the same way, the interference interval distribution
D1[x], . . . , DN [x] of all interfering signal clusters N are
constructed. Fig. 4 shows examples of the interference interval
distributions DA[x], DB [x], and DC [x] calculated for each
interfering signal cluster A, B, and C in Fig. 3.

C. Clustering correction using interference interval distribu-
tion

In V-A, depending on the location of the interfering nodes
and the fading situation, interference signals from different
interfering nodes seem to be mixed in the same interference
signal cluster. In particular, when interference signals from
many interfering nodes are classified in the same cluster, the
variation of the interference interval distribution of the cluster
increases. Therefore, it is difficult to avoid periodic interfer-
ence. Hence, we correct the clustering by using the variation
of the interference interval distribution D1[x], . . . , DN [x] for
each interference signal cluster calculated in V-B. The variance
of the autocorrelation coefficients (C1, . . . , CN ) corresponding
to each interference interval distribution D1[x], . . . , DN [x] are
calculated as an indicator of the variation of them. When the
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Fig. 4: An example of interference interval distribution.

variation in the interference interval distribution is large, its
autocorrelation coefficients are not uncorrelated in time and
have positive or negative values for each lag. On the other
hand, when the interference interval distribution converges,
its autocorrelation coefficient approaches zero for all lags.
Thus, we can evaluate the variation of the interference interval
distribution by the variance of its autocorrelation coefficient.
Therefore, in this step, we focus on interfering signal clusters
whose variance of autocorrelation coefficients exceeds the
threshold β, and we split the clusters into two temporal clusters
from the power pair using the k-means clustering. Then,
the variance of the autocorrelation coefficient is calculated
from the interference interval distribution of each temporary
cluster. If there is a temporary cluster whose variance of
the autocorrelation coefficient is below the threshold β, we
consider that the distribution of the interference interval is
converged by the separation. In this case, we actually divide
the interfering signal cluster into two. The above process is
repeated for all clusters until it is unable to divide the clusters.
This step improves the accuracy of cluster separation.

D. Exclusion of interfering signal clusters with non-periodic
transmission

In this method, it is necessary to exclude the interfering
nodes that transmit non-periodically because it is impossible
to avoid the interference from them. Therefore, we use the
autocorrelation coefficients of the interference interval dis-
tribution for each interfering node cluster in the same way
as V-C. Here, the interfering signal clusters whose variance
of the autocorrelation coefficient of the interference interval
distribution is higher than the threshold β are considered to be
non-periodically interfering signal clusters. In the example of
Fig. 4, the interference interval distribution of the interference
signal cluster A shows large variations. Hence, cluster A is
not considered in the proposed method.

E. Scheduling for LoRa nodes using interference intervals

Finally, we control the transmission timing of all LoRa
nodes at every downlink interval Td. In this work, as described

Algorithm 2 Calculate E[x]

all elements of E[x] are initialized to zero
for w = 1 to W do

for x = 0 to X do
E[x] ⇐ Dw[⌊

c−twf

S + x⌋] + 1
end for

end for

in the system model, we assume that LoRa nodes transmit
at regular intervals according to Duty Cycle. Here, the last
interference time of the interfering signal cluster w is defined
as twf

. Furthermore, the value of the interference interval
distribution corresponding to recent time c is calculated as
Dw[⌊

c−twf

S ⌋]. If Dw[⌊
c−twf

S ⌋] is non-zero, the arrival of an
interfering signal from the interfering signal cluster w is
estimated at current time c. Therefore, the estimated inter-
ference interval distribution E[x] is calculated by combining
the interference interval distributions of the periodically in-
terfering signal cluster in the Algorithm 2. Fig. 4 shows an
example of the estimated interference interval distribution E[x]
constructed from the interference signal clusters B and C.

The packet length and the scheduled next transmission
time in the LoRa node are defined as τLoRa and tl. If
E[ tS ] = 0 does not always hold for the packet transmission
time (tl ≤ t ≤ tl + τLoRa), then the transmitted packet
are estimated to be affected by interference. In this case, we
increase tl until E[ tS ] = 0 holds for all packet transmission
times(tl ≤ t ≤ tl + τLoRa) without conflicting with transmis-
sions from other LoRa nodes. The above scheduling operation
is performed on all LoRa nodes in ascending order of tl.
Finally, the new transmission timing of all LoRa nodes are
notified by downlink transmission.

VI. SIMULATION CONDITION

In order to evaluate the usefulness of the proposed method,
the average packet loss rate and the average throughput were
evaluated by simulation. In this paper, we assume an envi-
ronment where each LoRa node transmits at intervals of Duty
Cycle γ, and the transmission timing of each node is scheduled
by the proposed algorithm. LoRa nodes and interfering nodes
are assumed to be randomly placed according to uniform
random numbers, and gateways are assumed to be located at
three fixed locations. In this simulation, each gateway shares
information with the database and notifies all LoRa nodes of
the scheduling information at every interval of downlink trans-
mission Td. The interfering nodes that interfere regularly have
different transmission intervals to indicate the effectiveness
of the proposed method. Thus, transmission interval of i-th
periodic interfering node is defined as τo

δ + i×τo. In addition,
the communication of the interfering node that communicates
non-periodically is based on Poisson process, keeping the Duty
Cycle δ. We do not consider the capture effect here. In this
simulation, positions of each LoRa and interfering node are
changed for each simulation iteration R, and interfering signal
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TABLE I: Simulation parameter

Area size 2 × 2 [km2]
Frequency 923 [MHz]
Band width BW 125 [kHz]
Spreading factor SF 　 10
Coding rate CR　 4/5
Number of LoRa nodes L 40
Transmission power of LoRa node 13 [dBm]
Duty cycle of LoRa γ 0.01
Packet length of LoRa τLoRa 400 [msec]
Number of LoRa gateways G 3
Location of LoRa gateways (0.5,1.5) (1.0, 0.5)

(1.5, 1.5) [(km,km)]
Indication interval of downlink
transmission Td

10,000 [mesec]

Number of interfering nodes Q 5～30
Ratio of non-periodic interfering nodes σ 0.3
Transmission power of interfering nodes 13 [dBm]
Packet length of Interfering nodes τo 400 [msec]
Duty cycle of Interfering nodes δ 0.01
Radio propagation model Okumura-Hata model(Urban)
Fading model Rician(K-factor=5), Rayleigh
Max distance between clusters α 14
Threshold of autocorrelation coefficient β 0.002

Resolution of the
interference interval distribution S

100 [msec]

Maximum interference interval X 2000
Simulation time T 1,000,000 [msec]
Number of simulations R 200

clusters are created for every iteration. Moreover, assuming
that the dynamic range of the interfering signal power is
v[dB], the maximum distance between clusters α =

√
Gv2

is calculated. In a real environment, the interference signal
is observed for a certain period of time and v is obtained
by taking the average of the dynamic range of the interfering
signal power. In this simulation, we assume that the value of v
is 8[dB] and use α =

√
Gv2 ≒ 14 . Furthermore, we assumed

the Rayleigh fading and Rician fading (K = 5) environment
using the Jakes model [9] with reference to the literature [10].

As a comparative method, we consider the existing envi-
ronment without proposed methods and the four proposed
methods with and without clustering correction in V-C and
with and without non-periodic interference node exclusion
in V-D. The throughput Rb in the performance evaluation is
calculated by the following equation,

Rb = SF × BW

2SF
× CR (2)

where SF is a spreading factor, CR is a coding rate and BW
is a communication bandwidth [11].

Other parameters for the simulation are shown in Table I.

VII. SIMULATION RESULTS

A. Performance under Rician fading (K=5)

Fig. 5 and Fig. 6 show the average packet loss rate and
average throughput for the number of interfering nodes in
the Rician fading situation. Fig. 5 indicates that all pro-
posed methods improve the packet loss rate compared to
the existing environment. In addition, the proposed method
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Fig. 5: Average packet loss rate in Rician fading (K = 5).
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Fig. 6: Average throughput in Rician fading (K = 5).

with clustering correction shows better packet loss rate than
that without clustering correction. The reason for this can
be attributed to the interference avoidance by using highly
accurate clustering with clustering correction. In addition, Fig.
6 shows that the throughput is improved when the no-periodic
interference is excluded, while the throughput is lower than
the existing environment when it is not excluded. This perfor-
mance degradation occurs due to frequent postponement of the
transmission timing considering the interference interval of all
interfering signal clusters including non-periodic interference
signal clusters. Therefore, the proposed method with clustering
correction and non-periodic interference exclusion has the best
performance in terms of both packet loss rate and throughput.
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Fig. 7: Average packet loss rate in Rayleigh fading.

B. Performance under Rayleigh fading

Similar to the Rician fading environment, Figs. 7 and 8
show the average packet loss rate and average throughput for
the number of interfering nodes, respectively. Fig. 7 suggests
that all the proposed methods improve the packet loss rate in
comparison to the existing environment. However, the degree
of improvement of the packet loss rate is smaller than that of
the Rician fading environment. This is because the clustering
accuracy is deteriorated by fading, which causes variation in
the interference interval distribution and worsens the accuracy
of interference avoidance. Fig. 8 shows that the throughput
of the proposed method without clustering correction is lower
than that of the existing environment as in the Rician fading
environment. The throughput of the proposed method with
clustering correction and removal of non-periodic interference
is slightly lower than that of the existing environment. The
reason for this is that the number of nodes with a postponement
of communication time is increased because of the interference
avoidance for more clusters wrongly separated by the cluster-
ing correction in Rayleigh fading environment. Nevertheless,
it can be concluded that the proposed method with clustering
correction and exclusion of non-periodic interference has the
best performance because it can reduce the packet loss rate
and achieve the same level of throughput as the existing
environment under the Rayleigh fading environment.

VIII. CONCLUSION

In this paper, we proposed an algorithm to avoid interference
from interfering nodes that regularly transmit in LPWA. The
proposed method recognizes the interference power from
interfering systems at multiple gateways and constructs an
interference interval distribution for each interfering system.
By using the interference interval distribution, we estimate
the next interference timing from the interfering systems and
control the transmission timing of LoRa nodes. The simulation
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Fig. 8: Average throughput in Rayleigh fading.

results show that the proposed method reduces the packet loss
and improves the transmission efficiency.
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