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Abstract—This paper proposes a signal detection method for
overloaded massive multi-user multi-input multi-output (MU-
MIMO) orthogonal frequency division multiplexing (OFDM) and
single carrier block transmission with cyclic prefix (SC-CP)
systems by using sum of complex sparse regularizers (SCSR)
as the regularizer of the discreteness of transmitted signal. Main
feature of this work is that non-convex sparse regularizers are
newly considered, while convex sparse regularizers only are
considered in our previous work on the overloaded MIMO
signal detection. Numerical results demonstrate that the proposed
approach with the appropriate choice of the non-convex sparse
regularizer can achieve better symbol error rate (SER) perfor-
mance than that with the convex regularizer, and also that the
precoding by Hadamard matrix or discrete Fourier transform
(DFT) matrix is significantly beneficial for the case with non-
convex sparse regularizers as well. Moreover, unlike the case with
the ideal independent and identically distributed (i.i.d.)Gaussian
measurement matrix, the regularizer based on ℓ2/3 norm or ℓ1/2
norm can achieve better SER performance than that with ℓ0
norm based regularizer under the simulation condition.

Index Terms—Overloaded MIMO, Discreteness, Sparsity, IoT,
Non-convex Regularizer

I. INTRODUCTION

Typical use cases of the 5th generation mobile communi-
cations systems (5G) [1], [2] include the data collection from
a large number of internet-of-things (IoT) nodes using a base
station with a large number of antennas. The data collection
problem can be modeled as a massive multi-user multi-
input multi-output (MU-MIMO) communications system by
regarding each IoT node as a transmit antenna, however, there
is a fundamental difference between the conventional massive
MU-MIMO [3], [4] and the IoT data collection environment
that the number of transmit antennas (transmit streams) is
typically greater than that of receiving antennas even when a
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massive antenna array is employed at the base station, which
results in what we call overloaded MIMO or underdetermined
MIMO.

The signal detection problem of overloaded MIMO is very
difficult due to the underdetermined nature of the problem.
However, if we have some prior knowledge on the transmitted
signal, it might be possible to uniquely determine the trans-
mitted signal from its underdetermined linear measurements.
Taking advantage of the fact that the transmitted symbol
of digital communications takes discrete values on a finite
set (i.e., alphabet), we can achieve overloaded MIMO signal
detection based on maximum likelihood (ML) approach [5].
Moreover, since the ML approach is not tractable due to
high computational complexity for massive overloaded MIMO
signal detection, we have proposed a low complexity MIMO
orthogonal frequency devision multiplexing (OFDM) signal
detection scheme using convex optimization [10], where sum-
of-absolute-values (SOAV) optimization [8], which is based
on the idea of compressed sensing [6], [7], is employed. In
[10], it has been shown that the proposed IoT signal detection
can achieve almost the same performance as in the case with
the independent and identically distributed (i.i.d.) Gaussian
measurement matrix, which can be considered as an ideal
case, by multiplying a common Hadamard matrix at IoT
nodes (transmitters) as a precoding matrix. Furthermore, we
have extended the method in [10] to the signal detection of
overloaded MU-MIMO single carrier block transmission with
cyclic prefix (SC-CP) in complex domain [11] in order to take
the dependency between the real and the imaginary parts of
the transmitted symbol into consideration by using sum of
complex sparse regularizers (SCSR) optimization [12].

In this paper, we try to further improve the signal detection
performance of SCSR approach for overloaded MU-MIMO
OFDM and SC-CP systems by using non-convex sparse reg-
ularizers using our recent algorithm in [9] since we have
considered convex sparse regularizers only in [10] and [11].
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Numerical results demonstrate that the proposed approach with
the appropriate choice of the non-convex sparse regularizer
can achieve better symbol error rate (SER) performance than
that with the convex regularizer, and also that the precoding
by Hadamard matrix or discrete Fourier transform (DFT)
matrix is significantly beneficial for the case with non-convex
sparse regularizers as well. Moreover, unlike the case with
the ideal Gaussian measurement matrix considered in [9], the
regularizer based on ℓ2/3 norm or ℓ1/2 norm can achieve better
SER performance than that with ℓ0 norm based regularizer
under the simulation condition.

In the rest of the paper, we use the following notations. R
is the set of all real numbers and C is the set of all complex
numbers. We represent the transpose by (·)T, the Hermitian
transpose by (·)H, the imaginary unit by j, the N ×N identity
matrix by IN , a vector of size N×1 whose elements are all 1
by 1N , and a vector of size N×1 whose elements are all 0 by
0N . Re{·} and Im{·} denote the real part and the imaginary
part, respectively. For u = [u1 · · ·uN ]T and some operator
f , [f(u)]n and un denote the n-th element of f(u) and u,
respectively. For a lower semicontinuous function ϕ : KN →
R ∪ {∞} (K = R or C), the proximity operator of ϕ(·) is

defined as proxϕ(u) = arg min s∈KN

{
ϕ(s) +

1

2
||s− u||22

}
.

II. SYSTEM MODEL

Here, we introduce the system model considered in this
paper. Fig. 1 shows the transmitter/receiver structure of the up-
link IoT signal collection environment, which is modelled by
the overloaded MU-MIMO with precoded OFDM signaling.
The number of IoT nodes is assumed to be N , the number
of subcarriers to be Q and sn ∈ CQ (n = 1, . . . , N) is
the transmitted signal block (OFDM symbol) in the frequency
domain from the n-th IoT node, which is transmitted after the
precoding by a matrix P ∈ CQ×Q, inverse discrete Fourier
transform (IDFT) and the addition of cyclic prefix (CP). Then,
the frequency domain received signal model of the precoded
MU-MIMO OFDM can be written asr

ofdm
1

...
rofdmM


=

Λ1,1D · · · Λ1,ND
...

...
ΛM,1D · · · ΛM,ND


DHPs1

...
DHPsN

+

 v1

...
vM

 ,

=

Λ1,1P · · · Λ1,NP
...

...
ΛM,1P · · · ΛM,NP


s1

...
sN

+

 v1

...
vM

 , (1)

where rofdmm ∈ CQ (m = 1, . . . ,M) is the frequency
domain received signal block at the m-th antenna at the base

station, and D is a Q-point Unitary DFT matrix defined as

D =
1√
Q


1 1 · · · 1

1 e−j 2π×1×1
Q · · · e−j

2π×1×(Q−1)
Q

...
...

...

1 e−j
2π×(Q−1)×1

Q · · · e−j
2π×(Q−1)×(Q−1)

Q

 .

The frequency domain diagonal channel matrix Λm,n ∈
CQ×Q between the n-th IoT node and the m-th receiving
antenna can be defined by using the channel impulse response
{h(m,n)

1 , . . . , h
(m,n)
L } with the order of L− 1 as
λ
(m,n)
1

...
λ
(m,n)
Q

 =
√

QD


h
(m,n)
1

...
h
(m,n)
L

0Q−L

 , (2)

where {λ(m,n)
1 , . . . , λ

(m,n)
Q } are diagonal elements of Λm,n.

Note that the additive noise vm ∈ CQ at the m-th receiving
antenna having mean 0Q and covariance matrix σ2

vIQ will
be added before the removal of the CP in practice, but taking
advantage of the mathematical equivalence of the noise in time
and frequency domains due to the property of Unitary matrix
D, we have employed the model shown in Fig. 1.
P is a precoding matrix required to achieve good detection

performance in the case of the convex optimization based
detection scheme in our previous work [10]，[11]，where we
have numerically confirmed that a common Hadamard matrix
or a common DFT matrix can lead to good SER performance.
In the case of non-convex optimization based approach, we
are not sure whether the precoding matrix is necessary or not,
and thus we’ll examine the detection performance for the cases
with and without the precoding in Sect. V.

If we employ the DFT matrix D for the precoding matrix
P , the signal model results in the overloaded MU-MIMO SC-
CP signaling as we have shown in [11]. Specifically, by setting
P = D in (1) and using the fact of DHD = IQ , we haver

sccp
1
...

rsccpM

 =

Λ1,1D · · · Λ1,ND
...

...
ΛM,1D · · · ΛM,ND


s1

...
sN

+

 v1

...
vM

 ,

(3)

which can be easily verified to be the received signal model
of the SC-CP signaling in the discrete frequency domain by
multiplying a unitary matrix of

D 0 · · · 0

0 D
...

...
. . . 0

0 · · · · · · D


H

∈ CQM×QM (4)

from the left of both sides. Thus, the MU-MIMO SC-CP
signaling without precoding can be regarded as a special
case of the MU-MIMO OFDM signaling with precoding.
Fig. 2 shows the transmitter/receiver structure of the uplink
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Fig. 1. Transmitter/Receiver structure of precoded OFDM
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Fig. 2. Transmitter/Receiver structure of non-precoded SC-CP

IoT signal collection environment, which is model by the
overloaded MU-MIMO with non-precoded SC-CP signaling.
If DFT matrix D is appropriate for the precoding matrix of
overloaded MU-MIMO OFDM system with the non-convex
optimization based signal detection as well, then the choice of
SC-CP signaling is highly suited for IoT environments because
it requires neither the IDFT operation nor the precoding
operation at the IoT node.

III. COMPLEX DISCRETE VALUED SIGNAL
RECONSTRUCTION VIA SCSR OPTIMIZATION WITH

NON-CONVEX SPARSE REGULARIZERS

One of features of the proposed approach in this paper is
the employment of non-convex sparse regularizers in SCSR
optimization, instead of convex sparse regularizers as in [10]
or [11]. Here, we briefly review the complex discrete-valued
vector reconstruction by SCSR optimization with non-convex
sparse regularizers [9].

We consider the reconstruction problem of a complex
discrete-valued vector x = [x1 · · ·xN ]H ∈ CN ⊂ CN from
a linear measurement given by

y = Ax+ n ∈ CM , (5)

where we assume M < N . Here, C = {c1 · · · cS} is a set of
discrete values, that each element of unknown vector x takes,
and the probability distribution of each element of x is given

by

Pr(xn = cℓ) = pℓ, (ℓ = 1, . . . , S), (6)

where
∑S

ℓ=1 pℓ = 1. A ∈ CM×N is a linear measurement
matrix and n ∈ CM is an additive noise vector with mean of
0M and covariance matrix of σ2

nIM .

The optimization problem for the complex discrete-valued
signal reconstruction with SCSR is given by

minimize
x∈CN

{
S∑

ℓ=1

qℓgℓ(x− cℓ1) + λ∥y −Ax∥22

}
, (7)

where λ ≥ 0 and
∑S

ℓ=1 qℓ = 1 (ql ≥ 0) are parameters.
The function gℓ(·) is a non-convex sparse regularizer, but we
assume that its proximity operator can be computed efficiently
in this paper. Here, it should be noted that the proximity
operator for the case of non-convex sparse regularizer is
nothing but a formal one, because the proximity operator is
defined only for convex functions. Also, please note that the
sum of sparse regularizers in (7) forms a regularizer to promote
the discreteness of each element of unknown vector x.
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If we employ a convex sparse regularizer for gℓ(·), such as

g
(1)
⋆ (u) = ∥u∥1 =

N∑
n=1

√
Re{un}2 + Im{un}2, (8)

g
(1)
⋆⋆ (u) = ∥Re{u}∥1 + ∥Im{u}∥1 (9)

=

N∑
n=1

(|Re{un}|+ |Im{un}|), (10)

where u = [u1 · · ·uN ]T ∈ CN , then the detection method by
SCSR optimization results in method proposed in [11]. The
proximity operators of γg

(1)
⋆ (·) and γg

(1)
⋆⋆ (·) (γ > 0) are

respectively given by

[prox
γg

(1)
⋆ (·)(u)]n =

{
(|un| − γ) un

|un| (|un| ≥ γ)

0 (|un| < γ),

and

[prox
γg

(1)
⋆⋆

(u)]n = sign([Re(u)]n)max(|[Re(u)]n| − γ, 0)

+ j · sign([Im(u)]n)max(|[Im(u)]n| − γ, 0).

As examples of non-convex sparse regularizers, we can
consider the regularizer based on ℓp (0 < p < 1) norm as

g
(p)
⋆ (u) =

N∑
n=1

|un|p (11)

and

g
(p)
⋆⋆ (u) =

N∑
n=1

(|Re{un}|p + |Im{un}|p), (12)

where the former g(p)⋆ (·) is based on the modulus for complex
numbers, whereas the latter g

(p)
⋆⋆ (·) treats the real part and

the imaginary part independently. The proximity operator of
γg

(p)
⋆ (·) can be obtained from the proximity operator of the

corresponding regularizer g(p)(·) in the real domain (i.e.,
g(p)(q) = ||q||pp =

∑N
n=1 |qn|p for q = [q1 · · · qN ]T ∈ RN ).

By using the relation g
(p)
⋆ (u) = g(p)(|u|), where |u| =

[|u1| · · · |uN |]T, the proximity operator of γg
(p)
⋆ (·) can be

derived from that of γg(p)(·) as

[prox
γg

(p)
⋆

(u)]n = [proxγg(p)(|u|)]n
un

|un|
(13)

with a simple manipulation. The proximity operator of γg(p)⋆⋆ (·)
also can be written with the corresponding proximity opera-
tor proxγg(p)(·). Since we have g

(p)
⋆⋆ (u) = g(p)(Re{u}) +

g(p)(Im{u}) from the definition, the proximity operator can
be written as

[prox
γg

(p)
⋆⋆

(u)]n =[proxγg(p)(Re{u})]n
+ j · [proxγg(p)(Im{u})]n (14)

by using a similar approach to [12]. The proximity operator
of the ℓp norm based regularizers in the real domain has been
discussed in [16], [17], [18]. For arbitrary p ∈ (0, 1), we can

Algorithm 1 ADMM-SNSR
Require: y ∈ CM ,A ∈ CM×N

Ensure: x ∈ CN

1: Fix ρ > 0, z0 ∈ CSN , w0 ∈ CSN

2: for k = 0 to K − 1 do
3: xk+1 = (ρSIN + λAHA)−1(ρ

∑S
ℓ=1(z

k
ℓ − wk

ℓ ) +
λAHy)

4: zk+1
ℓ = cℓ1 + prox qℓ

2ρ gℓ
(xk+1 + wk

ℓ − cℓ1) (ℓ =

1, . . . , S)
5: wk+1

ℓ = wk
ℓ + xk+1 − zk+1

ℓ (ℓ = 1, . . . , S)
6: end for
7: x = Q(xK)

numerically compute the proximity operator, while the prox-
imity operator for specific values of p such as p = 1/2, 2/3
can be written explicitly.

Another non-convex regularizer g
(0)
⋆ (·) or g

(0)
⋆⋆ (·) can be

obtained with the similar approach as g
(p)
⋆ (·) or g

(p)
⋆⋆ (·) from

the ℓ0 norm based regularizer g(0)(Re{u}) = ||Re{u}||0
in real domain. Specifically, the proximity operator of
γg(0)(·) is given by [proxγg(0)(u)]n = 0 when |un| <√
2γ, [proxγg(0)(u)]n = {0, un} when |un| =

√
2γ, and

[proxγg(0)(u)]n = un when |un| >
√
2γ (n = 1, . . . , N ),

and the proximity operator of γg
(0)
⋆ (·) and γg

(0)
⋆⋆ (·) can be

obtained by using (13) and (14), respectively.
Yet another example of non-convex regularizer will be

g
(1−2)
⋆ (·) or g

(1−2)
⋆⋆ (·), whose corresponding regularizer in

real domain is the ℓ1 − ℓ2 difference given by g(1−2)(u) =
||u||1−||u||2 originally proposed for compressed sensing [19],
[20]. The proximity operator of g(1−2)(·) can be computed
with Lemma 1 in [20] or Proposition 7.1 in [21].

The ADMM based algorithm to solve SCSR optimization
problem (7) is summarized in Algorithm1, where Q(·) denotes
the element-wise quantization operator which maps the input
to its nearest value in C. As we can see from the algorithm,
we can obtain the estimate of the unknown vector x as far as
the proximity operator of the sparse regularizer involved in the
optimization is available, however, in the case of non-convex
sparse regularizer, the estimate obtained by the ADMM based
algorithm might not be the global optimizer of (7).

IV. OVERLOADED IOT SIGNAL DETECTION VIA SNSR
OPTIMIZATION

Both received signal models of the precoded MU-MIMO
OFDM signaling (1) and the non-precoded MU-MIMO SC-
CP signaling (3) can be given by the form

r = Hs+ v, (15)

where r ∈ CQM is a received signal vector，s ∈ CQN is a
transmitted signal vector，H ∈ CQM×QN is a channel matrix，
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and v ∈ CQM is a white additive noise vector, by regarding

r =

r
ofdm
1

...
rofdmM

 , s =

s1
...

sN

 , v =

 v1

...
vM

 ,

H =

Λ1,1P · · · Λ1,NP
...

...
ΛM,1P · · · ΛM,NP

 ,

for the case with the precoded MU-MIMO OFDM signaling,
and

r =

r
sccp
1
...

rsccpM

 , s =

s1
...

sN

 , v =

 v1

...
vM

 ,

H =

Λ1,1D · · · Λ1,ND
...

...
ΛM,1D · · · ΛM,ND

 ,

for the case with the non-precoded MU-MIMO SC-CP signal-
ing.

The SCSR optimization problem for (15) is given by

minimize
x∈CN

{
S∑

ℓ=1

qℓgℓ(s− cℓ1) + λ∥r −Hs∥22

}
, (16)

where we have S = 4, (c1, c2, c3, c4) = {1 +
j,−1 + j, 1 − j,−1 − j}, if we assume QPSK modulation.
Note that, if transmit symbol does not include non-active
IoT nodes (i.e. symbol of 0), the sparse regularizers of
g
(0)
⋆ (·), g(1)⋆ (·), g(p)⋆ (·), g(1−2)

⋆ (·) will be appropriate for gℓ(·),
however, if we have some non-active nodes, the employment
of the sparse regularizers of g(0)⋆⋆ (·), g(1)⋆⋆ (·), g(p)⋆⋆ (·), g(1−2)

⋆⋆ (·)
could be beneficial because it can utilize the fact that the real
and the imaginary parts of the non-active node take the value
of 0 simultaneously.

V. NUMERICAL RESULTS

We have conducted numerical experiments via computer
simulations to evaluate the SER performance of the proposed
overloaded signal detection scheme for the MU-MIMO OFDM
signaling and the MU-MIMO SC-CP signaling in multi-path
Rayleigh fading channels. The block size of OFDM and SC-
CP transmission is set to Q = 64, and the length of the cyclic
prefix is assumed to be greater than or equal to the channel
order L − 1 = 9. In order to evaluate the performance of
different system size, we have set the number of antennas
at the base station M and the number of IoT nodes N
to be (M,N) = (4, 5) and (M,N) = (40, 50), which
correspond to the overloaded factor of 1.25 for both sizes.
In order to verify the impact of the precoding, we evaluate the
performance of the overloaded MU-MIMO OFDM signaling
with and without precoding, while we consider non-precoded
case only for the overloaded MU-MIMO SC-CP signaling
since the precoding is embedded inherently. Since we do not
consider the existence of non-active nodes in this simulation,

we evaluate the performance with the sparse regularizers of
g
(1)
⋆ (·), g

2/3)
⋆ (·), g

(1/2)
⋆ (·), g

(0)
⋆ (·), and g

(1−2)
⋆ (·), which are

denoted as ℓ1, ℓ2/3, ℓ1/2, ℓ0, and ℓ1 − ℓ2, respectively in the
following figures. Note that the employment of g

(1)
⋆ (·) (and

hence ℓ1) is equivalent to the method in [11].
Figs. 3 and 4 show the SER performance of MU-MIMO

OFDM without precoding with the system sizes of M =
4, N = 5 and M = 40, N = 50, respectively. From the
figures, we can see that small size MU-MIMO OFDM system
without precoding suffers from poor SER performance for
all sparse regularizers, while the performance is significantly
improved for the large system. It should be noted that, al-
though some non-convex sparse regularizers can outperform
the convex sparse regularizer (ℓ1) in Fig. 4, other non-convex
sparse regularizers achieve worse performance than that of
the convex sparse regularizer. Thus, appropriate choice of
non-convex sparse regularizer will be important for the non-
precoded MU-MIMO OFDM signaling with large size. It is
also interesting to see that ℓ0 regularizer, which has achieved
the best performance for the case with the ideal i.i.d. Gaussian
measurement matrix in [9], has the worst performance for
the detection of non-precoded MU-MIMO OFDM signal with
large size.

Figs. 5 and 6 show the SER performance of MU-MIMO
OFDM with precoding by Hadamard matrix with the system
sizes of M = 4, N = 5 and M = 40, N = 50,
respectively. We can see that the performance is significantly
improved compared as that in Figs. 3 and 4, which implies
that the precoding by Hadamard matrix is quite beneficial for
the proposed overloaded MU-MIMO OFDM detection with
non-convex sparse regularizers as well. Moreover, all non-
convex sparse regularizers except for ℓ1 − ℓ2 achieve better
performance than that of the convex sparse regularizer (ℓ1),
which demonstrates the validity of the proposed approach in
this paper.

Figs. 7 and 8 show the SER performance of MU-MIMO SC-
CP without precoding with the system sizes of M = 4, N = 5
and M = 40, N = 50, respectively. The performance of all
sparse regularizers in Figs. 7 and 8 is almost equivalent to that
in Figs. 5 and 6, which demonstrates the suitability of SC-CP
for IoT environment, which has claimed in our previous work
in [9], still holds for the case of the SCSR with non-convex
sparse regularizers. From all the numerical results, the non-
convex sparse regularizer of ℓ2/3 or ℓ1/2 could be the best
choice for this specific simulation setting.

VI. CONCLUSION

We have considered the overloaded signal detection prob-
lem for uplink IoT environments and have proposed SCSR
optimization approach with non-convex sparse regularizers for
the overloaded MU-MIMO OFDM and SC-CP signaling. The
validity of the proposed approach using precoded OFDM sig-
naling or non-precoded SC-CP signaling has been confirmed
via computer experiments. One of important findings in　 this
paper will be that the choice of ℓ2/3 or ℓ1/2 could be better
than ℓ0 in the signal detection problem, while ℓ0 has achieved
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Fig. 3. SER performance (OFDM without precoding, M = 4, N = 5)

Fig. 4. SER performance (OFDM without precoding, M = 40, N = 50)

better performance than ℓ2/3 and ℓ1/2 for the case of very
large i.i.d. Gaussian linear measurement matrix in [9].

Future work includes the investigations of the performance
for the case with non-active IoT nodes and also taking ad-
vantage of group sparsity in the block transmission schemes.
Furthermore, the impact of channel coding should be evaluated
because it may have some impact on the error floor observed
in the simulations of OFDM without precoding.
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