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Abstract—This paper deals with an indoor positioning via
deep learning techniques based on the received signal strength
indication (RSSI) of Bluetooth low energy (BLE) beacon signals.
In fingerprint positioning, a site-survey is conducted in advance
to build the radio map, which can be used to match radio sig-
natures with specific locations. It takes into account the complex
effects of real-environments and enables highly accurate indoor
positioning. However, even in static indoor environments, the
observed RSSI values are statistically fluctuated due to random
wireless channels, leading to severe performance degradation of
the fingerprint estimation. To address this issue, we introduce
the three-dimensional convolutional neural network (3D-CNN)
to fingerprint positioning with the RSSI data set (available as
big data). The 3D-CNN can handle 3D spatiotemporal structures
of RSSI data set and utilize the temporal fluctuations that finger-
print cannot capture to enhance the positioning accuracy. The
experimental results show the validity of our proposed scheme
using the 3D-CNN-based fingerprint positioning, as compared to
the typical positioning schemes on the basis of the feed-forward
NN (FNN) and two-dimensional CNN (2D-CNN).

I. INTRODUCTION

Positioning systems are widely used for geolocation infor-

mation services via multi-functional terminals, such as smart-

phones and tablets. Demands for positioning is ever rapidly

growing with the arrival of the internet of things (IoT)-based

information society. The global navigation satellite system

(GNSS) using artificial satellites plays a vital role in providing

geolocation information to outdoor terminals in line-of-sight

(LOS) environments. However, the estimation accuracy is

severely degraded when terminals (detectors) are located in

non-line-of-sight (NLOS) experienced in indoor environments

[1]. In addition to the typical geolocation services on outdoor

like map applications, in recent years, there is also demand

for indoor use, e.g., navigation inside a building, customer-

behavior analysis, and presence confirmation in office, as well

as medical and healthcare. Therefore, developments of indoor

positioning systems have become a major issue, and a variety

of positioning methods have been investigated [2], [3], [4].

One of the most popular approaches is indoor positioning

based on the received signal strength indicator (RSSI) of Wi-

Fi beacon signals [5], [6]. Wi-Fi is a wireless communication

standard in a 2.4 GHz industry science medical (ISM) band,

and it has been installed as standard equipment in modern

multi-functional terminals. This high penetration rate has a

significant advantage in the cost of developing and deploying

the positioning system.

On the other hand, Bluetooth low energy (BLE)-based

positioning approach is also under consideration [7], [8]. BLE

is a widespread wireless communication standard used for

low-speed short-distance communications of several Mbps,

such as small-capacity sensing data and short text data [9].

The most attractive feature is very low power consumption,

and it is expected to play crucial roles in constructing the

wireless communication infrastructure of IoT technology. To

avoid mutual interference in the 2.4 GHz ISM band, BLE

employs a frequency hopping strategy. However, it is difficult

to measure the RSSI with high accuracy due to its low

transmission power. Therefore, in recent studies of indoor

positioning, fingerprint estimation that realizes highly accurate

positioning using unreliable RSSI values observed by multiple

points has become mainstream [10], [11].

The fingerprint approach has two phases: the training phase

(offline) and the testing phase (online). In the training phase,

RSSI vectors are captured as training data before the test-

ing phase. In the typical testing phase, maximum likelihood

estimation (MLE) is performed by comparing an observed

RSSI vector and the fingerprint training data. Unlike triangular

positioning on the basis of an optimistic propagation model,

the fingerprint positioning can take into account empirical

indoor environments [12]. This method is designed based

on the assumption that the propagation structure between

the receiver and the beacon transmitter is static under LOS

conditions. However, even if the location relationship is static,

the measured RSSI fluctuates stochastically in indoor wireless

channels. Under such circumstances, the testing data differs

slightly from training data, resulting in performance degrada-

tion of positioning accuracy. Although fingerprint is effective

for indoor environment estimation, there are still problems.

To address this issue, machine learning techniques have

been applied to the fingerprint positioning [12], [13], [14],

[15]. The estimator can be constructed by selecting an appro-

priate learning model in consideration of RSSI incompleteness,

stochastic fluctuation, and noise. The fingerprint positioning

is conducted based on the radio map, i.e., multi-dimensional

information about the radio structure, and therefore a con-

volutional neural network (CNN) is often utilized [15], [16],

[17]. CNN is able to handle the correlation of data in the

learning process and is widely used for learning models
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Fig. 1: A structure of the indoor positioning system.

in fields of image recognition and voice analysis. In [15],

two-dimensional CNN (2D-CNN) was applied to fingerprint

positioning. The performance improvements were shown by

considering a temporal structure of data in observed multi-

dimensional RSSI values, in the experimental results.

Inspired by these results, in this paper, we consider a novel

three-dimensional CNN (3D-CNN)-based fingerprint position-

ing. The RSSI values are obtained at multiple points, which

are spatially sampled based on the physical arrangement of

receivers. Therefore, the obtained RSSI values should have

a spatial correlation. We aim to improve the fingerprint esti-

mation accuracy by considering the spatiotemporal structure

of RSSI data set. The main contribution of this paper is

to demonstrate the validity of the 3D-CNN-based fingerprint

positioning by substantiative experiments with the aid of

commercially available BLE dongles.

The remainder of this paper is organized as follows. Sect. II

presents an indoor positioning system using RSSI. The typical

methods utilizing a machine learning approach are explained

in Sect. III. Sect. IV then presents the proposed method of

fingerprint estimation with 3D-CNN. Sect. V states the validity

of the proposed method on the basis of experimental results.

Finally, Sect. VI concludes the paper with a brief summary.

II. INDOOR POSITIONING USING RSSI

A. Indoor positioning system

Fig. 1 shows a structure of the indoor wireless environments.

A transmitter (TX), whose location is the target for estimation,

runs straight in any direction within the estimated area defined

on Cartesian coordinates. When the TX runs straight and

reaches the outer edge of the area, the color sensor mounted

on the TX detects the line set as the outer edge, and then TX

stops. After turning back by rotating in any direction, TX runs

straight again within the area to the outer edge. In this paper,

these operations of this TX will be referred to as “Random

straight running within the estimated area” hereinafter. The

TX within the area sends BLE beacon signals every second to

the receiver (RX n ∈ {1, ..., N}) mounted under the ceiling

board, where N represents the number of RX. BLE assigns

37 ch, 38 ch, and 39 ch for advertising events to send beacon
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Fig. 2: A schematic of Neural Network.

signals. This paper utilizes only 37 ch to send beacon signals

for stabilizing statistical fluctuation due to frequency selective

fading.

B. Fingerprint positioning

In the training phase, the fusion center constructs a

database consisting of TX coordinate points and the cor-

responding RSSI values observed at each RX. Let tl =
[tl,1, ..., tl,n, ..., tl,N ]T denote the observed RSSI vector, and

the corresponding correct TX coordinate point pl = [xl, yl]
T

is labeled for tl, where l (= 1, . . . L) is a training data index.

These labeled vectors are stored in the database. In the testing

phase, TX transmits a beacon on any coordinate point in the

area, and each RX observes RSSI values to create the vector

y = [y1, ..., yn, ..., yN ]T. In the testing phase, as a typical

approach, MLE finds the most likely TX position on the basis

of Euclidean distance, which is given by

p̂l = argmin
pl

(y − tl)
2 (1)

In the typical fingerprint positioning described above, the

accuracy can be higher than triangular positioning because it

is experimentally measuring RSSI. This method assumes that

RSSI is uniquely determined by the distance between arbitrary

TX and RX. However, the actual RSSI stochastically fluctuates

even if TX does not move. Under such circumstances, the

testing data slightly differs from training data even though the

positions of TX and RX are the same, resulting in performance

degradation. To deal with this problem, neural network (NN)-

aided positioning is applied in the following section.

III. MACHINE LEARNING-AIDED POSITIONING

A. Feed-Forward Neural Network (FFNN)

The typical feed-forward NN (FFNN) is composed of a

layer structure having an input layer, a hidden layer, and

an output layer. Fig. 2 shows a schematic diagram of fully-

connected FFNN for regression positioning used in this study.

We define an M ×N weight matrix W (1), where the (n,m)

element, w
(1)
mn, is the edge-weight between the m-th node

of the hidden layer and the n-th node of the input layer.
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Fig. 3: A schematic diagram of 2D-CNN.

b(1) =
[

b
(1)
1 , . . . , b

(1)
m , . . . , b

(1)
M

]T

is an M × 1 bias vector.

Inputting the RSSI value yn to the input layer, the hidden

layer input z
(1)
m is expressed as

z(1)m =

N
∑

i=1

w
(1)
miyi + b(1)m . (2)

All these inputs of the hidden layer can be expressed as

z(1) = W (1)y + b(1). (3)

Then, z(1) is input to the activation function as

q(1) = f(z(1)) = max
(

0, z(1)
)

, (4)

where we choose the rectified linear unit (ReLU) function as

f(·).
In the FFNN, the above linear filtering and nonlinear

projection processes are sequentially conducted. The input of

output layer is obtained by z(2) = W (2)q(1) + b(2), where

W (2) and b(2) are the weight matrix and bias vector for the

hidden layer, respectively. In regression positioning, the output

layer directly estimates the Cartesian coordinates of the target

position through the ReLU function, and the squared error

function is often utilized as the error function. The learning-

based estimation method using FFNN is robust against the

stochastic fluctuations of input data compared to the analytical

method in (1), resulting in higher estimation accuracy. The

following 2D-CNN is a learning model that considers the

time-series correlation of RSSI values. Thus it is expected to

perform even higher estimation accuracy.

B. 2D Convolutional Neural Network (2D-CNN)

Fig. 3 shows a schematic of 2D-CNN, which is composed

of three layers, a convolutional layer for feature extraction,

a pooling layer for feature enhancement and compression of

data, and a fully-connected layer for data combining and

estimation. Unlike the typical FFNN, input data on 2D-

CNN is represented by a matrix rather than a vector. In the

convolutional layer, a feature map representing the spatial

structure of input data is created by applying convolution filters

to the elements of input data and the surrounding elements

together. Then, in pooling layer, the extracted features are

Continuity

Convolutional layer

Input

Pooling layer

Output

Fully connected layer

Fig. 4: A schematic diagram of 3D-CNN.

compressed and emphasized by applying pooling filters to the

feature map created in a convolutional layer. This operation

also results in downsizing of data, leading to computational

reduction in the learning process. The output feature vectors

contain information about the correlation between each value

of input data and its surrounding values. The sensitivity to

the correlation deeply depends on the pre-formation of input

data and each filter size. Finally, the resultant vectors are input

to the fully-connected layer and then output layer, as in the

FFNN described in III-A.

Denoting the RSSI vector observed at the n-th RX within T
seconds by [R1,n, R2,n, ..., RT,n]

T, the stacked RSSI matrix

can be expressed as










R1,1 R1,2 . . . R1,N

R2,1 R2,2 . . . R2,N

...
...

. . .
...

RT,1 RT,2 . . . RT,N











The 2D-CNN is applied to the time-series RSSI data, which

enables to estimate considering the temporal and stochastic

RSSI fluctuations [15]. However, it is not able to consider the

spatial structure based on the physical arrangement of RXs.

To resolve the impairments, in the next section, we propose

the 3D-CNN-based fingerprint positioning that captures the

spatiotemporal structure of RSSI data with the aid of an

experiment environment-aware data formation method.

IV. PROPOSED DATA FORMATION METHOD FOR 3D-CNN

A. 3D Convolutional Neural Network (3D-CNN)

In recent years, 3D-CNN has been widely used in fields

of analysis of action recognition of moving images, where

the data addressed generally has spatial (planar) and time-

series correlation. Fig. 4 shows a schematic of 3D-CNN,

where the structure is basically the same as that of 2D-

CNN. However, unlike 2D-CNN, the input data is formed as

matrices, and the filters used for the convolution and pooling

process are 3D arrays. Consequently, we can consider two

different correlations among data. After the feature values are

extracted via the 3D convolution and pooling process, feature

vectors are input to the subsequent fully-connected layer and

the output layer. To efficiently extract the feature values of
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data, it is essential to form an appropriate input data based on

its statistics and the experiment environments.

B. Data formation based on spatiotemporal structure

Before the explanation of input data formation for 3D-CNN-

based fingerprint positioning, we should consider how to create

input data in the 2D-CNN case as the start point. In [15], an

indoor positioning using time-series data in the UJIIndoorLoc

dataset was investigated. The dataset is a multi-building multi-

floor indoor database to construct and evaluate indoor fin-

gerprint positioning systems with Wi-Fi RSSI. However, this

dataset does not have enough number of multiple RSSI values

for each location and the authors in [15] artificially increases

the amount of data per each coordinate by expanding the area

that can be regarded as the same point. The above method

is effective but compromises the position coordinates as the

correct label, causing degradation of the estimation accuracy.

Additionally, the insufficient time-series data is difficult to

capture the correlation. On the other hand, in this paper we

obtain enough time-series data by actual measurements, and

this makes it possible to consider a novel data formation

technique.

First, the RSSI vectors simultaneously observed by N
RXs are sorted in chronological order according to UNIX

timestamp. According to actual measurements, the maximum

RSSI value is about -30 dBm, and the minimum is about -

100 dBm. During observations, if some of RXs cannot receive

any RSSI value, -110 dBm is inserted, which indicates a very

weak signal. If all RXs cannot observe simultaneously, we

do not use the corresponding data vector of that time. Then,

we create an RSSI vector for each RX by stacking T RSSI

values whose time difference between the oldest and latest

observation is less than or equal to S seconds. Note that

S is the maximum window-size allowed as time-series data

when creating the RSSI vectors. The input matrix is created

by concatenating all these N vectors, as shown in III-B. Next,

we normalized the RSSI values in the matrix using Z-score

to enhance the robustness against observation outliers [14].

Finally, we assign position vectors as the correct answer labels

to the resultant training data. The position vector assigned

to the data is corresponding to the coordinate point where

TX exists when the latest RSSI was observed. However, in

this paper, TX is assumed to be operated on random straight

running inside the estimated area, so it does not mean that

TX is continuously on one coordinate point for T seconds.

This time width T is a crucial variable for determining the

detection capability of the trained estimator, because setting

too small value to T reduces the amount of information in the

data and setting too large value to T results in loss of data

features.

Let shift our focus on the data formation applicable to 3D-

CNN, and the process is described in Fig. 5. First, we reshape

the N × 1 RSSI vector simultaneously observed with N RXs

to the U × V matrix according to the physical arrangement

of the RXs in the actual experimental environment, where

N

� � � � �
T

U

V

U

V

1

1 � � Vector � � � Matrix � � � � � 3D-array

Fig. 5: The diagram of proposed data arrangement method.

#1

Receiver (RX)

#7 #5

#3#2 #4

#6 #8

Transmitter (TX)

x

y

Fig. 6: Experiment environment.

U × V = N 1. Next, we create the U × V × T 3D-array

by stacking T RSSI matrix whose time difference between

the oldest and latest observation is less than or equal to S
seconds. The resulting input data has the spatial structure in

the two-dimensional plane and the temporal structure.

V. EXPERIMENTAL RESULT

A. Parameter tuning by cross validation

To confirm the validity of the proposed 3D-CNN-based

fingerprint positioning, we have conducted experiments in

the actual indoor environment. The environment in the room

is depicted in Fig. 6, and the experimental specifications

are summarized in Tab.I. BLE beacon transmitter (Buffalo

BLE adapter: BSBT4D09BK) and color sensor are mounted

on LEGO Mindstorms EV3. EV3 as the estimated target is

operated on random straight running within the estimated area

at a speed of 5 [cm/sec], where the beacon interval is 0.1

[sec]. On the other hand, there are N = 8 receivers under

the ceiling board. BLE beacon receiver (Buffalo BLE adapter:

BSBT4D09BK) is mounted on Raspberry Pi 3, where the sam-

pling interval is 1 [sec]. All receivers are time synchronized

by the NTP daemon. The correct position vectors are obtained

by using multiple on-board cameras in the Raspberry Pi 3 and

are assigned to the training data as the correct answer label.

In the training phase, EV3 runs in 12 [hour] for the training

1In our environment, the RXs are arranged regularly in the rectangle area,
and therefore the data is reshaped to the matrix.
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TABLE I: Experimental specifications.

Number of receivers N = 8

BLE Beacon interval 100 [ms]

Estimated area
Rectangle area in the center of the room

Size: 3 [m]× 6 [m]

Observation time
12 [hour] (Training phase)
60 [min] (Testing phase)
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Fig. 7: The percentage that the positioning error is less than 1.0

[m] at a linear distance when T and Number of convolution

filters are changed in the 3D-CNN-based fingerprint position-

ing.

data. Similarly, in the testing phase, EV3 runs in 80 [min] for

the testing data.

Since the estimation accuracy of machine learning-based

positioning depends on the input data formation and the hyper-

parameters for the learning process, we need to adjust these

parameters appropriately beforehand. In this paper, the cross-

validation method is conducted with the training data, where

the parameter tuning is performed by changing only one hyper-

parameter while fixing the other values, and comparing the

accuracy. Fig. 7 shows the transition of the percentage that

the positioning error is less than 1.0 [m] at a linear distance

with a different T . The optimum value of T mainly depends

on the speed of the transmitter. When the value of T is too

small, CNN cannot sufficiently capture the temporal structure

of observed RSSI data, and it becomes difficult to estimate

robustly against stochastic fluctuations. On the other hand,

when the value of T is too large, the estimation accuracy tends

to be degraded because the running distance of TX is too large,

and the outdated information that does not contribute to the

estimation is captured. From Fig. 7, T = 30 setting maximizes

the estimation accuracy, and use this value hereafter. Similarly,

we adjusted hyper-parameters in different learning models.

The tuned values of hyper-parameters are summarized in

Tab.II. In the FFNN-based positioning, the RSSI values are

averaged over the past T ′ = 30 [sec] from the current observa-

tion to mitigate the negative impacts of the RSSI fluctuation. In

the convolutional layer, we introduce zero-padding operation,

which not only increases the number of parameter updates

but also plays a vital role in adjusting the output data size

for the subsequent processing. We also utilized max pooling

TABLE II: Experimental parameters.

FFNN 2D-CNN 3D-CNN

Input data
8× 1 vector 28× 8 matrix 2× 4× 30 3D-array
(T ′ = 30) (T = 28) (U, V, T = 2, 4, 31)

Convolutional layer

16 filters 24 filters
- size: 5×4 size: 2×2×6

strides: 1×1 strides: 1×1×1
Zero-padding Zero-padding

Pooling layer
size: 2×2 size: 2×2×3

- strides: 2×2 strides: 1×1×3
Max-pooling Max-pooling

Num. of nodes
400 448 992

(layer 1)

Num. of nodes
- - 496

(layer 2)

Output data 2× 1 position vector for representing coordinate point

epoch 1500 1500 1500

S - T × 1.5

TABLE III: Evaluation Results on testing data.

Mean Error Percentage of distance error less than x [m]
[m] x = 1.0 x = 1.2 x = 1.5 x = 1.7

NN 1.05 56.08 68.59 83.53 88.53

2D-CNN 0.83 72.44 83.12 91.48 94.53

3D-CNN 0.72 80.93 88.89 94.74 96.41

in the pooling layer, which can enhance robustness against

a negligible fluctuation in data by compressing the size of

data, leading to efficient suppression of over-learning and

significant reduction of computational cost. The number of

fully-connected layers and the number of nodes in each layer

also affect the accuracy of machine learning. These values are

experimentally tuned as well as the other parameters.

B. Evaluation using testing data

Let us compare the estimation accuracy of machine

learning-based positioning methods using the FFNN, 2D-

CNN, and 3D-CNN in terms of the following two viewpoints:

• Mean positioning error at linear distance.

• Percentage that the positioning error is less than x [m].

The results are summarized in Tab. III.

First, we focus on the mean positioning error at linear dis-

tance. The mean positioning error of “2D-CNN” is 0.83 [m],

which is 0.22 [m] smaller than that of “FFNN”. Furthermore,

the mean positioning error of “3D-CNN” is 0.72 [m], which is

improved by 0.11 [m] compared to “2D-CNN”. These results

imply that it is vital to utilize the correlation structure of data

for achieving high-accuracy positioning based on multi-point

observations. Let shift our focus to the percentage of distance

error less than x (x = 1.0, 1.2, 1.5, 1.7) [m]. Obviously, the

proposed “3D-CNN” is superior to the other methods at any

value of x. The accuracy difference increases as the value of x
decreases, and the estimation accuracy improves by about 24%
and 8% at x = 1.0 as compared to “FFNN” and “2D-CNN”,

respectively. This means the fact that the proposed “3D-CNN”

becomes more effective as the required estimation accuracy is

more severe.

Fig. 8 shows the histograms of mean positioning errors

for three positioning methods, respectively. The shapes of
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Fig. 8: The histograms of mean positioning errors for finger-

print estimations based on FFNN, 2D-CNN, and 3D-CNN.

histograms are similar to each other, thus the error tendency

is not so different among methods. Considering the data

correlation appropriately, the histogram gradually moves to

the left, and it can be seen that “3D-CNN” is able to improve

the estimation error as a whole, regardless of the TX position.

However, there still remains large estimation errors, outliers

more than 3 [m], in any method. As a future work, we need

to identify the cause of such errors and suppress the occurrence

of outliers.

Since the estimated target is operated on random straight

running with the speed of 5 [cm/sec], and T = 31 is equivalent

to a movement of about 1.5 [m]. Even if the RXs stochastically

fails to receive signals, a sufficient number of samples required

for extracting the feature of data can be obtained. As a future

work, we have to verify the proposed method when the speed

of the transmitter is increased or when the speed is freely

changed. Additionally, since the fingerprint estimation largely

relies on the number of receivers, we also need to investigate

the estimation property by changing the number of them.

Fig. 9 shows the percentage of achieving an estimation error

of less than 1.0 [m] for each cell, where the estimated area is

divided into 18 cells of size 1.0 [m] x 1.0 [m]. We can find

that there is a large difference in the estimation results for

cells in any method. Basically, the estimation accuracy near

the center of the estimated area is better than that at the edge

cells of the areas. One of reasons for this phenomenon can

be speculated to be the incoinces between training and testing

data due to larger RSSI fluctuations at the edge cells located

near furniture and walls. However, we have not sufficiently

clarified the cause yet, so further studies are necessary.

VI. CONCLUSIONS

This paper proposes an indoor fingerprint positioning based

on the 3D-CNN that can consider the spatiotemporal structure

of RSSI data observed by multi-point BLE receivers. Since

the analytical fingerprint estimation is not able to consider

x

y

30 [%] 100 [%]

(a) FFNN-based fingerprint positioning

30 [%] 100 [%]

x

y

(b) 2D-CNN-based fingerprint positioning

30 [%] 100 [%]

x

y

(c) 3D-CNN-based fingerprint positioning

Fig. 9: The percentage of achieving an estimation error of less

than 1.0 [m] in all estimations of each cell.

stochastic fluctuation of the observed RSSI, we focus on the

trial machine learning-based method. To leverage the temporal

continuity of the observed RSSI and the spatial structure

of receivers in the actual environment, the 3D-CNN-based

fingerprint positioning is investigated. Through the experiment,

we confirmed that the proposed method is more effective com-

pared to the typical FFNN and 2D-CNN-based positioning.
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