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Abstract—In recent years, with the development of Internet-
of-things (IoT) and machine-to-machine (M2M) communication,
low power wide area (LPWA) networks have attracted attention.
LPWA generally adopts a pure ALOHA protocol as the MAC
layer access protocol to reduce the wireless device cost. If
multiple wireless devices simultaneously transmit packets, a
packet collision happens at a fusion center (FC) that collects
wireless devices’ information. To avoid such collision, the FC may
control the wireless devices’ transmission timings in a centralized
manner. However, this requires control signal exchanges, resulting
in increased communication overhead and increased battery
consumption. In this paper, we propose a method to avoid packet
collisions. The proposed method consists of two steps. Firstly,
the transmission start timing of each device is autonomously set
by reinforcement learning. Then, the transmission probability
is determined based on the transmission start delay time. The
computer simulation results show that the proposed method can
improve the average packet delivery rate (PDR) by 42% compared
to the conventional ALOHA protocol.

I. Introduction
With the advancement of the Internet-of-things (IoT) and

machine to machine (M2M) communications [1], low power
wide area network (LPWAN) such as long range wide area
network (LoRaWAN) is attracting attention [2]. LoRaWAN
adopts the chirp spread spectrum (CSS) as a physical layer
modulation scheme [3].

At the medium access control (MAC) layer, LoRaWAN gen-
erally adopts asynchronous random access protocols such as
pure ALOHA protocol while considering duty-cycle (DC) [4].
This simple access protocol may degrade the communication
quality due to packet collision when a large number of wireless
devices share the wireless resources. One of the causes of
packet collision has been burst traffic, in which a large number
of wireless devices send the event packets at the same time
due to event observation [5]. The application of carrier sense
multiple access/collision avoidance (CSMA/CA) and the ap-
propriate spreading factor assignment have been investigated to
avoid simulatnaous packet transmission [6][7]. However, these
methods had problems such as battery consumption due to car-
rier sense (CS), hidden device problems, and overhead caused
by control signals. Most of the existing works on wireless
resource allocation assumed a static environment and relied on
a formulated mathematical model [8]. Recent work on wireless
resource allocation adopts model-independent reinforcement
learning of a system environment [9] [10].

This paper proposes an autonomous decentralized trans-
mission timing control for wireless devices using Q-learning
to avoid packet collision in burst traffic environments. The
proposed method consists of two steps. Firstly, each wireless
device autonomously sets transmission start delay time by rein-
forcement learning. The different transmission timings of event
packets can effectively reduce the packet collision probability.
Secondly, each wireless device determines a transmission
probability based on the transmission start delay time. When
the same event is detected, each wireless device transmits
highly correlated data, so there is little need for all the wireless
devices to transmit packets to a fusion center (FC). Controlling
the transmission probability of wireless devices can reduce the
packet collision probability. The computer simulation results
show that the proposed method can improve the average packet
delivery rate (PDR) by 42% compared to the conventional
ALOHA protocol.

The rest of this paper is organized as follows. In Sect. II,
the LoRaWAN system model considered in this paper is intro-
duced. In Sect. III, the autonomous decentralized transmission
timing control is proposed. In Sect. IV, computer simulation
results are provided to show the effectiveness of the proposed
method. Sect. VI concludes the paper.

II. System Model
We consider the LoRaWAN based system in this paper. 𝑁

LoRaWAN devices are randomly and uniformly distributed
within a communication area of 𝐷 × 𝐷 [km2]. Let us denote
the set of LoRaWAN devices as N = {𝑛0, 𝑛1, · · · , 𝑛𝑁−1}. All
LoRaWAN devices are assumed to use the same spreading
factors (SF). One FC that receives data from LoRaWAN
devices is located at the center of the communication area.

A. Channel Model
In this paper, pathloss and shadowing loss are considered

for a channel model. The received signal power of LoRaWAN
device 𝑛 at FC is given as

𝑃r,𝑛 = 𝑃t − 𝑃pl (𝑑𝑛) − 𝜓, (1)

where 𝑃t [dB] is common transmit power for all LoRaWAN
device, 𝜓 [dB] is a shadowing component following a log-
normal distribution. From [11], pathloss is given as

𝑃pl (𝑑𝑛) = 10𝑎 log10 𝑑𝑛 + 𝑏 + 10𝑐 log10 𝑓c, (2)
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where 𝑑𝑛 [km] is the distance between LoRaWAN device
𝑛 and FC, propagation parameters 𝑎, 𝑏, 𝑐 are the pathloss
coefficient, offset, and frequency loss component, respectively,
𝑓c [MHz] is the carrier frequency.

The signal-to-noise power ratio (SNR) and the signal-to-
interference power ratio (SIR) for LoRaWAN device 𝑛 are
calculated as{

𝛾SNR,𝑛 = 𝑃r,𝑛 −
(
𝑁0 + 10 log10 𝑊b

)
𝛾SIR,𝑛 = 𝑃r,𝑛 −

∑
𝑖∈I 𝑃r,𝑖 ,

(3)

where 𝑁0 [dBm/Hz] is noise power spectrum density,
𝑊b [Hz] is the frequency bandwith, I is the set of interfering
LoRaWAN devices. When received signal satisfies both SNR
thresholds ΓSNR and SIR thresholds ΓSIR at FC, the packet is
considered to be successfully received [9] [12].

B. Event Generation and Detection

The event’s location is randomly determined when it first
occurs. Subsequently, the event occurs at the same position
at a random time. The event propagates with speed 𝑉 [m/s]
outwards in a circle. LoRaWAN device 𝑛 detects the event
with the probability of 𝛿𝑛, which is given by [5]

𝛿𝑛 = 𝑒−𝛼𝑑e,𝑛 , (4)

where 𝛼 is the event propagation coefficient, 𝑑e,𝑛 [m] is a
distance between LoRaWAN device 𝑛 and the event epicenter.
The event generates event true data 𝑥 ∈ [𝑥min, 𝑥max], where
𝑥min and 𝑥max are the minimum and the maximum event true
data, respectively. LoRaWAN device 𝑛 observes sensing data
𝑥sens
𝑛 , which is the event true data collapsed by the error. The

sensing data, 𝑥sens
𝑛 , is given by

𝑥sens
𝑛 = 𝑥 + 𝑒𝑛, (5)

where 𝑒𝑛 ∼ N(0, 1).

C. Packet

This paper assumes that a packet consists of sensing data
and basic data. Basic data includes LoRaWAN device identifi-
cation information. The sensing data, 𝑥sens

𝑛 , is quantized before
transmission. Each LoRaWAN device generates two types of
packets: a regular packet and an event packet. The regular
packet is generated following a predetermined packet gener-
ation interval 𝐺p [sec] and an event packet. The generation
time of the regular packet at LoRaWAN device 𝑛, 𝑇offset,𝑛
is determined from the random number generated according
to U(0, 𝐺p). Second, the event packet is generated by event
detection. Both packets have the equal packet length. The
sensing data, 𝑥sens

𝑛 , is linearly quantized with a predetermined
number of quantization bit size 𝑍 and is converted into event
transmission data 𝑥𝑛 before transmission. The number of
quantization levels, 𝐼, is 𝐼 = 2𝑍 , which yields a quantized step
size Δ𝑥𝑍 . The quantized representative value set is represented

as Z =
{
𝑥𝑍,0, 𝑥𝑍,1, 𝑥𝑍,2, · · · , 𝑥𝑍,𝐼−1

}
. The elements of set Z

are given as

𝑥𝑍,𝑖 =

{
𝑥min + Δ𝑥𝑍 (𝑖 = 0)
𝑥𝑍,𝑖−1 + Δ𝑥𝑍 (otherwise)

, (6)

Event transmission data 𝑥𝑛 is given as

𝑥𝑛 = 𝑥𝑍,𝑖★ , (7)

where
𝑖★ = arg min

0≤𝑖<𝐼

��𝑥sens
𝑛 − 𝑥𝑍,𝑖

�� . (8)

D. Packet Transmission
Packet size 𝑃L [bit] is given as

𝑃L = 𝐵L + 𝑍, (9)

where 𝐵L [bit] is basic data size. Let us denote the SF of
LoRaWAN devices by 𝑆. One CSS symbol can transmit 𝑆 bit.
Therefore, number of CSS symbols 𝑁S required per packet is
given as

𝑁S = ⌈𝑃L/𝑆⌉, (10)

where ⌈𝑥⌉ returns the smallest integer larger than or equal to
𝑥. Symbol length 𝑇S [sec] is given as

𝑇S =
𝑊b

2𝑆
. (11)

The period from the start of the packet transmission to its
completion is defined as a transmission phase. If a new packet
is generated during the transmission phase, the LoRaWAN
device stores the packet in its buffer. After the end of the
transmission phase, each LoRaWAN device should wait for at
least 𝑇DC [sec] before starting new packet transmission. 𝑇DC
given as

𝑇DC =

(
1 − 𝐷c

𝐷c

)
𝑁S𝑇S (12)

where 𝐷c ∈ (0, 1] is the DC.
A regular packet is transmitted as an unconfirmed message

that does not require an acknowledgment (ACK) signal from
FC. By contrast, an event packet is sent as a confirmed message
that requires an ACK signal from FC. If an event packet is
successfully received by FC, the ACK signal is assumed to be
ideally received by its sender LoRaWAN device.

III. Proposed Scheme
This section describes the adaptive allocation of transmis-

sion delay time using reinforcement learning and the reduction
of the number of transmission devices by the event packet
transmission probability.

A. Adaptive Allocation by Q-learning
1) Transmission Delay Time: In the proposed approach,

each LoRaWAN device waits for a transmission delay time
before it starts event packet transmission. This can reduce the
packet collision probability. The transmission delay time for
LoRaWAN device 𝑛 is denoted by 𝑡back

𝑛 ∼ U(0,𝑊) with 𝑊
being the DW size.
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2) Learning Model: Q-learning is adopted to autonomously
set the adaptive allocation of DW size. Q-learning is a model-
free reinforcement learning algorithm. All LoRaWAN device
install an agent of Q-learning. An agent observes its state such
as current DW size and acts to maintain or change the DW size
based on its observed information. In this paper, one epoch is
defined as

(i) Each LoRaWAN device determines its own DW size.
(ii) The event occurs and the device detects it.
(iii) After waiting for 𝑡back, the event packet is transmitted.
(iv) Determination of successful reception of event packets

at FC.
(v) Reward calculation and Q-value update at each Lo-

RaWAN device.
Let us define set of stateW and set of action A in Q-learning
as follows.
• Set of state W: The set of available DW sizes of

LoRaWAN device 𝑛. The elements are denoted by W =
{𝑊0,𝑊1, . . . ,𝑊𝐽−1}, where 𝐽 is the number of available
DW sizes.

• Set of action A: The set of changes of DW size. The
elements are denoted by A = {1, 0,−1}, where 1, 0,−1
means larger, keep and smaller the DW size, respectively.

The agent of LoRaWAN device 𝑛 is defined as
• State 𝑠𝑛,𝑡 ∈ W: DW size of device 𝑛 observed by the

agent in epoch 𝑡
• Action 𝑎𝑛,𝑡 ∈ A: DW size change in epoch 𝑡 made by

the agent.
• Reward 𝑟𝑛,𝑡 : Reward value for action 𝑎𝑛,𝑡 in epoch 𝑡.
• Q value 𝑄

(
𝑠𝑛,𝑡 , 𝑎𝑛,𝑡

)
: Value of action 𝑎𝑛,𝑡 at state 𝑠𝑛,𝑡 .

Then, the Q-value is updated as

𝐸TD
𝑛,𝑡 = 𝑟𝑛,𝑡+1 + 𝛽

(
max

𝑎′∈A(𝑠𝑡+1)
𝑄(𝑠𝑛,𝑡+1, 𝑎′) −𝑄

(
𝑠𝑛,𝑡 , 𝑎𝑛,𝑡

) )
,

(13)
𝑄

(
𝑠𝑛,𝑡 , 𝑎𝑛,𝑡

)
← 𝑄

(
𝑠𝑛,𝑡 , 𝑎𝑛,𝑡

)
+ 𝜂𝐸TD

𝑛,𝑡 , (14)

where 𝐸TD
𝑛,𝑡 is a temporal difference error, 𝛽 is a discount rate,

and 𝜂 is a Q-learning rate. Since we adopt 𝜖-greedy algorithm,
𝜖 (𝑡) is given as

𝜖 (𝑡) = 1 − 𝑡

𝑇
, (15)

where 𝑇 is the number of epochs.
3) Designing Reward values: Since Q-learning maximizes

the sum of rewards, learning results depend on the reward
design. There are three possible metrics for a reward function.
The first metric is the reception of the ACK signal. The
ACK reception indicates whether the FC successfully received
the event packet. The second metric is transmission delay
time 𝑡back,𝑛, which represents the delay between an event’s
occurrence and its detection at the FC. The last metric is the
number of transmission failures representing the failure rate
at a specific DW size. For event detection, the event packet
delivery rate should be high. In addition, the delay should
be short. Accordingly, this paper proposes reward functions

considering the ACK reception, transmission delay time, and
the number of transmission failures.

The first reward considering the reception of the ACK signal
only is given as

𝑟ack
𝑛,𝑡 =

{
1 if ACK is received
−1 otherwise

. (16)

The use of 𝑟ack
𝑛,𝑡 may increase the probability of large

detection delay at the FC because devices preferably select
larger DW size to reduce packet collision. The second reward
aiming at shorting the event detection delay is given by

𝑟
delay
𝑛,𝑡 =

{
1 − 𝑡back

𝑛

max𝑊 ∈W𝑊 if ACK is received
−1 otherwise

, (17)

𝑟
more delay
𝑛,𝑡 =

{
1 − 𝑡back

𝑛

max𝑊 ∈W𝑊 if ACK is received

− 𝑡back
𝑛

max𝑊 ∈W𝑊 otherwise
, (18)

The third reward considering the number of transmission
failures to packet collision is given by

𝑟 fail
𝑛,𝑡 =


1 if ACK is received

− 𝑁 fail
𝑛, 𝑗

𝑁 fail
all,𝑛

otherwise
, (19)

𝑟
fail&delay
𝑛,𝑡 =


1 − 𝑡back

𝑛

max𝑊 ∈W𝑊 if ACK is received

− 𝑁 fail
𝑛, 𝑗

𝑁 fail
all,𝑛

otherwise
, (20)

where 𝑁 fail
all,𝑛 is the total number of failed event packet trans-

mitted from device 𝑛.

B. Event Packet Transmission Probability
When multiple devices observe the same event, they may

transmit event packets simultaneously, which results in packet
collision. To avoid this collision, an event packet transmission
probability 𝑝s,𝑛 ∈ (0, 1] is introduced to LoRaWAN device
𝑛 as shown in Fig. 1. By introducing the event packet trans-
mission probability, some LoRaWAN devices do not transmit
event packets. As a result, the number of LoRaWAN devices
simultaneously transmitting packet can be reduced. This can
reduce the collision probability of event packets.

Event packet transmission probability 𝑝s,𝑛 is dynamically
controlled by transmission delay time 𝑡back

𝑛 as

𝑝s,𝑛 = − log
(
𝑡back
𝑛

𝑊𝑡

)
. (21)

By reducing the transmission probability for long transmission
delay time 𝑡back

𝑛 , the probability for the event packets already
being transmitted is corrupted by the new event packets can
be reduced. In addition, event packet transmission probability
𝑝s,𝑛 becomes high, and when the 𝑡back

𝑛 is long, 𝑝s,𝑛 becomes
low, as shown in Fig.2. The rationale behind this setting is
as follows: the probability of all LoRaWAN devices does not
transmit reduce because function − log() has a region where
the probability meets 1.
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Fig. 1. Reduction of number of transmit devices by 𝑝s,𝑛

Fig. 2. Changes in 𝑝s,𝑛

IV. Simulation Results
Table I shows the simulation parameters. The parameters

of LoRaWAN are following Japanese parameter configuration
AS923 [4]. Table II shows the learning parameters.

A. Evaluation Criteria
The event packet delivery rate (PDR) defined as

PDR = 𝑅/𝑆P, (22)

where 𝑅 is the number of event packets successfully received
and 𝑆P is the number of event packets transmitted from
devices.

Let R denote the set of LoRaWAN devices whose event
packet is successfully received by the FC. The FC averages the
received values to derive the estimate of the true event value.
The squared error between the estimate of the true event value
and the true event value is calculated as

𝐸𝑍 ≜

(
1
|R |

∑
𝑘∈R

�̂�𝑘 − 𝑥
)2

, (23)

where �̂�𝑘 is the received value from LoRaWAN device 𝑘 ∈ R.
The detection delay, 𝑡R𝑛 , of LoRaWAN device 𝑛 is defined

as
𝑡R𝑛 =

𝑑e,𝑛

𝑉
+ 𝑇S𝑁S. (24)

For simplicity, this paper does not consider the processing time
of packet generation, transmission, and reception. The shortest
detection time at the FC is defined as

𝑡m = min
𝑛∈N

𝑡R𝑛 − 𝑡o, (25)

where 𝑡o is event occurrence time.
The event detection probability at the FC is calculated as

the ratio between the number of events successfully detected

TABLE I
simulation parameter

Simulation area 𝐷 × 𝐷 1 × 1 [km2 ]
Simulation time 10 [min]

Number of LoRaWAN devices 𝑁 500
Transmit power 𝑃t 13 [dBm]

Carrier frequency 𝑓c 923 [MHz]
Bandwith 𝑊b 125 [kHz]

SF 10
Noise power spectrum density 𝑁0 −174 [dBm/Hz]

Pathloss coefficient 𝑎 4.0
Propagation offset 𝑏 9.5

Frequency loss component 𝑐 4.5
Basic data 𝐵L 72 [bit]

Quantization bit size 𝑍 7, 8, 16 [bit]
SNR thresholds ΓSNR −15.0 [dBm]
SIR thresholds ΓSIR 6.0 [dBm]

Packet generation interval 𝐺p 10 [min]
Event propagation coefficient 𝛼 0.01

Event propagation speed 𝑉 1000 [m/s]
𝑥min -50
𝑥max 50

TABLE II
learning parameters

Number of epochs 𝑇 1500
Q-learning rate 𝜂 0.3
Discount rate 𝛽 0.95
Set of state W {128, 256, 512, 1024, 2048, 4096}

by the FC and the total number of events. If at least one event
packet is successfully received by the FC, we consider that the
event is detected.

B. Impact of Reward Design
Fig.3 shows the impacts of the reward functions on the

performances. The quantization bit size is set to 𝑍 = 8.
Fig.3(a) shows the reward functions considering transmission
delay time degrade the average PDR performance. This is
because the devices tend to choose smaller DW size. On the
other hand, the reward functions that consider the number
of transmission failures provide higher PDR performance.
Fig.3(b) shows average shortest detection time 𝑡m. In Fig.3(b),
shortest detection time 𝑡m can be reduced by considering the
transmission delay time. Thus, we can say that there is a trade-
off between the average PDR and the shortest detection time.
Since it shows a good trade-off, the reward function given by
(20) will be used in the following evaluations.

C. Comparison of Each Scheme
For performance comparison, this paper considers three

schemes. The first scheme is a pure ALOHA scheme that is
being implemented in LoRaWAN. The second scheme is the
random DW allocation scheme with event packet transmission
probability. The last scheme is the adaptive DW allocation
scheme without event packet transmission probability (here-
after, this scheme is called No Prob scheme).

1) PDR & MSE: Fig.4 shows the average PDR and the
mean squared error (MSE) performance of each scheme. In
Fig.4(a), the average PDR performance becomes the same
for 𝑍 = 7 and 𝑍 = 8 due to the same symbol length. The
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Fig. 3. Impact of Reward Design
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Fig. 4. Characteristics of Each Method

proposed scheme can increase average PDR performance by
about 42% compared to ALOHA scheme when 𝑍 = 7, 8. This
improvement is because the proposed scheme can reduce the
packet collision probability by the adaptive allocation of DW
size and the event packet transmission probability. Fig.5 shows
the cumulative distribution function (CDF) of the average PDR
with 𝑍 = 8, 16. From Fig.4(a) and Fig.5, the proposed scheme
provides the best average PDR performance. Therefore, the
average PDR can be improved by the adaptive allocation of
DW size by Q-learning and the control of the number of
packet transmission. The MSE performance is affected by
quantization bit size 𝑍 and the number of successful receive
packets. This is because when the number of quantization bit
size is small, the packet collision probability decreases but the
quantization error increases.

In Fig.4(b), when 𝑍 = 8, the MSE performance is better than
𝑍 = 7, 16 at any scheme. This is due to the fact that the effect
of PDR performance is greater than the effect of quantization
error. The proposed scheme can reduce MSE performance by
about 76% compared to ALOHA scheme.

2) Shortest Detection Time & Event Detection Probability:
Fig.6(a) shows the shortest detection time at FC. The proposed
scheme provides the best performance and can reduce shortest
detection time by about 16% compared to ALOHA scheme.
Fig.6(b) shows that the proposed scheme can to achieve the
event detection probability at FC over 99%.

V. Conclusion
In this paper, an autonomous decentralized transmission

timing control was proposed to avoid packet collision. The
proposed scheme adaptively controls a DW size to reduce and
the number of wireless devices to reduce the packet collision.
A Q-learning agent controls a DW size based on the ACK
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Fig. 5. PDR of Each Method

(a) Shortest Detection Time 𝑡m (b) Event detection probability at FC

Fig. 6. Other performance of each method

and the number of transmission failures evaluation. Then,
the event packet transmission probability is controlled by the
transmission delay time that is determined based on the current
DW size. The numerical results showed that the proposed
scheme could improve the PDR by about 42% compared to
the ALOHA scheme.
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