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Abstract—This paper proposes a novel algorithm to find the
cyclically permutable codes (CPCs) from a cyclic code. In recent
years, the CPCs are increasingly important, and have been ap-
plied in the communication network and optical communication.
A CPC is a block code such that each codeword has full cyclic
order and all codewords are cyclically distinct. In this paper,
we use the characteristics of finite fields to develop an efficient
algorithm to find a CPC from a q-ary cyclic code with prime
length. More precisely, we propose an effective methods to find
all codewords with full cyclic order from a cyclic code for prime-
primitive length and prime-nonprimitive length respectively.

I. INTRODUCTION

A cyclic code is a liner codes such that any cyclic shift
of a codeword is another codeword. Gilbert [1] defined a
cyclically permutable code as a block code of length n, such
that each codeword has cyclic order n and any cyclic shift of
all codewords are distinct, i.e., no codeword in CPC can be
obtained by any cyclic shift of another codeword.

The cyclically permutable codes have been applied in the
communication network, optical communication, and image
processing. The applications of CPC include multiple access
collision channel without feedback [2], [3], frequency-hopping
spread spectrum communication channels [4], [5], optical
orthogonal codes, and digital watermarking [6], [7]. Q. A.
Nguyen, L. Gyorfi, and J. L. Massey [8] processed an encoding
procedure for obtaining CPC from a Reed-Solomon (RS)
code of length p − 1 or of length p + 1. In [9], the authors
proposed an algebraic approach that selects a large subset of
codewords with a full cyclic order to construct a constant-
weight CPC for prime and primitive length. In [10], on the
basis of the combinatorial design of a difference family, several
constructions for constant-weight CPC are presented. However
there have been no efficient methods proposed so far to find
a CPC for non-primitive length.

Fourier transforms exist in the Galois field GF (qm), which
is important in the study and processing of cyclic codes.
As opposed to [9], [11], [12], which used the generator
polynomial to find a CPC, this study proposes the use of
the Galois field Fourier transform (GFFT) as an efficient
method to find many CPCs from cyclic codes. This paper is
the extension of the results in [8] and [13]. More precisely,
this study extends the results of [8] and [13] in twofold
advantages. First, for a cyclic code of non-primitive length
n = (pm − 1)/s, s > 1, and dimension k, we can construct a
CPC with s · pk−m codewords. The CPC constructed here has

s times more codewords compared to the CPC constructed in
[8]. Secondly, let αi, i > 1, be a nonzero element for a RS
code of primitive length p − 1 and assume i and p − 1 are
relative prime, we can then construct a CPC which has more
than pk−1 codewords for s = 1, namely n = pm − 1.

The remainder of this paper is organized as follows. In
Section II, we review some basic properties of cyclic codes and
Galois field Fourier transform, such as the conjugate and cyclic
shift properties. Section III uses these two properties to find
the CPC from a cyclic code and provide the CPC examples for
code length equal to prime-primitive and prime-nonprimitive.
Finally, Section IV presents the conclusion.

II. CYCLIC CODES AND GALOIS FIELD FOURIER
TRANSFORM

A linear code C[n, k, d] over Fq is a k-dimensional subspace
of Fnq such that the minimum distance of C is d. An encoding
of C[n, k] refers to any linear bijection from F kq to Fnq . More
precisely, a k× n matrix G that has a basis of the code C as
its row vector is called a generator matrix of C. Usually, we
denote a linear code with a generator matrix G by C = 〈G〉.

A. Cyclic codes

A linear code C of length n is a cyclic code if every
codeword of C is invariant under a cyclic shift, i.e., if

c = (c0, c1, c2, · · · , cn−2, cn−1) ∈ C

then
(cn−1, c0, c1, · · · , cn−3, cn−2) ∈ C.

We will also use c(x) = c0 + c1x+ · · ·+ cn−1x
n−1 to refer

the codeword c. Clearly, it can be shown that cyclic shift of
any positions of a codeword in C is also another codeword
[14]. The element in finite field GF (qm) are represented by
{0, α0, α1, α2, · · · , αn−1}, where n = qm−1 and α denotes a
root of a primitive polynomial of degree m, and each nonzero
element is the root of xn−1 − 1.

Let S = {α0, α1, · · · , αn−1} and Z =
{αi1 , αi2 , · · · , αin−k} ⊂ S. A cyclic code C[n, k] with
Z as nonzeros of the code can be described by a polynomial
g(x) =

(x−αi1)(x−αi2) · · · (x−αin−k) = g0+g1x+· · ·+gn−kxn−k.

This minimum degree polynomial g(x) generates C, i.e.,
C = 〈g(x)〉 = {a(x)g(x) : deg a(x) < k}, and g(x)
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is called the generator polynomial of C. The polynomial
h(x) = (xn − 1)/g(x) is called the check polynomial of
C. The roots of g(x) and h(x) are called the nonzeros and
zeros of the code respectively. Moreover, the codeword of
C = (c0, c1, · · · , cn−1) can be generated as follow:

C = u ·


g0 g1 . . . gn−k 0 · · · 0
0 g0 g1 . . . gn−k · · · 0

...
...

... 0
0 . . . 0 g0 g1 · · · gn−k

 .

Where u = u0, u1, · · · , uk−1.

B. Galois field Fourier transform

Cyclic codes can also be defined as codes whose codewords
have certain specified spectral components that are equal to
zeros [14], [15]. Let v = (v0, v1, · · · , vn−1) be a vector
of length n over GF (qm), and let α be an element of
GF (qm) of order n, where n is a divisor of qm− 1 for some
positive number. The Galois field Fourier transform (GFFT)
of the vector v in time-domain is v = (v0, v1, · · · , vn−1) in
frequency-domain defined as

V0
V1
...

Vn−1

 =


(α0)0 · · · (α0)n−1

(α1)0 · · · (α1)n−1

... · · ·
...

(αn−1)0 · · · (αn−1)n−1

·


v0
v1
...

vn−1

 .

The GFFT can be also written by the formula

Vj =

n−1∑
i=0

αijvi, j = 0, 1, · · · , n− 1. (1)

We will use v ↔ V to denote the GFFT relationship between
v and V . Similarly, the inverse GFFT can also be written as

vi = n−1
n−1∑
j=0

α−ijVj , i = 0, 1, · · · , n− 1. (2)

where n−1 is the vector multiplicative inverse of n.
We can represent a vector v = (v0, v1, · · · , vn−1) by

a polynomial v(x) = v0 + v1x + · · · + vn−1x
n−1 and

V = (V0, V1, · · · , Vn−1) by a polynomial V (x) = V0+V1x+
· · ·+ Vn−1x

n−1. Given a polynomial v(x), we can show that

Vj =

n−1∑
i=0

vi(α
j)i = v(αj). (3)

The j-th component of the GFFT of v is obtained by evaluating
v(x) at x = αj . Similarly, we can write the i-th component
of v as

vi =
1

n

n−1∑
j=0

Vj(α
−i)j =

1

n
V (α−i). (4)

In other words, α−i is a zero of V (x) if and only if vi = 0.

C. Cyclic shift and conjugate property

The cyclic shift property of GFFT is known as follows.

v = (v0, · · · , vt, · · · , vn−1) = (vl)l=0∼n−1
l

V = (V0, · · · , Vt, · · ·Vn−1) = (Vl)l=0∼n−1

(vn−t, · · · , v0, · · · , vn−1−t)
l

(V0(α
−0 · α−t), · · · , Vt(α−t · α−t),
· · · , Vn−1(α−(n−1) · α−t)).

When v0 cyclic shifts t units, the original V0 will multiplied
by α−t. Because α is in finite field GF (qm), α must satisfy
the conjugate property, namely,

{(αl)q
b

}b=0∼m−1.

The index of α is defined by mod n, and the group of
repetitions is the same group.

Let a code is a cyclic code C[n, k, d]. So we have to choose
d− 1 consecutive roots. The degree of g(x) is equal to n− k.
Let {(αx)qb}x=1∼d−1 are zeros, and the remaining elements
are nonzeros defined as

{(αl)q
b

}b=0∼m−1 =

{
{(αx)qb}x=1∼d−1, if zeros.

{(αl)qb}/{(αx)qb}, if nonzeros.

The inverse of nonzeros of C is defined as

{(α−h)}h={lqb}−{xqb}.

Then we can use the inverse of the nonzeros of a cyclic code
to form the generator matrix G as

G = {(α−h)T}j =



(α0)j

(α−dq
0

)j

(α−dq
1

)j

...
(α−dq

m−1

)j

...
(α−(n−1)q

0

)j

(α−(n−1)q
1

)j

...
(α−(n−1)q

m−1

)j


k×n

(5)

where j = 0 ∼ n− 1.

With the conjugate property and cyclic shift property of
GFFT, we propose the concept using G matrix in (5) to obtain
the CPC as follows. Let C[n, k, d] be a cyclic code over
GF (qm), where n is a divisor of qm − 1. From the G matrix
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in (5), the codewords of C can be obtained by

C = u ·



(α0)j

(α−dq
0

)j

(α−dq
1

)j

...
(α−dq

m−1

)j

...
(α−(n−1)q

0

)j

(α−(n−1)q
1

)j

...
(α−(n−1)q

m−1

)j


k×n

, j = 0 ∼ (n− 1)

where u = (u0, u−dq0 , · · · , u−dqm−1 , · · · , u−(n−1)q0 ,
· · · , u−(n−1)qm−1) = (u(−h)). There are a total of k. Let u
of index be L, namely, (−h) = L.

For example, the double-error correcting BCH code
C[15, 7, 5] has zeros {α1, α2, α4, α8}∪ {α3, α6, α12, α9}. The
nonzeros are {α0}∪{α5, α10}∪{α7, α14, α13, α11}. Then we
can use the inverse of the nonzeros to get the generator matrix
G as

G =



(α0)0 (α0)1 · · · (α0)14

(α1)0 (α1)1 · · · (α1)14

(α2)0 (α2)1 · · · (α2)14

(α4)0 (α4)1 · · · (α4)14

(α8)0 (α8)1 · · · (α8)14

(α5)0 (α5)1 · · · (α5)14

(α10)0 (α10)1 · · · (α10)14


The codewords of C = (c0, c1, · · · , c14) are obtained by

C = u ·G = (u0, u1u2u4u8, u5u10) ·G

where u0 ∈ GF (2), u1 ∈ GF (24), and u5 ∈ GF (22).
u1u2u4u8 is the same conjugate group, so u1 is determined,
u2u4u8 will follow u1. The same is true for u5u10. There are
21 · 24 · 22 = 27 codewords.

Let c(x) be a codeword of a cyclic code C. The
cyclic shift subset of c(x) is defined as 〈c(x)〉 =
{c(x), xc(x), · · · , xe−1c(x)}, when e is the smallest number
such that xec(x) = c(x). We call e the cyclic order of the
codeword c(x). To form a CPC from a cyclic code C[n, k],
we first find those codewords c(x) in C with cyclic order equal
to n, and then use the cyclic shift property of GFFT to find
one codeword from the cyclic shift subset 〈c(x)〉.

If gcd(n,L) = 1, then the order of the element αL is n
and we can use any nonzeros frequency index VL to find
codewords of CPC. For example, let u1 = α0, the codewords
of CPC from C[15, 7, 5] are obtained by

C = (u0, u1︸︷︷︸
=α0

u2u4u8, u5u10) ·G

where u0 ∈ GF (2) and u5 ∈ GF (22). The number of
codewords of CPC from [15, 7, 5] is 21 · 1 · 22 = 8.

III. CONSTRUCTIONS OF CYCLICALLY
PERMUTABLE CODES

A CPC is a binary block code whose codewords are
cyclically distinct and have full order. In this section, we use
the conjugate and cyclic shift properties to find the CPC from
a cyclic code and provide the CPC examples for code length n
equal to prime and non-primitive. Let c(x) be a codeword of
a cyclic code C. The cyclic shift subset of c(x) is defined as
〈c(x)〉 = {c(x), xc(x), · · · , xe−1c(x)}, when e is the smallest
number such that xec(x) = c(x). We call e the cyclic order of
the codeword c(x). To form a CPC from a cyclic code C[n, k],
we first find those codewords c(x) in C with cyclic order equal
to n, and then use the cyclic shift property of GFFT to find
one codeword from the cyclic shift subset 〈c(x)〉.

A. Prime and primitive length

When length n is primitive and prime, then gcd(n,L) = 1,
the order of the element αL is n and we can use any nonzero
frequency index VL = uL to find codewords of CPC. For
example a [7,4,3] BCH code over F2. Where the degree is
m = 3 and where n = 23−1 is prime and has primitive length.
The cyclotomic coset is {α0}, {α1, α2, α4} and {α3, α6, α5}.
Select zeros roots are {α1, α2, α4}. So nonzeros roots are
{α0} and {α3, α6, α5}. Then we can obtain the generated
matrix through the nonzeros inverse roots and encoding of
C = (c0, c1, c2, c3, c4, c5, c6) in frequency-domain by

c = (u0, u1u2u4) ·


(α0)0 (α0)1 · · · (α0)n−1

(α1)0 (α1)1 · · · (α1)n−1

(α2)0 (α2)1 · · · (α2)n−1

(α4)0 (α4)1 · · · (α4)n−1

 .

The information bits (u1u2u4) is conjugate roots for binary
codes. Then u0 ∈ GF (2) and u1 ∈ GF (23), there are 21 ·
23 = 24 codewords. For the CPC desired use the cyclic shift
property, and first let (u1u2u4) = (α0α0α0) and u0 ∈ GF (2)
may by 0 or α0. As shown in Tab. I, t is cyclic shift in this
table. Therefore, u1 = α0 ∼ α−6 do cyclic shifts for the same
cyclic code, so α0 is taken as a representative. Respectively,
we obtain a total CPC number of pk−m = 24−3 = 2 that the
order is n = 7. The result is shown in Fig. 1.

TABLE I
CPC SCHEMATIC OF PRIMITIVE BY ONE INDEX.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

α0 α−1 α−2 α−3 α−4 α−5 α−6

B. Prime and nonprimitive length

Lemma 1: For every non-primitive length n, which that
n 6= pm − 1, we can obtain more s times of CPC with full
cyclic order n.

Proof: For a (n, k) cyclic code over Fp, there exist pk

codewords. Further, based on Lemma 1, when n is non-
primitive length, o(α) = n and n|pm − 1. Let β ∈ Fpm

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1450



primitive element, and O(β) = pm − 1, at the same time we
can find that α = β

pm−1
n = βs. We obtain to the following

formula

u
(t)
1 = (α−t)u1 = (β−

pm−1

n ·t)u1 = (β−s·t)u1 (6)

Fig. 1. CPCs constructed by [7,4,3] cyclic code.

where u1 cyclic shift t units is u(t)1 . Which shown in the
following Tab. II.

TABLE II
CPC SCHEMATIC OF NON-PRIMITIVE BY ONE INDEX.

α0 = β0 α−1 = β−s α−2 = β−2s · · · α−(n−1) = β−(n−1)s

β−1 β−(s+1) β−(2s+1) · · · β−((n−1)s+1)

β−2 β−(s+2) β−(2s+2) · · · β−((n−1)s+2)

β−3 β−(s+3) β−(2s+3) · · · β−((n−1)s+3)

...
...

...
. . .

...
β−(s−1) β−(2s−1) β−(3s−1) · · · β−(ns−1)

Example1: Consider (17,9,5) of BCH code
over F28 = F2[x]

x8+x4+x3+x2+1 , when m = 8 and
α = β(pm−1)/n = β(28−1)/17 = β15, the distribution of
cyclotomic coset is {α0}, {α1, α2, α4, α8, α16, α15, α13, α9}
and {α3, α6, α12, α7, α14, α11, α5, α10}. Select zeros roots
are {α1, α2, α4, α8, α16, α15, α13, α9}. So non-zero roots are
{α0} and {α3, α6, α12, α7, α14, α11, α5, α10}. Then we can
obtain the generated matrix through the non-zeros inverse
roots. Form a generated matrix as following

G =



(α0)0 (α0)1 · · · (α0)16

(α3)0 (α3)1 · · · (α3)16

(α6)0 (α6)1 · · · (α6)16

(α12)0 (α12)1 · · · (α12)16

(α7)0 (α7)1 · · · (α7)16

(α14)0 (α14)1 · · · (α14)16

(α11)0 (α11)1 · · · (α11)16

(α5)0 (α5)1 · · · (α5)16

(α10)0 (α10)1 · · · (α10)16



=



(β0)0 (β0)1 · · · (β0)16

(β45)0 (β45)1 · · · (β45)16

(β90)0 (β90)1 · · · (β90)16

(β180)0 (β180)1 · · · (β180)16

(β105)0 (β105)1 · · · (β105)16

(β210)0 (β210)1 · · · (β210)16

(β165)0 (β165)1 · · · (β165)16

(β75)0 (β75)1 · · · (β75)16

(β150)0 (β150)1 · · · (β150)16


The non-zeros inverse roots and encoding of C in frequency-
domain by

(c0, c1, · · · , c16) = (u0, u3u6u12u7u14u11u5u10) ·G.

First, from the theorem of pervious section, we have found
αL = α3 of gcd(17, 3) = 1 namely n and L is relatively
prime, the number of CPC with full cyclic order will be, let
u0 ∈ F2 be 0 or 1 and u3 = α0, then the number of CPC with
full cyclic order will equal to pk−m = 29−8 = 2. Due to we
proposed when n 6= pm − 1 which n is non-primitive length
in this section, may get more number of CPC with full cyclic
order by (s− 1) times, so this example will show the number
of CPC with full cyclic order is s · pk−m = 15 · 29−8 = 30.
The distribution of β shown in the following Tab. III. Each
column makes a CPC in this table. β are (s − 1) more CPC
than α. The result is shown in Fig. 2.

TABLE III
CPC SCHEMATIC OF NON-PRIMITIVE N=17 BY ONE INDEX.

α0 = β0 α−1 = β−15 α−2 = β−30 · · · α−16 = β−240

β−1 β−16 β−31 · · · β−241

β−2 β−17 β−32 · · · β−242

β−3 β−18 β−33 · · · β−243

...
...

...
. . .

...
β−14 β−29 β−59 · · · β−254

Fig. 2. CPCs constructed by [17,9,5] cyclic code.

Example2: Consider a (23, 12, 5), which is cyclic code
over F2 and m = 11, the code length n is non-
primitive. We can calculate s = (211 − 1)/23 = 89 and
o(α) = 23, o(β) = 89, the distribution of cyclotomic coset
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is {α0}, {α1, α2, α4, α8, α16, α9, α18, α13, α3, α6, α12} and
{α5, α10, α20, α17, α11, α22, α21, α19, α15, α7, α14}. Let {α0}
and {α1, α2, α4, α8, α16, α9, α18, α13, α3, α6, α12} as inverse
of nonzeros roots. The generated matrix component of

G =



(β0)0 (β0)1 · · · (β0)22

(β89)0 (β89)1 · · · (β89)22

(β178)0 (β178)1 · · · (β178)22

(β356)0 (β356)1 · · · (β356)22

(β712)0 (β712)1 · · · (β712)22

(β1424)0 (β1424)1 · · · (β1424)22

(β801)0 (β801)1 · · · (β801)22

(β1602)0 (β1602)1 · · · (β1602)22

(β1157)0 (β1157)1 · · · (β1157)22

(β267)0 (β267)1 · · · (β267)22

(β534)0 (β534)1 · · · (β534)22

(β1068)0 (β1068)1 · · · (β1068)22


The encoding of C = (c0, c1, c2, c3, · · · , c22) in frequency-
domain by

c = (u0, u1u2u4u8u16u9u18u13u3u6u12) ·G

where u0 ∈ F2 and u1 ∈ F211 . When u1 = 1, u2 ∈ F211 the
CPC number is s · 2k−m = 89 · 212−11. This example will
show the number of CPC with full cyclic order is s · pk−m =
89·212−11 = 178. The distribution of β shown in the following
Tab. IV. Each column makes a CPC in this table. β are (s−1)
more CPC than α. The result is shown in Fig. 3.

TABLE IV
CPC SCHEMATIC OF NON-PRIMITIVE N=23 BY ONE INDEX.

α0 = β0 α−1 = β−89 α−2 = β−178 · · · α−22 = β−1958

β−1 β−90 β−179 · · · β−1959

β−2 β−91 β−180 · · · β−1960

β−3 β−92 β−181 · · · β−1961

...
...

...
. . .

...
β−88 β−177 β−266 · · · β−2046

Fig. 3. CPCs constructed by [23,12,7] cyclic code.

IV. CONCLUSION AND DISCUSSION

We have proposed an efficient method which we could find
out all codeword with full cyclic order in cyclic code to form
the cyclically permutable codes.This paper has extended the

results in [8] and [13] in twofold advantages by using the
characteristics of finite fields to develop an efficient algorithm
to find a CPC from a cyclic code of prime-primitive length
and prime-nonprimitive length respectively.
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