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Abstract—This paper proposes a novel algorithm to find the
cyclically permutable codes (CPCs) from a cyclic code. In recent
years, the CPCs are increasingly important, and have been ap-
plied in the communication network and optical communication.
A CPC is a block code such that each codeword has full cyclic
order and all codewords are cyclically distinct. In this paper,
we use the characteristics of finite fields to develop an efficient
algorithm to find a CPC from a g-ary cyclic code with prime
length. More precisely, we propose an effective methods to find
all codewords with full cyclic order from a cyclic code for prime-
primitive length and prime-nonprimitive length respectively.

I. INTRODUCTION

A cyclic code is a liner codes such that any cyclic shift
of a codeword is another codeword. Gilbert [1] defined a
cyclically permutable code as a block code of length n, such
that each codeword has cyclic order n and any cyclic shift of
all codewords are distinct, i.e., no codeword in CPC can be
obtained by any cyclic shift of another codeword.

The cyclically permutable codes have been applied in the
communication network, optical communication, and image
processing. The applications of CPC include multiple access
collision channel without feedback [2], [3], frequency-hopping
spread spectrum communication channels [4], [5], optical
orthogonal codes, and digital watermarking [6], [7]. Q. A.
Nguyen, L. Gyorfi, and J. L. Massey [8] processed an encoding
procedure for obtaining CPC from a Reed-Solomon (RS)
code of length p — 1 or of length p + 1. In [9], the authors
proposed an algebraic approach that selects a large subset of
codewords with a full cyclic order to construct a constant-
weight CPC for prime and primitive length. In [10], on the
basis of the combinatorial design of a difference family, several
constructions for constant-weight CPC are presented. However
there have been no efficient methods proposed so far to find
a CPC for non-primitive length.

Fourier transforms exist in the Galois field GF (g™ ), which
is important in the study and processing of cyclic codes.
As opposed to [9], [11], [12], which used the generator
polynomial to find a CPC, this study proposes the use of
the Galois field Fourier transform (GFFT) as an efficient
method to find many CPCs from cyclic codes. This paper is
the extension of the results in [8] and [13]. More precisely,
this study extends the results of [8] and [13] in twofold
advantages. First, for a cyclic code of non-primitive length
n=(p™—1)/s, s > 1, and dimension k, we can construct a
CPC with s - p*~™ codewords. The CPC constructed here has
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s times more codewords compared to the CPC constructed in
[8]. Secondly, let of,i > 1, be a nonzero element for a RS
code of primitive length p — 1 and assume ¢ and p — 1 are
relative prime, we can then construct a CPC which has more
than p*~1 codewords for s = 1, namely n = p™ — 1.

The remainder of this paper is organized as follows. In
Section II, we review some basic properties of cyclic codes and
Galois field Fourier transform, such as the conjugate and cyclic
shift properties. Section III uses these two properties to find
the CPC from a cyclic code and provide the CPC examples for
code length equal to prime-primitive and prime-nonprimitive.
Finally, Section IV presents the conclusion.

II. CycCLIC CODES AND GALOIS FIELD FOURIER
TRANSFORM

A linear code C[n, k, d] over F is a k-dimensional subspace
of F* such that the minimum distance of C' is d. An encoding
of C|n, k| refers to any linear bijection from F(f to F;'. More
precisely, a k x n matrix G that has a basis of the code C as
its row vector is called a generator matrix of C. Usually, we
denote a linear code with a generator matrix G by C = (G).

A. Cyclic codes

A linear code C' of length n is a cyclic code if every
codeword of C is invariant under a cyclic shift, i.e., if

c= (007017627 e 7Cn—27cn—1) € C

then

(071717 C05C1,° " ,Cn—3, cn,72) eC.

We will also use c(x) = cg + c1x + -+ + ¢,—12" ! to refer
the codeword c. Clearly, it can be shown that cyclic shift of
any positions of a codeword in C is also another codeword
[14]. The element in finite field GF(¢™) are represented by
{0,a%,at,a?,--- ;@™ 1}, where n = ¢"™ —1 and « denotes a
root of a primitive polynomial of degree m, and each nonzero
element is the root of "% — 1.

Let S = {a%at,--- o™} and Z =
{aBt a2 ... ain-k} C S. A cyclic code C[n,k] with
Z as nonzeros of the code can be described by a polynomial
g(x) =
(x—a™)(z—a®) - (z—a'*) = gotgra+- - +gn_pz" "

This minimum degree polynomial g(z) generates C, i.e.,
C = (g9(z)) = {a(z)g(x) : dega(z) < k}, and g(z)
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is called the generator polynomial of C. The polynomial C. Cyclic shift and conjugate property

h(z) = (2™ — 1)/g(x) is called the check polynomial of o )

C. The roots of g(z) and h(z) are called the nonzeros and The cyclic shift property of GFFT is known as follows.
zeros of the code respectively. Moreover, the co.deword of V= (00, v 1) = (0)imomnot

C = (¢g,c1,+ -+ ,cn—1) can be generated as follow: 1

V= (%7 e 7‘/;7 o 'Vn—l) = (W)l=0~n—1

go 91 --- YGn—k 0 0
0 90 o - gk - O
C=u . . . (Vn—ty 500,y Un—1—t)
: : : 0 1
0 ... 0 g g1 0 Gn—k Vo™ a7, -, Vi(a~t-a™t),
. —(n=1) , ot
Where © = ug, U1, ,Up_1. Vaoi(a a™h).

When v cyclic shifts ¢ units, the original V;, will multiplied
B. Galois field Fourier transform by a~!. Because « is in finite field GF(¢™), o must satisfy

Cyclic codes can also be defined as codes whose codewords the conjugate property, namely,

have certain specified spectral components that are equal to .

zeros [14], [15]. Let v = (vg,v1,--- ,vn—1) be a vector {(Oll)q Yo—0~m—1-

of length n over GF(¢™), and let o be an element of

GF(¢™) of order n, where n is a divisor of ¢™ — 1 for some The index of « is defined by mod n, and the group of
positive number. The Galois field Fourier transform (GFFT) repetitions is the same group.

of the vector v vi“ time-domain is v = (vg,v1,"++ ,Vp—1) in Let a code is a cyclic code C[n, k, d]. So we have to choose
frequency-domain defined as d —1 consecutive roots. The degree of g(z) is equal to n — k.
b

Vi (a®)° ... (a%)n—1 v Let {(a®)? };=1~d—1 are zeros, and the remaining elements

V(1) (@) ... (al)n=1 U(1) are nonzeros defined as

: - : : b .

: : : : Ing® ) {(@®)9 }om1ma—1, if  zeros.

n—1\0 n—1\n—1 « —0~m—1 —
Vi, (@10 ... (anh) Vno1 {(@)? bo—onm—1 { ()™} (@)}, if monzeros.

The GFFT can be also written by the formula
The inverse of nonzeros of C' is defined as

n—1
Vi = aijviv ]20715 ,'fL-].. (1) —h
’ ; {(@™") h=(1q")~ (ot}
We will use v <> V' to denote the GFFT relationship between

v ¢ : Then we can use the inverse of the nonzeros of a cyclic code
v and V. Similarly, the inverse GFFT can also be written as

to form the generator matrix G as

n—1
vi=ntY a7V, i=0,1, 01 @) (%)’
=0 (a=da"yi
. L G
where n~" is the vector multiplicative inverse of n.
We can represent a vector v = (vg,v1, " ,Vp—1) Dy :
a polynomial v(z) = vy + vix + - + v,_12" "} and _ (a—dq’"’l)j
V = (Vo, Vi, -+, Vi_1) by a polynomial V(z) = Vo + Viz + G={(aM} = : (5)

-+++V,_12""L. Given a polynomial v(x), we can show that T
(= (n=1)a7yj

it , —(n=1)g")j
V= vi(ad) = vla). ) ()
i=0 :
) . . . (a*(nfl)q’“’l)j
The j-th component of the GFFT of v is obtained by evaluating Exn
v(z) at x = of. Similarly, we can write the i-th component
of v as where j =0~n— 1.
n—1
v = 1 Z V_(a—i)j _ lv(a—i). 4) With the conjugate property and cyclic shift property of
‘ = J n GFFT, we propose the concept using G matrix in (5) to obtain

the CPC as follows. Let C[n,k,d] be a cyclic code over
In other words, o~ is a zero of V() if and only if v; = 0. GF(q™), where n is a divisor of ¢™ — 1. From the G' matrix
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in (5), the codewords of C' can be obtained by
(@)

Y

(a=a")?

aqu.’"’l j
o j=0~ (1)

(a—(n—l)q” J
(af(n71>q1 )3

m—1.

—(n—1
(= (n=1)a™ )7 fxn

where u = (Ug,U_gq0," - U (n—1)q0,

L U_(n—1)gm-1) = (u(—p)). There are a total of k. Let u
of index be L, namely, (—h) = L.

For example, the double-error correcting BCH code
C[15,7, 5] has zeros {at, a2, o, a8}U {a3,a®, a!2,a%}. The
nonzeros are {a’}U{a®, a!?}u{a’, a', al? all}. Then we
can use the inverse of the nonzeros to get the generator matrix
G as

7U7dqm*17"'

(a0)0 (QO)I (040)14
(al)o (al)l (041)14
(a2)0 ((12)1 (a2)14
G = (04)0 (04)1 (044)14
(a8)0 (QS)I (048)14
(as)o (a5)1 (a5)14
(alo)o (alo)l (a10)14

The codewords of C = (cp,c1,- -+ ,c14) are obtained by

C=u-G= (UO, U1U2U4Ug, U5U10) -G

where ug € GF(2), uy € GF(24%), and us € GF(2?).
ujuguqug is the same conjugate group, so wu; is determined,
ustgug Will follow uq. The same is true for usuig. There are
21 .24.22 = 27 codewords.

Let c¢(z) be a codeword of a cyclic code C. The
cyclic shift subset of c¢(z) is defined as (c(x)) =
{c(x),zc(z), -, Lc(z)}, when e is the smallest number
such that z€c(x) = c(z). We call e the cyclic order of the
codeword ¢(z). To form a CPC from a cyclic code C[n, k],
we first find those codewords ¢(z) in C' with cyclic order equal
to n, and then use the cyclic shift property of GFFT to find
one codeword from the cyclic shift subset (c(z)).

If ged(n,L) = 1, then the order of the element o is n
and we can use any nonzeros frequency index Vi to find
codewords of CPC. For example, let u; = a?, the codewords
of CPC from C[15,7,5] are obtained by

C = (ug, u1 uguaug,usuig) -G
~—
—a0

where ug € GF(2) and us € GF(2%). The number of
codewords of CPC from [15,7,5] is 2! - 1-22 = 8.
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ITII. CONSTRUCTIONS OF CYCLICALLY
PERMUTABLE CODES

A CPC is a binary block code whose codewords are
cyclically distinct and have full order. In this section, we use
the conjugate and cyclic shift properties to find the CPC from
a cyclic code and provide the CPC examples for code length n
equal to prime and non-primitive. Let c¢(z) be a codeword of
a cyclic code C'. The cyclic shift subset of ¢(x) is defined as
(e(z)) = {c(x),zc(z), - ,2°"Le(z)}, when e is the smallest
number such that z¢c(x) = ¢(x). We call e the cyclic order of
the codeword ¢(z). To form a CPC from a cyclic code C|n, k],
we first find those codewords c¢(x) in C with cyclic order equal
to n, and then use the cyclic shift property of GFFT to find
one codeword from the cyclic shift subset (c(x)).

A. Prime and primitive length

When length n is primitive and prime, then ged(n, L) = 1,
the order of the element o is 7 and we can use any nonzero
frequency index Vi = wuy to find codewords of CPC. For
example a [7,4,3] BCH code over F». Where the degree is
m = 3 and where n = 23—1 is prime and has primitive length.
The cyclotomic coset is {a’}, {al, a2, o} and {a?,a®, a’}.
Select zeros roots are {a',a? a*}. So nonzeros roots are
{a®} and {a?, a8 a®}. Then we can obtain the generated
matrix through the nonzeros inverse roots and encoding of
C = (¢, 1, €2, C3, €4, C5, Cg) 1n frequency-domain by

=
Cc= (UO,U1U2U4) : (az)o (042)1 (Oz2)"71

(@) (a?) (a®)

(a4)0 (0/1)1 . (a4)n71

The information bits (ujuguy) is conjugate roots for binary
codes. Then ug € GF(2) and u; € GF(23), there are 2! -
23 = 2% codewords. For the CPC desired use the cyclic shift
property, and first let (ujupus) = (a’aa®) and ug € GF(2)
may by 0 or a®. As shown in Tab. I, t is cyclic shift in this
table. Therefore, u; = a® ~ o~ do cyclic shifts for the same
cyclic code, so a? is taken as a representative. Respectively,
we obtain a total CPC number of p*~™ = 2473 = 2 that the
order is n = 7. The result is shown in Fig. 1.

TABLE 1
CPC SCHEMATIC OF PRIMITIVE BY ONE INDEX.
t=0|t=1 t=2 | t=3|t=4|t=5|t=6
af a~?! a2 | a3 | a? a5 | a6

B. Prime and nonprimitive length

Lemma /: For every non-primitive length n, which that
n # p™ — 1, we can obtain more s times of CPC with full
cyclic order n.

Proof: For a (n,k) cyclic code over F,, there exist p*
codewords. Further, based on Lemma 1, when n is non-
primitive length, o(a) = n and n|p™ — 1. Let 8 € Fpm
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primitive element, and O(3) = p™ — 1, at the same time we
can find that @ = 8" = [3°. We obtain to the following

formula

w! =@ =" Y= m©)

O/a%,a’a) x G = 1001011
2,a%) x G = 0010111
,al) x G = 0101110
",aS)‘x G=1011100 [+CpC: (0,a®,
a',a?)x G = 0111001
,a®) x G = 1110010
a®,6%) x G = 1100101 _

order 7,

a®,a®) x G
=1001011

CPC number: 243 = 2
(@%@, a®%a®) x G = 0110100
(#,a,a%,a%) G = 1101000
0, a?,a*,a') x G = 1010001
a“,a},a",as)“x G =0100011 +CPC:(a®,a®,a’,a®) x G
a®,at,a,a?)x G = 1000110 =0110100
°,a%,a3,a%) x G = 0001101
a8,a5,a%) x G = 0011010 J

16 codewords order 7

in[7.4,3]

[¢
+(0,000) X G = 0000000

order 1

order © (a®000)xG=1111111

Fig. 1. CPCs constructed by [7,4,3] cyclic code.

where u; cyclic shift t units is ugt). Which shown in the
following Tab. II.

TABLE II

7-10 December 2020, Auckland, New Zealand

(52 (5" (5
(ﬂ45)0 ([345)1 (,345 16
(590)0 (590)1 (ﬁ90)16
(5180)0 (5180)1 ( 180)16
— ( 105)0 (5105)1 ( 105)16
(6210)0 (ﬂQlO)l (ﬁ210)16
(5165)0 (;6165)1 (ﬁlﬁs 16
(/675)0 (,375 1 675)16
(ﬁlSO)O (/3150)1 (,8150)16

The non-zeros inverse roots and encoding of C' in frequency-
domain by

(cosc1,- -+ ,c16) = (U0, U3UEUL2UTUI4UL1 UsU10) - G-

First, from the theorem of pervious section, we have found
al = o® of ged(17,3) = 1 namely n and L is relatively
prime, the number of CPC with full cyclic order will be, let
ug € Fy be 0 or 1 and ug = o2, then the number of CPC with
full cyclic order will equal to p*~™ = 29~8 = 2. Due to we
proposed when n # p™ — 1 which n is non-primitive length
in this section, may get more number of CPC with full cyclic
order by (s — 1) times, so this example will show the number
of CPC with full cyclic order is s - pF~™ = 15- 2978 = 30.
The distribution of S shown in the following Tab. III. Each
column makes a CPC in this table. § are (s — 1) more CPC
than «. The result is shown in Fig. 2.

TABLE IIT
CPC SCHEMATIC OF NON-PRIMITIVE BY ONE INDEX. CPC SCHEMATIC OF NON-PRIMITIVE N=17 BY ONE INDEX.
a=p0 | al=p"%| a2=p3"72 a~ (=1 = g=(n—1)s 75— B0 [ a1—pB15 | a2=p3-30 | ... | o-16 — g—240
g1 B—(s+1) B~ (2s+1) [ ((n=1)s+1) 1 516 331 241
= —(s+2) —(25+2) —((n—1)s+2) — - - -
: 3 : (s+3) . (25+3) ) ((n—1)s+3) 5= o £ i
— —(s —(2s —((n—1)s — — — —
B 8 B B B3 B-18 333 5243
—G-D —(@s-1) “(Bs—1) “(ns—1) o~ = = T
B B B B p—14 B—29 359 3254
Examplel: Consider (17,9,5) of BCH code ffonser 11 (L F CRC0,BOBB BB E A x 6 = o00t01 00 110100 7
over F‘28 — x3+x4i23£§]+3:2+1’ when m — 8 and /‘/:/ioxdm rg} CPC: (0, B251 p253 p251g247 239 g223 pI91 R127) 5 G =(1100000011010001
m_ Ell L. . [ iorder 17(E ) CPC: (0, B252 p251 247 239 g223 g191. 8127 g254Y 5 G =(1111001000000010
a = pPT-U/m = gE=U/IT — g15 " the distribution of e 17C

cyclotomic coset is {a’}, {at, a2, 0%, a®, a6 al® al? %}
and {a?,a® a'2, a7 o' ol a® al%}. Select zeros roots
are {a!,a?, o, a8 a'% a'® o3, a®}. So non-zero roots are
{a®} and {a?,a8% a'? a7, o', o't a® al®}. Then we can
obtain the generated matrix through the non-zeros inverse
roots. Form a generated matrix as following

(O[O)O (00)1 (QO)IG
(a3)0 (Oz3)1 (a3)16
(a6)0 (a6)1 (a6)16
(a12)0 (a12)1 (a12)16
G = (a7)0 (047)1 (a7)16
(a14)0 (a14)1 . (a14 16
(au)o (all)l (a11)16
(a5)0 (055)1 (045)16
(alo)O (alo)l (a10)16

512 codewords
in[17,9,5] L CPC number:

152978 =30

(BY, B RIS IS T RO BRI BINBITY 5
=10011111100101110
LB, G253 BIS1 BT GEI9 gRIS IO G127 925 5
=10000110111111101
{(BO, 252 BR4O g4I g3 G207 G159 63 RI26Y 5 o
=00001110101110000

T (BO, BAM BRRT B9 g3 g3 g2 p124 g248) 5 G =11101000110001011

Norder 17
{

order I+ (0,00000000) x G = 00000000000000000
order 1+ (B°,00000000) X G = 111111ITTTTTITT1L

Fig. 2. CPCs constructed by [17,9,5] cyclic code.
Example2: Consider a (23,12,5), which is cyclic code
over F5 and m = 11, the code length n is non-
primitive. We can calculate s = (2!! — 1)/23 = 89 and
o(a) = 23, o() = 89, the distribution of cyclotomic coset
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is {a®}, {at,a? o a8 al% 0 at® at? a3 ab, a'?) and

{a5,a19,a20 a7 o'l 0?2, a2, 019, 015, a7, o). Let {a°}
and {a! ,az,a4,as,a16,a9,a18,a13,a3,a6,a12} as inverse
of nonzeros roots. The generated matrix component of
(82 (BY)! (8°)*
(689)0 (589)1 (ﬂ89)22
(6178)0 (5178)1 (5178)22
(3356)0 356)1 35622
( 1741224)00 (ﬂ1741224) 11 1741224)2222
B B B
G= ( 801))0 ( 801 )1 ( 801 )22
316020 (31602)1 j31602)22
115710 1157\1 1157122
B6TY0 (32671 267)22
(51503;) 00 (ﬂ1503648) 11 (515036? 2222
(B17%%)7 (B19%%) (B%%)
The encoding of C' = (cg,c¢1,¢2,¢3, -+ ,c22) in frequency-

domain by
c= (U07 U1U2U4USU16U9U18U13u3u6’u12) -G

where ug € F5 and u; € Foii. When u; = 1, ug € Foui the
CPC number is s - 28=™ = 89 . 212=11 This example will
show the number of CPC with full cyclic order is s - =™ =
89-212—11 — 178, The distribution of 3 shown in the following
Tab. IV. Each column makes a CPC in this table. 3 are (s—1)
more CPC than «. The result is shown in Fig. 3.

TABLE IV
CPC SCHEMATIC OF NON-PRIMITIVE N=23 BY ONE INDEX.

ad = ﬁO a1 = ﬂ*SQ a2 = /37178 . a—22 = ﬁ71958
B_l ﬁ—QO 5—179 ﬁ—1959
ﬁ—Q /3—91 57180 ,371960
ﬁ73 /3792 ﬂ7181 /371961
6_88 ﬁ_177 5—266 ﬁ_2046

CPC:(0, 8°B°BOBOBOBOBO OB BOBO) X G =10000101001100110101111

(CPC: (0, B2016 2015 g2043 2039 g2031 2015 G193 1919 1791 GIS3S 1023 ¢ G i

=01111000000101011101011

PC: (0, 2045 2043 2039 2031 2015 1983 1919 G1791 1535 1023 g20461) 5¢ G

=00111011110100010001011 1

. (0, B20 2011 g2035 g2023 1999 p1951 g1655 g1663 g1279 511 01022 5 (|
=00111010110010101001101

b D (0, 1950 1978167 1343 275 g g0t ganse o 2o o
=10101U100001001J0LU10Q _ ____

- CPC: (B0, 50O OB RO BOBOBOROBOR0) x G =01111010110011001010000 |

£ ) CPC: (9, B2046 2045 52043 2039 52031 52015 1983 1919 1791 1535 51023 xG
—IUUU(HlHIHHUHJUUIUIUU

1 | CPC number:
[89 - 212-11 =178

4096 codewords
in[23,12,7]

- CPC: (g0, BwsqlpunﬁmsﬁuuBmﬂmuBsaq,}mmﬁzmsgznzsﬂzm) xG |
______ =01010001111011001000011 ___________________________|

(o ) X G = 00000000000000000003000
- (a°,00000000000) X G = 1 11TTTLTTTTTITTTTTTTT]

Fig. 3.

CPCs constructed by [23,12,7] cyclic code.

IV. CONCLUSION AND DISCUSSION

We have proposed an efficient method which we could find
out all codeword with full cyclic order in cyclic code to form
the cyclically permutable codes.This paper has extended the

7-10 December 2020, Auckland, New Zealand

results in [8] and [13] in twofold advantages by using the
characteristics of finite fields to develop an efficient algorithm
to find a CPC from a cyclic code of prime-primitive length
and prime-nonprimitive length respectively.
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