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Abstract—JPEG anti-forensics aims to remove the artifacts left 

by JPEG compression and recover JPEG compressed images. 

However, the existing JPEG anti-forensic methods often 

introduce new traces and cause the degradation of visual quality 

of the processed images. In this work, JPEG anti-forensics are 

modelled as an image-to-image translation problem, where a 

generative adversarial network framework is used to translate a 

JPEG compressed image to a reconstructed one. Since JPEG 

compression causes impairment to high-frequency components, a 

loss function of high-frequency Discrete Cosine Transform (DCT) 

coefficients is proposed to recover these components. To prevent 

forensic detection, a calibration loss function is further introduced 

to mitigate the variance gap in the high-frequency subbands 

between generated images and their calibrated versions. Our 

experimental results demonstrate that the proposed method 

achieves better image quality than the existing state-of-the-art 

JPEG anti-forensic methods with comparable anti-forensic 

performance. 

 
Index Terms—JPEG anti-forensics, GAN, high-frequency loss, 

calibration loss. 

 

I. INTRODUCTION 

With recent advances in information technology and the 

widespread availability of digital equipment, a large number of 

digital images are recorded and shared every day. To reduce 

the storage space and transmission time, lossy image 

compression methods, such as JPEG, are introduced.  

It’s known that JPEG compression introduces blocking, 

blurring and ringing artifacts in the spatial domain, and 

quantization artifacts in the DCT domain. In JPEG [1], 

quantization is performed according to the standard 

quantization tables. Since the human visual system is less 

sensitive to distortion of the high-frequency components 

smaller quantization steps are adopted for low-frequency term 

and the high-frequency term is quantized with relatively large 

steps. As a result, the distortion in high-frequency components 

is larger than that in low-frequency in JPEG compressed 

images. Artifacts from JPEG compression in DCT or spatial 

domain can be used by JPEG forensic algorithms [2, 3] to 

identify the presence of possible falsifying operations. The goal 

of JPEG anti-forensics is to conceal or remove the features 

related to compressed traces extracted by forensic algorithms, 

thus achieving the purpose of deceiving such algorithms. 

Stamm et al. [4] proposed a method which can remove 

quantization artifacts by adding proper noise dither to an 

image’s DCT coefficients. Stamm et al. [5] extended their work 

by introducing median filtering and white Gaussian noise to 

disguise blocking artifacts. Fan et al. [6] developed a four-step 

manipulation process, including total variation (TV)-based 

deblocking, perceptual DCT histogram smoothing, second-

round TV-based deblocking and decalibration, to erase the 

fingerprints left by JPEG compression in the spatial and DCT 

domains, achieving a tradeoff between artifact removal and 

image quality of manipulated images. Fan’s method is 

currently regarded as the benchmark for JPEG anti-forensic 

performance. However, these anti-forensic methods may 

introduce new traces, with the noise dithering or filtering 

operation making the quality of reconstructed anti-forensic 

images worse than JPEG compressed image. Luo et al. [7] has 

since pioneered the use of generative adversarial networks 

(GANs) [8] for JPEG anti-forensics, although this method 

performs poorly against traditional JPEG forensic methods [9–

11]. 

In this work, we model JPEG anti-forensic efforts as an 

image-to-image translation problem, and propose a generative 

adversarial network framework to translate JPEG compressed 

images into reconstructed ones automatically. Based on the 

observation that JPEG compression causes serious impairment 

to high-frequency components, a loss function of high-

frequency DCT coefficients is proposed to restore the high-

frequency components and improve the visual quality of the 

reconstructed JPEG images. To prevent forensic detection, a 

calibration loss is further introduced to mitigate the variance 

gap in the high-frequency subbands between generated images 

and their calibrated versions.  

II. NETWORK ARCHITECTURE  
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The architecture of the framework includes a generator 

network (G) and a critic network (C), as illustrated in Fig. 1. 

A. Generator Network 

The architecture of G is shown in Fig. 1 - (a). Here we adopt 

residual dense block (RDB) and residual learning [13]. Firstly, 

two convolutional layers are used to extract low-level features 

from JPEG compressed images that are input to the generator. 

The pixel values of these JPEG image are normalized to [-1, 1]. 

Eight RDBs are then utilized to learn local dense features, and 

the output of each RDB is combined directly in a concatenation 

way. After this concatenation operation, we apply a 

convolutional layer with 64 1 × 1 kernels to learn new 

associations across these local feature maps, followed by a 

convolutional layer with 64 5×5 kernels to extract global 

features. After adding the preceding feature maps and the 

output of the first convolutional layer, the resulting feature 

maps are fed into a convolutional layer with a 5 × 5 kernel. A 

hyperbolic tangent (TanH) activation function is followed to 

scale the pixel values of generated image in the range [-1, 1]. 

It’s worth noting that the sizes of the feature maps keep the 

same in each convolutional layer, because padding mode is set 

to be the same and the stride equals to 1. 

RDB architecture is shown in Fig. 1 - (b). The output of the 

(d - 1)-th RDB is used as the input of the d-th RDB. Each RDB 

consists of six convolutional layers with 32 5 × 5 kernels. Each 

convolutional layer is followed by rectified linear units (ReLU) 

[14]. The outputs of the (d -1)-th RDB and each of 5 preceding 

convolutional layers are concatenated to all following layers in 

the d-th RDB. Next, we use a convolutional layer with 32 1 × 

1 kernels. The output of this 1 × 1 convolutional layer and the 

(d-1)-th RDB are summed to obtain the output of the d-th RDB. 

B. Critic Network 

C, shown in Fig. 1 - (c), is designed to widen the distribution 

gap of between the generaed images and the original ones. C 

receives either a generated image or an original one. As before, 

the pixel values of input images are normalized to [1, 1]. A 

series of convolutional layers are then employed to learn 

higher-level typical features. Each convolutional layer with 3 × 

3 kernel is followed by a layer normalization [15] and a ReLU 

activation function. Instead of Batch normalization (BN) [16], 

layer normalization is used to avoid the interdependence 

between the input samples of the same batch [17]. The number 

of filters doubles every two convolutional layers, except for the 

last layer with a 2 × 2 kernel. In the training process, we used 

 
(a) Generator Network 

 
(b) Residual Dense Block (RDB) 

 
(c) Critic Network 

Fig. 1   The architecture of the JPEG anti-forensic framework. The parameters k, n, and s represent the kernel size, the number of kernels and the 

stride of each convolutional layer, respectively. G(x'), x, and x' denote the generated, uncompressed, and JPEG compressed images, respectively. 
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128 × 128 pixel training images, yielding 2 × 2 feature maps 

after the six convolutional layers. The critic network ultimately 

outputs a scalar, representing the score of the input sample.   

Larger score indicates a greater likelihood that the input image 

is an original (real) image. Lower score indicates reconstructed 

or generated (fake) image. 

C. Loss Function of G 

The loss function in G can be represented as: 

𝐿𝑮 = 𝔼x′[𝛼𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

+ 𝛽𝐿𝐺
ℎ𝑓𝑐

+ 𝜂𝐿𝐺
𝑐𝑎𝑙 + 𝛾𝐿𝐺

𝑎𝑑𝑣],                  (1) 

where 𝐱′ represents the JPEG compressed images. 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

, 𝐿𝐺
ℎ𝑓𝑐

, 

𝐿𝐺
𝑐𝑎𝑙  , and 𝐿𝐺

𝑎𝑑𝑣  represent the pixel-wise loss, high-frequency 

loss, calibration loss, and adversarial loss, respectively. 𝛼, 𝛽, 𝜂, 

and 𝛾 refer to the pre-defined weights for each loss term. The 

training goal for G is to obtain optimal model parameters and 

minimize  𝐿𝐺 , i.e., solving the optimization problem of 

min𝜽𝑮
𝐿G. 𝜽𝑮 denotes the parameters for G. 

1) Pixel-Wise Loss 

Given an uncompressed image 𝐱 and its corresponding JPEG 

compressed image 𝐱′, both with the size of 𝑊 × 𝐻, the pixel-

wise mean squared error loss 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

 is defined as: 

𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

=
1

𝑆
∑ ||x − 𝐺(x′)||2

2𝑆
𝑖=1 ,                      (2) 

where ‖∙‖2
2  means the square of 𝑙2  norm; 𝑆 = 𝑊 × 𝐻 ; and 

𝐺(𝐱′)  represents a generated image. The pixel-wise loss 

reflects the differences between the pixels of an original image 

and the output image of G. The optimization of 𝐿𝑮
𝑝𝑖𝑥𝑒𝑙

 leads to 

a high PSNR value of the output image from G [18]. 

2) High-frequency Loss  

A high-frequency loss 𝐿𝐺
ℎ𝑓𝑐

 is proposed to restore the high-

frequency components of JPEG images. It is defined as an ℓ2 

loss (i.e., a Euclidean distance) with respect to the differences 

in the high-frequency DCT coefficients of the generated image 

and its original image. It can be represented as: 

𝐿𝐺

ℎ𝑓𝑐
=

1

𝑁
∑ ||𝐷𝐶𝑇(𝐱𝑘)⨀𝐌 − 𝐷𝐶𝑇(𝐺(𝐱′)𝑘)⨀𝐌||2

2𝑁
𝑘=1 ,  (3) 

 

𝐌 =

[
 
 
 
 
 0 0 ⋯ 0 0
0 0 ⋯ 0 1
⋮ ⋰ ⋮ ⋰ 1
0 0 1 ⋯ 1
0 1 ⋯ 1 1]

 
 
 
 

,                     (4) 

where 𝑁 = 𝑆/64  represents the number of blocks; the 

superscript 𝑘 refers to the block index of an image; ⨀ means 

dot product of matrices; and 𝐷𝐶𝑇(∙)  denotes the DCT 

transformation of 8 × 8 blocks which do not overlap in the 

image. As shown in Eq. (4), M is a mask matrix where each 

element in the upper-left corner along the counter-diagonal of 

M equals to zero and all other elements are 1. M can be 

regarded as an ideal high-pass filter in the DCT domain. 𝐿𝐺
ℎ𝑓𝑐

 

provides an effective representation of the loss of high-

frequency details in the DCT domain, and leads to the 

generation of visually realistic images. 

3) Calibration Loss 

For an original uncompressed image, the variance of the DCT 

coefficients is very similar to that of its calibrated version in 

the high-frequency subbands [19], which can be obtained by 

cropping four pixels at the top, bottom, left and right edges of 

the original uncompressed image. However, for a JPEG 

compressed image, the variance of DCT coefficients is quite 

different from that of its calibrated version in the 28 high-

frequency subbands. Furthermore, even after anti-forensic 

attack [4, 5], the gap of the variance of DCT coefficients 

between the anti-forensically modified image and the original 

one is still large.  

To achieve anti-forensic performance, the proposed 

calibration loss function is introduced to minimize the variance 

gap in the high-frequency subbands between the generated 

image and its calibrated version, which can be defined as: 

𝐿𝑮
cal =

1

28
∑ |var (𝑏𝑙𝑜𝑐𝑘_𝐷𝐶𝑇𝑗(𝐺(x′))) −28

𝑗=1

                            var (𝑏𝑙𝑜𝑐𝑘_𝐷𝐶𝑇𝑗(𝐺(x′)𝑐𝑎𝑙))|,                   (5) 

where 𝑏𝑙𝑜𝑐𝑘_𝐷𝐶𝑇𝑗(∙) represents all DCT coefficients of the j-

th high-frequency subband extracted after 8 × 8 DCT 

transformation of the image, with the locations of the values of 

1 in matrix M (see Eq. (4)) corresponding to 28 high-frequency 

subbands; var(·)  refers to the variance of the input vector; 

𝐺(𝐱′)𝑐𝑎𝑙  indicates the calibrated version of a generated image; 

and |∙| means the absolute value. 

4) Adversarial Loss  

To generate images with statistical characteristics similar to 

the original images, we also need to employ the adversarial loss. 

From the perspective of G, we expect images generated by G 

to deceive C as far as possible. Therefore, we define the 

adversarial loss 𝐿𝐺
𝑎𝑑𝑣 as: 

𝐿𝐺
𝑎𝑑𝑣 = −𝐶(𝐺(x′)),                                   (6) 

where 𝐶(·) refers to the output of the critic network. 

D. Loss Function of C 

G and C are trained iteratively. G is fixed when C is trained, 

and vice versa. C is trained to maximize the gap between the 

distributions of the original and generated images, i.e., the loss 

function of C is defined as [17]: 

    𝐿𝐶 = 𝔼x[𝐶(x)] − 𝔼𝒙′[𝐶(𝐺(x′))] +

                  𝜆𝔼x̂[(‖𝛻x̂𝐶(x̂)‖2 − 1)2]                               (7) 

where 𝐱̂ = 𝜖𝐱 + (1 − 𝜖)𝐺(𝐱′)  denotes random samples 

sampled uniformly from 𝐱 and 𝐺(𝐱′); 𝜖 ~ U [0, 1] is a uniform 

distributed random number; ‖∙‖2 means the ℓ2 norm; and 𝜆 is 

the gradient penalty coefficient constant set to 10 [17].  

III. EXPERIMENTAL RESULTS 

The proposed framework was implemented in TensorFlow 

[20] and trained on a workstation equipped with an Nvidia 

GTX TITAN XP GPU.  In all experiments, we used three 

public image datasets: BossBase V1.01 (BossBase), [21] 

BOWS2-Original (BOWS) [22], and UCID-V2 (UCID) [23]. 

We randomly extracted 8,000 uncompressed images from 
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BossBase and BOWS for training. Each image was randomly 

cropped into 9 non-overlapped 128 × 128 images, each three of 

which were compressed using the MATLAB JPEG compressor 

with a quality factor (QF) of 25, 50, and 75, respectively. The 

training dataset therefore had 8,000 × 2 × 9 = 144,000 

compressed images and corresponding uncompressed images. 

Only images with the size of 128 × 128 were used for training. 

The remaining 4,000 images from BossBase and BOWS with 

the size of 512 × 512, together with 1,338 uncompressed gray 

images of size 384 × 512 converted from UCID, were used as 

the testing images. 

The proposed GAN networks are trained to their 

convergence after 85,000 iterations. In the first 10,000 

iterations, only G was trained and 𝛾 was set to zero to avoid the 

critic network focusing on the image content rather than on 

whether or not the image had been compressed. In the latter 

75,000 iterations, C and G were trained once alternately. The 

weights of loss functions in Eq. (1) are set as: 𝛼 = 1.0, 𝛽 = 0.1, 

𝜂 = 50.0, and 𝛾 = 1.0 × 10−5. We set a fixed learning rate of 

1.0 × 10−4 for both the generator and the critic network. The 

batch size is set to 16 and the optimizer Adam [24] is adopted 

with the default setting. 

A. Anti-Forensics of JPEG Compression 

In order to conceal the quantization artifacts of the DCT 

coefficients [11], the JPEG compressed images are pre-

processed by adding noise dither to each DCT coefficient using 

the STL method in [4]. Then the networks are trained using the 

pre-processed images as G’s input. Finally, the trained G is 

used to generate the modified images with anti-forensic 

enhancements. This scheme is denoted as A in this work. 

1) Countering the Conventional Forensic Detectors 

We compared the anti-forensic performance of the proposed 

anti-forensic method A with four existing JPEG anti-forensic 

methods STL [4], SL [5], FX [6], and LK [7]. As mentioned 

in the end of Para. 1 of Subsection A, the remaining 4,000 

images from BossBase and BOWS with the size of 512 × 512, 

together with 1,338 uncompressed gray images of size 384 × 

512 converted from UCID, were used as the testing images. For 

each anti-forensic method and each JPEG QF in {25, 50}, each 

test image was JPEG compressed and anti-forensically 

modified. Then we used 5,338 anti-forensically modified 

images as positive samples and 5,338 uncompressed test 

images as negative samples to obtain the area under the 

receiver operating characteristic curve (AUC) in the detection 

with the detectors in Lai [9], Fan [10], Valenzise [11], and Luo 

[12] respectively. If the AUC value is close to or less than 0.5, 

the anti-forensics method is effective in deceiving the forensic 

Table I.  The average PSNR and SSIM values of  JPEG compressed images J and the anti-forensically modified images with STL, SL FX, 

LK,  A. The anti-forensic performance (AUC values) against the detectors in [9-12] is also evaluated. 

QF Methods Lai [9] Luo [12] Fan [10] Val [11] PSNR (dB) SSIM 

25 

J 1.00  1.00  0.98  0.97  32.59  0.8950 

 STL [4] 1.00  0.14  1.00  0.87  29.00  0.6911 

SL [5] 0.92  0.10  0.81  0.88  30.00  0.7995 

FX [6] 0.34  0.25  0.50  0.50  32.32  0.8876 

LK [7] 0.99 0.66  0.91  0.93  32.89  0.8973  

A 0.54  0.57  0.72  0.22  33.36  0.9046 

50 

J 1.00  1.00  0.97  0.98  35.07  0.9346 

 STL [4] 1.00  0.15  0.99  1.00  31.18  0.7741 

 SL [5] 0.72  0.12  0.65  0.91  31.15  0.8848 

 FX [6] 0.32  0.28  0.50  0.52  34.52  0.9233 

LK [7] 0.99  0.69  0.83 0.87  34.97  0.9315  

A 0.42  0.57  0.67  0.09  35.21  0.9350 

 

      

(a) J                           (b) STL [4]                          (c)  SL [5]                           (d) FX [6]                      (e) LK [7]                       (f) A 

Fig. 2    Visual examples of various JPEG anti-forensic methods. (a) JPEG compressed image J; (b) – (f) J anti-forensically modified with STL, SL, FX, 

LK and the proposed method A, respectively. 
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detector. As shown in Table I, the proposed method A is very 

close to or less than 0.5, and  has comparable performance with 

state-of-the-art anti-forensic method FX, while achieving 

better image visual quality in terms of the peak signal-to-noise 

ratio (PSNR) and structural similarity index measure (SSIM) 

[25] than all existing anti-forensic methods.  
Fig. 2 shows the visual examples of images modified with 

the various anti-forensic methods. It can be seen that our 

method A improved the image quality. Compared with the 

other JPEG anti-forensic methods, the reconstructed image 

obtained with A had better clarity and more complete details. 

Our method appeared more natural to the human eye. STL, SL, 

and FX sacrificed the image quality of the JPEG image, and 

introduced a certain degree of noise to the image, making the 

processed image more blurred and reducing its visual appeal. 

2）Countering CNN-Based Forensic Detector 

Bayar et al. [26] proposed a forensic detector (BS) based on 

convolution neural network (CNN) and it is trained using pairs 

of original uncompressed images and their JPEG compressed 

counterparts. More specifically, the training dataset included 

16,000 512 × 512 images from BossBase and BOWS. Each 

original uncompressed image was JPEG compressed with a QF 

randomly chosen from {25, 50, 75}. The trained detector is 

used to detect whether the compressed and anti-forensically 

modified images had been compressed. The test dataset 

included the remaining 4,000 original images from the 

BossBase and BOWS datasets with size of 512 × 512. For each 

JPEG QF and each anti-forensic method, each image in the test 

dataset was JPEG compressed and anti-forensically modified, 

then it is detected whether it is uncompressed (original).  

As shown in Table II, SL, FX, LK and the proposed method 

anti-forensic method A have the excellent anti-forensic 

performance for all three JPEG QFs, with a detection error rate 

closing to 1.0, meaning that almost all anti-forensically 

modified image was detected as being uncompressed (original) 

images. The proposed A also showed comparable performance 

in deceiving BS with SL, FX, LK. 

B. Ablation Study 

To investigate the interactions among the parts of the loss 

function of G in the anti-forensics of JPEG images, two 

additional models were trained, one containing only 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

, 

represented here by ℱ1 ; and the other containing 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

 and 

𝐿𝐺
ℎ𝑓𝑐

, denoted here as ℱ2 . ℱ1  and ℱ2  had the same training 

parameters as A. The variation in 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

 and 𝐿𝐺
ℎ𝑓𝑐

 was then 

observed per 500 iterations during the training of A, ℱ1, and 

ℱ2 on the validation set, which is composed of a total of 16,014 

JPEG compressed images with size 128×128 and the 

corresponding uncompressed original images. Each three of 

JPEG images were obtained by randomly cropping the original 

testing image into three non-overlapped images and then 

carrying out JPEG compression with QF 25, 50, and 75, 

respectively. Fig. 3 shows the convergence of the models and 

the varying curves of 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

 and 𝐿𝐺
ℎ𝑓𝑐

 for the validation set. 

From Fig. 3 - (a), it can be seen that the values of 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

 for 

A, ℱ1, and ℱ2 decreased and converged during training. The 

locations of the convergence of 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

 are basically the same in 

the later stages of the training process, and there is no obvious 

difference among them. It can therefore be considered that 

adding 𝐿𝐺
ℎ𝑓𝑐

 or 𝐿𝐺
𝑎𝑑𝑣  to the total loss function of G has little 

influence on the final convergence position of 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

. On the 

other hand, it can be seen from Fig. 3 - (b) that the values of 

𝐿𝐺
ℎ𝑓𝑐

 corresponding to A, ℱ1 , and ℱ2  also decreased and 

converged during training. The 𝐿𝐺
ℎ𝑓𝑐

 curve of ℱ1 shows that if 

only 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

 is optimized, 𝐿𝐺
ℎ𝑓𝑐

 will be reduced. Since the 

     
(a) 𝐿𝐺

𝑝𝑖𝑥𝑒𝑙                                                                                       (b) 𝐿𝐺
ℎ𝑓𝑐                                     

Figure 3. Loss function curves of 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

 and 𝐿𝐺
ℎ𝑓𝑐

 during the training of A, ℱ1, and ℱ2 on the validation set. 

Table II.  Detection error rates (%) of the CNN-based forensic 

detector BS [26] in detecting whether a compressed image/an anti-

forensically modified image has been compressed. 

 QF=25 QF=50 QF=75 

J 0.02 0.10 2.67 

STL [4] 22.92 80.20 95.35 

 SL [5] 100.00 100.00 100.00 

FX [6] 98.65 97.20 97.00 

LK [7] 95.38 98.23 99.95 

A 94.55 90.23 95.88 
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purpose of optimizing 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

 is to bring the pixel values of the 

reconstructed image closer to those of reference image, the 

low- and high-frequency components of the JPEG image will 

be restored simultaneously in the early stages of network 

training. However, by comparing the 𝐿𝐺
ℎ𝑓𝑐

 curve of ℱ1  with 

that of ℱ2 and A in the later stages of training, we can see that 

the 𝐿𝐺
ℎ𝑓𝑐

 curves of ℱ2 and A lie primarily below that of ℱ1, 

indicating that if the 𝐿𝐺
ℎ𝑓𝑐

 part is added to the total loss function 

of G, the convergence position of 𝐿𝐺
ℎ𝑓𝑐

 in the later stages of 

training with ℱ2 or A will be smaller than that of 𝐿𝐺
ℎ𝑓𝑐

 where 

G optimizes only 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

. This demonstrates that in the late 

training stage, loss of the high-frequency components of 

reconstructed images accounts for a larger proportion of the 

total loss than in the early training period. If 𝐿𝐺
ℎ𝑓𝑐

 is added to 

the total loss function of G as a supplement to 𝐿𝐺
𝑝𝑖𝑥𝑒𝑙

, G will be 

guided to focus more on restoring the high-frequency 

components of a JPEG image in the later training period, thus 

the reconstruction of an over-smoothed image can be avoided. 

IV. CONCLUSIONS 

This work explores the removal of artifacts left by JPEG 

compression and proposes a GANs framework for 

reconstructing JPEG compressed images. We propose a loss 

function of high-frequency DCT coefficients to recover high-

frequency components impaired by JPEG compression and to 

reconstruct JPEG compressed images with statistical 

characteristics and visual quality similar to the original 

uncompressed images. In order to prevent forensic detection, 

we propose a calibration loss to mitigate the variance gap in the 

high-frequency subbands between generated images and their 

calibrated versions. Our theoretical analysis and experiments 

show that the proposed loss functions accurately restore JPEG 

compressed images and enhance the JPEG anti-forensic 

performance. The experimental results demonstrate that the 

proposed JPEG anti-forensic method achieves a better tradeoff 

between avoiding forensic detection and preserving image 

quality than state-of-the-art JPEG anti-forensic methods. 
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