
Study on Possibility of Estimating Smartphone Inputs 

from Tap Sounds 

Yumo Ouchi*, Ryosuke Okudera*, Yuya Shiomi*, Kota Uehara*,  

Ayaka Sugimoto*, Tetsushi Ohki* and Masakatsu Nishigaki* 
* Shizuoka University, Shizuoka, Japan 

E-mail: nisigaki@inf.shizuoka.ac.jp Tel: + 81-53-478-1467 

 

 

 
Abstract— Side-channel attacks occur on smartphone 

keystrokes, where the input can be intercepted by a tapping 

sound. Ilia et al. reported that keystrokes can be predicted with 

61% accuracy from tapping sounds listened to by the built-in 

microphone of a legitimate user's device. Li et al. reported that 

by emitting sonar sounds from an attacker smartphone’s built-in 

speaker and analyzing the reflected waves from a legitimate 

user’s finger at the time of tap input, keystrokes can be 

estimated with 90% accuracy. However, the method proposed by 

Ilia et al. requires prior penetration of the target smartphone 

and the attack scenario lacks plausibility; if the attacker’s 

smartphone can be penetrated, the keylogger can directly 

acquire the keystrokes of a legitimate user. In addition, the 

method proposed by Li et al. is a side-channel attack in which 

the attacker actively interferes with the terminals of legitimate 

users and can be described as an active attack scenario. Herein, 

we analyze the extent to which a user's keystrokes are leaked to 

the attacker in a passive attack scenario, where the attacker 

wiretaps the sounds of the legitimate user’s keystrokes using an 

external microphone. First, we limited the keystrokes to the 

personal identification number input. Subsequently, mel-

frequency cepstrum coefficients of tapping sound data were 

represented as image data. Consequently, we found that the 

input is discriminated with high accuracy using a convolutional 

neural network to estimate the key input. 

I. INTRODUCTION 

 Recently, owing to the widespread use of smartphones and 

cashless payment services, the input of sensitive information 

such as personal information and passwords on smartphones 

has become more prevalent. One technique to steal personal 

information is side-channel attack, in which a cryptographic 

module is observed from the outside and cryptographic 

analysis is performed based on the secondary information 

obtained. As side-channel attacks are not recorded in a log, 

evidences of the attacks are difficult to obtain. One of the 

side-channel attacks is an attack called the 

telecommunications electronics material protected from 

emanating spurious transmissions (TEMPEST) attack [1], 

which detects weak electromagnetic waves and sounds 

leaking from a display or a cable and acquires the displayed 

information or inputted text. Methods of TEMPEST attacks, 

which use the sound generated by the input to a smartphone 

or tablet device to infer the input content, have been proposed 
[2][3][4]. However, existing methods use attack scenarios that 

require active interference with the devices of legitimate users 

and therefore cannot pose a realistic threat. In this study, we 

created a passive attack that used the sound of smartphone 

tapping to estimate the input contents. We evaluated the 

severity of the threats and considered the defense measures. 

 

II. RELATED STUDIES 

Side-channel attacks occur on smartphone keystrokes, 

where the input can be intercepted by a tapping sound. Ilia et 

al. proposed a method for inferring input content using a 

built-in microphone and the tapping sounds of a legitimate 

user's smartphone or tablet [2]. It was demonstrated that when 

the terminal of a regular user had multiple built-in 

microphones, the sound generated by the tap was received 

differently by the upper and lower microphones. From the 

difference in the sound arrival time, we calculated the origin 

of the sound when the user tapped on the screen. The results 

indicated that the keystrokes were estimated with 61% 

accuracy. However, this attack scenario lacks validity because 

the device that wiretaps the tapping sound is a microphone 

built into a legitimate user's terminal, which requires prior 

intrusion. If the attacker has access to the target smartphone, 

then the malicious person can directly obtain the keystrokes 

of the legitimate user using a keylogger. Li et al. reported that 

keystrokes can be estimated with 90% accuracy by emitting 

sonar sounds from an attacker smartphone's built-in speaker 

and analyzing the reflected waves from a legitimate user's 

finger during tap input [3]. However, this attack is a side-

channel attack, in which the attacker actively interferes with 

the legitimate user's terminal and can be described as an 

active attack scenario. Li et al. proposed an attack to infer 

input from the sound of typing on a physical PC keyboard [4]. 

The authors reported that they estimated the keystrokes with 

96% accuracy using feature extraction and clustering based on 

a cepstrum analysis of audio data obtained by listening to the 

sound of a regular user's typing from a nearby microphone. 

This implies that even in smartphones, it is possible to infer 

the input of a legitimate user to a smartphone by listening to 

the sound of the tap input with an external microphone. In this 

study, we demonstrated that an attacker can hear the sound of 

a tap when a legitimate user inputs a key on a smartphone. 

Additionally, we will consider defensive measures after 

assessing the severity of threats in a passive attack scenario, 

in which an external microphone is used to eavesdrop. 
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III. ATTACK METHOD 

 In a passive attack scenario where an attacker wiretaps the 

sound of a legitimate user's keystrokes with an external 

microphone, we verified the extent to which information 

regarding the legitimate user's keystrokes is leaked to the 

attacker. First, we limited the keystrokes to the personal 

identification number (PIN) input. The attacker listens to the 

target's smartphone taps by placing a listening device in the 

vicinity. Features were then extracted from the collected voice 

data and identified using machine learning. The discriminator 

used was a convolutional neural network (CNN). The CNN 

input was a two-dimensional image of the audio data that 

describes, as a heat map of time transitions, the mel-frequency 

cepstrum coefficients (MFCC). The output of the CNN was 

the key information entered by a legitimate user; MFCC is 

typically used in speech recognition. The CNN is a deep 

learning method that is widely used in image recognition. 

Studies have been conducted where the feature vectors of an 

MFCC were imaged and then classified using a CNN [5]. Fig. 

1 shows the flow for verifying the estimation of smartphone 

inputs from tapping sounds. The verification was repeated by 

varying the distance between the target smartphone and the 

microphone for wiretapping. 

 

 
 

Fig. 1. Flow for estimation verification 

 

IV. EXPERIMENT 

A. Experimental Environment 

 Table 1 lists the specifications of the equipment used in the 

experiments. A soundproof room was used during the 

recording, and the background noise was measured. A normal 

sound level meter (NL-42 manufactured by Rion Corporation 

[8]) was installed at the location where the target smartphone 

was placed. When frequency weighting was used for the A 

characteristic and time weighting was used for the fast 

characteristic, the background noise level was 30-35 dB. 

 

Table 1. Experimental equipment 

Equipment Name 

Smartphone iPhone 6 

Tablet iPad Pro 

CPU for analysis Intel® Core™ i7-

6500U@2.50GHz 

OS (PC) Windows 10 Pro 

Audio editing 

software 

Audacity  

Programming 

language 
Python 3.7 

Speech processing 

library 
librosa 0.7.0 

Deep learning 

library 

Keras 2.3.1 

TensorFlow 1.14.0 

 

B. Sound Dataset 

 The experimental environment is shown in Figure 2. In the 

soundproof room, the PIN input interface of a Japanese 

software keyboard was displayed on the screen of the target 

smartphone. A participant wore earphones and tapped each of 

10 numbers from 0 to 9 consecutively for 100 times such that 

the fingernails touched the screen for 1,000 taps. To simplify 

the analysis of voice data, a metronome voice of 100 bpm was 

played through the earphones during the tapping, and the 

experimenter tapped to the rhythm of the metronome. In a 

passive attack scenario, we believe that recording 

microphones are better suited to mobile devices used by 

attackers than precision microphones or listening devices. In 

this study, due to the size of the tablet devices and the limited 

size of the soundproof room, four tablet devices (recording 

microphones) were placed at 10, 30, 50, and 70 cm from the 

target smartphones and tapping sounds were recorded 

simultaneously. The format of the audio data was m4a. 

 

  
Fig. 2. Experimental condition 
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C. Sound Processing 

After the recording, the audio data for each number was 

converted from an m4a format to a wav format. Using the 

audio editing software Audacity [6], the entire audio data was 

time split every 0.35 s so that each tap became its own audio 

file. Fig. 3 shows an example of audio data division. We used 

librosa, a speech processing library in Python, to create two-

dimensional images (“MFCC images”) from the MFCC of 

each tap in the audio data. An example of the image is shown 

in Fig. 4; it is a heat map of the MFCC coefficients in 20 

dimensions, with time on the horizontal axis and 20 

dimensions on the vertical axis. In the actual identification, 

the color bars, axes, and labels were deleted and output as a 

640 x 480 pixels image. Because the MFCC images were 

color images, the CNN received three channels of RGB image 

input. 

 
Fig. 3. Time partitioning of audio data 

 

 
Fig. 4. MFCC illustration 

D. Machine Learning 

 In this study, we used Keras and TensorFlow, which are deep 

learning libraries in Python, to train and discriminate using 

the CNN. We referred to [7] for the network configuration of 

the CNN. The CNN model used in this study is shown in Fig. 

5. The MFCC images (three channels of RGB images) 

described in Section 4.3 were used as input to the CNN. The 

CNN first compressed them to 50 × 50 pixels and then 

transformed them in two consecutive steps using 3 × 3 filters 

to obtain 32 feature maps. Next, max pooling (a pooling 

operation to extract the maximum element for a small region) 

was performed, and the image size was reduced by half to 2 × 

2. After this, we performed two consecutive convolutions and 

max pooling. The resulting three-dimensional arrays were 

smoothed in one dimension and connected to all of the 

bonded layers. The activation function was a softmax function 

in the output layer and a ramp function in the other layers. In 

the training and evaluation of the discriminator, all MFCC 

images created (as described in Section 4.3) were partitioned 

into testing and training data with a ratio of 8:2. Furthermore, 

the training data was partitioned into validation and learning 

data with a ratio of 8:2. 

V. RESULT 

 Fig. 6 and Fig. 7 show the learning curve. In Fig. 6, the 

vertical axis is the accuracy, and the horizontal axis is the 

epoch, where “acc” represents the accuracy of the training 

data, and “val_acc” the percentage of correct responses for the 

validation data. In Fig. 6, the vertical axis is the loss, and the 

horizontal axis is the epoch transition, where “loss” is the loss 

of the training data and “val_loss” is the loss of the validation 

data. Fig. 7 shows that the training data was trained with 

almost 100% correct answers. Because the percentage of 

correct responses for data verification was high, we confirmed 

that we were able to create the model without overlearning.  

 We evaluated the accuracy of the trained CNNs by inputting 

the data for evaluation. A five-fold cross-validation was 

performed to calculate the discrimination rate and the average 

of the percentage of correct responses, obtained from the five 

evaluations, was used. The results are shown in Table 2, 

confirming that our attack can identify the PIN input with 

high accuracy. 

 

 
Fig. 5. CNN model 
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Fig. 6. Learning curve of accuracy 

 

 
Fig. 7. Learning curve of loss 

 

Table 2. Accuracy by distance 

Distance (cm) Accuracy (%) 

10 98.9 

30 99.0 

50 98.4 

70 96.3 

 

VI. DISCUSSION 

A. Limitations 

As shown in Table 2, we can expect that CNN-based input 

prediction attacks are feasible with high probability. However, 

there are many limitations to this evaluation. The first 

limitation is the tapping method. In our experiment, we 

collected the sound of fingernail tapping on a smartphone, 

which is limited to behavioral scenarios. Therefore, it is 

necessary to verify the estimation of tapping with a finger pad 

only. Furthermore, in the experiment, for each number from 0 

to 9, 100 taps were tapped continuously and equally at fixed 

time intervals. Therefore, it is necessary to collect audio data 

of arbitrary taps and learn them. The second limitation is the 

attack environment. In this experiment, the data was recorded 

in a soundproofed room and evaluated in a noise-free 

environment. In the future, experiments should be conducted 

in various environments with various noise levels for 

evaluation. In our experiment, smartphones for tapping and 

tablets for recording were set up on the floor of the 

soundproof room. However, various situations exist in the 

actual attack environment, like when the smartphone is placed 

on a table or held in the hand. In the future, experiments and 

evaluations should be conducted in situations where users are 

using a smartphone. The third limitation is terminal 

dependence. In this experiment, we evaluated the combination 

of a specific smartphone device and a recording device. 

However, the characteristics of the tapping sound may depend 

on the smartphone used by a legitimate user and the recording 

device used by an attacker. In the future, we will evaluate 

various smart phones and recording devices. The fourth 

limitation is the number of participants. Because this study 

was only a basic study, it was conducted on only one 

participant. In the future, we will increase the number of 

participants for evaluation. The fifth limitation is the attack 

target. In our study, we limited the key input to PINs. In the 

future, we will consider both a flick-type 50-note keyboard 

and a QWERTY keyboard. The sixth limitation is the attack 

method. In this study, we assumed that the attacker had access 

to the correct answer of a legitimate user's keystrokes during 

CNN training. In the future, we will perform an experiment 

involving an attacker learning the CNN using his own 

keystrokes and then estimating the user's keystrokes using this 

CNN during the attack. 

 

B. Defensive measures 

In our experiment, we did not observe a significant change 

in the percentage of correct keystroke estimates when the 

distance between the target smartphone and the attacker's 

tablet device (recording device) differed. Therefore, merely 

“keeping a distance from the attacker” may not be an effective 

defense measure. Using adversarial and other examples, we 

are of the opinion that it is necessary to examine the method 

of synthesizing environmental sounds to effectively disturb 

CNNs. Li et al. considered two defenses against keystroke 

attack methods that infer keystrokes based on key-by-key 

characteristics of keyboard strikes: the input environment and 

input content [5]. From the point of view of the input 

environment, it is important to confirm that there is no 

wiretapping device in the room and that no sound can be 

intercepted from outside the room. Furthermore, the defensive 

measure is not only a simple password but also a combination 

with one-time password and biometric authentication. These 

countermeasures are also effective as a defense measure 

against attacks. 

VII. CONCLUSION 

 In this study, we analyzed the extent to which a user’s 

keystroke information is leaked to an attacker in a passive 

attack scenario, where the attacker wiretaps the sound of the 

user's keystrokes using an external microphone. First, we 
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limited the key input to the PIN input only. The MFCC of 

tapping sound data were represented as image data and a 

CNN was used to estimate the key input. We discovered that 

the input can be discriminated with high accuracy. Although 

the experiments were conducted in a soundproof room, no 

difference was observed in the estimation accuracy between 

the attacker and the target in the range of 10-70 cm. In the 

future, we will perform a more comprehensive analysis of the 

defense measures. 
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