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Abstract—Recent advances in face recognition and deep learn-
ing technologies are enabling us to identify individuals from
images captured by a camera from a distance. On the other hand,
there is a problem that a malicious person can impersonate the
registered user by presenting a photo or video of the registered
user’s face. Spoofing detection using video input, from which
more features can be extracted than images, has not been studied
very much. In this paper, we propose a method for detecting
spoofing from video images of a small number of frames. The
proposed method uses features extracted from video images
using 3D Convolutional Neural Network (3D CNN). We also use
deep metric learning to improve the accuracy of detection. We
demonstrate the effectiveness of the proposed method through
performance evaluation experiments using a large-scale spoofing
attack dataset.

I. INTRODUCTION

Biometrics, which uses physical and behavioral character-
istics of an individual, has been attracting much attention
as an emerging personal authentication method that is an
alternative to keys and passwords [1]. Biometric recognition
employs physical characteristics such as faces, fingerprints,
DNA, and palm prints, and behavioral characteristics such as
handwriting and keystrokes. Among them, face recognition
is highly acceptable since it is the same as natural personal
authentication, and is highly convenient since it is possible
to authenticate from a face image taken by a common RGB
camera [2]. On the other hand, there is a risk that a malicious
person can impersonate a registered user using a duplicate of
the registered user’s biometric information.

There are two types of major face spoofing attacks against
face recognition systems: “Print-Attack,” which presents a
printed picture of the registered user’s face, and “Display-
Attack,” which presents a video image of the registered user’s
face. We have to determine whether the input image or video
is real or fake to prevent spoofing attacks. Spoofing detection
methods such as Local Binary Pattern (LBP) and Histogram
of oriented Gradients (HoG) are based on manually designed
features [3], [4], [5], [6], [7]. There is a problem of decreasing
accuracy due to differences in the acquisition environment
since general-purpose image features are used. Recently, many
methods based on Convolutional Neural Network (CNN) have
been proposed with the development of deep learning [8], [9],
[10], [11], [12], [13]. This approach is more accurate than
conventional general-purpose feature-based methods since it

can extract features based on training data.
Although face recognition systems often use video images,

most of the spoofing detection methods using CNN are based
on images, and there are few methods using video images.
We expect to improve the accuracy of spoofing detection by
using video images as input since video images can extract not
only spatial features but also temporal features. In this paper,
we propose a spoofing detection method using a 3D CNN
with video input. The proposed method improves the accuracy
by using (2+1)D CNN [14] instead of standard 3D CNN.
We also use deep metric learning to improve the accuracy
against spoofing attacks that are not included in the training
data. Deep metric learning is one of the learning methods that
takes into account the relationships between feature vectors in
feature space (e.g., distance and similarity). In particular, our
method learns to reduce the intra-class variance and increase
the inter-class variance for real and fake by deep metric
learning. We demonstrate the effectiveness of the proposed
method in detecting spoofing through performance evaluation
experiments using the Spoof in the Wild (SiW) dataset1 [15], a
large-scale dataset of spoofing attacks against face recognition.

II. RELATED WORK

Spoofing detection in face recognition can be divided into
two types of approaches, one based on texture features and the
other based on temporal features. We summarize their major
methods in the following.

A. Approach based on Texture Features

This approach is divided into two categories: general-
purpose image features [3], [4], [5], [6], [7] and CNN [8],
[9], [10], [16]. Manually designed features such as LBP [3],
[4], HoG [5], Scale-Invariant Feature Transform (SIFT) [6],
and Speeded-Up Robust Features (SURF) [7] are used as
general-purpose features. Support Vector Machine (SVM) and
Linear Discriminant Analysis (LDA) are used to discriminate
between real and fake features. They are vulnerable to changes
in the environment and have a low detection accuracy since
these features are designed manually. Recently, many methods
using CNNs have been studied with the development of deep
learning [8], [9], [10], [16]. Most of methods use CNN models

1http://cvlab.cse.msu.edu/siw-spoof-in-the-wild-database.html
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Fig. 1. Overview of (2+1)D convolution used in the proposed method.

trained by ImageNet to extract features and detect spoofing
attacks by these features [8], [9], [10]. Ref. [16] employs two
CNNs: one is to extract texture features of each patch and
another is to extract features based on the depth information
of the face. CNN-based methods achieve higher detection
accuracy than those using general-purpose image features. On
the other hand, there is a problem that the detection accuracy
of spoofing attacks is not good enough to detect unknown
spoofing attacks since the binary classification of real and fake
is based on training data.

B. Approach based on Temporal Features

For print attacks, methods using temporal features have been
proposed since the real thing is in motion [10], [11], [12],
[13], [16]. Spoofing detection methods based on the detection
of eye blinks between video frames were proposed [10],
[13] It is effective against print attacks, but not necessarily
effective against spoofing attacks such as display attacks,
which present moving images since they contain eye blinks.
In [11], the detection accuracy was improved by extracting
dynamic features from multiple frames using a 3D CNN. In
[12], the detection accuracy was improved by adding optical
flow to the CNN input and extracting features that take motion
into account. In [15], the detection accuracy is improved by
using the depth information of the face estimated by CNN
and remote photoplethysmography (rPPG) estimated from the
dynamic change of the face texture. There is a problem
that some methods require many frames to extract temporal
features.

III. PROPOSED METHOD

The proposed method detects spoofing based on features
extracted from the input video image using 3D CNN. In the
following, we describe the 3D CNN architecture and deep
metric learning for the proposed method.

A. Network Architecture

In the case of spoofing attacks on face recognition systems,
it is expected that the detection accuracy of spoofing attacks
on face recognition systems can be improved by extracting
temporal features from video images instead of still images
[11]. In this paper, we use a network using (2+1)D convolution
[14] with a reduced number of 3D CNN parameters to extract
temporal features. (2+1)D convolution is a decomposition
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Fig. 2. Pipeline of the network architecture used in the proposed method: (a)
baseline and (b) baseline with FlowNetS.

of a 3D filter into spatial and temporal filters as shown in
Fig. 1. (2+1)D convolution allows us to reduce the number
of parameters while extracting temporal features, and thus
suppress overfitting. In this paper, we designate AlexNet [17]
with (2+1)D convolution as the baseline, which is called
ALexNet(2+1)D, as shown in Fig. 2 (a).

To improve the accuracy of the baseline, we add optical
flow-based features as shown in [12]. We use the features
extracted by FlowNetS [18], which is a network for estimating
optical flows. FlowNetS is a method for estimating optical
flows between images consisting of encoder decoders. In
this paper, we use only the encoder part to utilize optical
flow-based features. The features obtained by FlowNetS are
aggregated by Global Average Pooling (GAP) and given as
the input to the first fully-connected layer as shown in Fig.
2 (b). FlowNetS uses a model that has been trained on the
Flying Chairs dataset. AlexNet(2+1)D inputs a 5 frame movie
image, and FlowNetS inputs the 1st and 5th frame images.

B. Deep Metric Learning

Detection of spoofing attacks is a binary classification
problem to distinguish between real and fake, and therefore
it is not always possible to accurately distinguish spoofing
attacks that do not exist in the training data. In order to
deal with such unknown spoofing attacks, we employ deep
metric learning. Deep metric learning is a method of learning
in which the intra-class variance is small and the inter-class
variance is large. Deep metric learning may allow us to detect
unknown spoofing attacks since the score between feature
vectors of data not included in the training data and the feature
vectors of the real class may be reduced. We consider the
following methods to confirm the effectiveness of deep metric
learning in detecting spoofing attacks.
Contrastive Loss
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Let xi and x′
j be the feature vectors of class i and j,

respectively. The contrastive loss is a loss function that is
trained to reduce the distance between feature vectors when
the classes i and j are of the same class and to increase the
distance when the classes are different, and is defined by

Lcont =

{
D(x,x′) i = j
max(m−D(x,x′), 0) i �= j

, (1)

where D(x,x′) indicates a function calculating the distance
between two feature vectors and m indicates a margin.
Triplet Loss

Let consider 3 feature vectors: xa, xp, and xn. The triplet
loss is a loss function that makes the distance between a feature
vector xa and a closely related feature vector xp closer and
farther away from a distant feature vector xn when focusing
on a feature vector xa, and is defined by

LTriplet = max(D(xa,xp)−D(xa,xn) + α, 0), (2)

where α indicates a margin.
Cosine Similarity Loss

Major cosine similarity-based deep metric learning includes
ArcFace [19], SphereFace [20], and CosFace [21]. All the
methods penalize the angle between the feature vectors of
the correct class and the input feature vectors while training
the class classification. The cosine similarity loss is a loss
function that is trained to increase the inter-class variance and
to decrease the intra-class variance, and is defined by

Lcos = log
es{cos(m1θi+m2)−m3}

es{cos(m1θi+m2)−m3} +
∑n

j=1,j �=i e
s cos θj

, (3)

where θi indicates the angle between the input feature vector
and the feature vector of class i, i is a correct class label, and
s is a scaling parameter. m1, m2, and m3 indicates the penalty
parameter for SphereFace, ArcFace, and CosFace, respectively.

IV. EXPERIMENTS AND DISCUSSION

We describe experiments to evaluate the accuracy of spoof-
ing attacks on face recognition systems using the SiW dataset
[15].

A. SiW Dataset

The SiW dataset [15] consists of real, print attack, and
display attack moving images taken from 165 subjects. The
distance between the camera and the face, head pose, facial
expression, and lighting were varied to evaluate the robustness
to environmental changes. Each frame of the video image
has 1,920×1,080 pixels and was captured at 30 fps for about
15 seconds. In the print attack, two types of paper with the
subject’s face printed on them are held up to the camera. In
the display attack, 4 display devices are used per subject to
play a video of their face. Fig. 3 shows some examples of
images in the SiW dataset.

Real Print attack Display attack

Fr
am

e
C

ro
p

Fig. 3. Example of images in the SiW dataset.

TABLE I
EVALUATION PROTOCOL PROVIDED BY THE SIW DATASET.

Protocol Subset Subject Attack

1 Train 90 First 60 frames
Test 75 All

2 Train 90 3 Displays
Test 75 1 Display

3 Train 90 Print (Display)
Test 75 Display (Print)

B. Evaluation Protocol in SiW

The SiW dataset was created to evaluate the generalization
performance of spoofing detection methods against spoofing
attacks, and three evaluation protocols are provided as shown
in Table I. Protocol 1 is designed to evaluate the generalization
performance for various facial angles, expressions, and poses.
At 60 frames from the start of the video image, the subject did
not move much. Only the first 60 frames are used for training,
and all frames are tested. Protocol 2 is designed to evaluate
the generalization performance for the display attacks. Train
on three display devices and test on the remaining one. The
purpose of protocol 3 is to evaluate the performance against
unknown spoofing attacks. We train using only one of the print
attack or display attack and test against the untrained spoofing
data. Note that cross-validation is performed for protocol 2 and
protocol 3.

C. Evaluation Metrics

In this paper, we evaluate the Attack Presentation Classifi-
cation Error Rate (APCER), Bona fide Presentation Classifi-
cation Error Rate (BPCER), and Average Classification Error
Rate (ACER). APCER represents the maximum False Accep-
tance Rate (FAR) for spoofing attacks. BPCER is equivalent
to the False Rejection Rate (FRR). ACER is calculated by the
average of APCER and BPCER. A smaller value indicates a
higher accuracy for both metrics.

D. Experimental Condition

In this experiment, 60, 30, and 75 subjects were used
for training, threshold determination, and testing, respectively.
Some video images show a hand holding a printed paper or the
edge of the display, which can be detected easily as a spoofing
attack. Therefore, the 244×244-pixel face area extracted by
the face detector is taken as input. The FrontalFace Detector
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of Dlib2 is used as a face detector in the experiments. For
each frame of the video image, the average of the pixel values
is set to 0 and the variance is set to 1. The optimization
method Nesterov Accelerated Gradient (NAG) [22] is used.
The maximum epoch is 20, and if the value of the loss function
does not improve with respect to the data for determining the
threshold for 4 consecutive epochs, training is terminated. The
initial value of the learning rate is 0.005, and the learning
rate is multiplied by 0.9 for each epoch. The cosine similarity
between the representative vectors of the real class and the
extracted feature vectors is used as a score. The threshold is the
score at which the FAR and FRR are equal. Data augmentation
methods of left-right flipping and random erasing [23] are
applied to images during training.

E. Results

We compare the performance of the proposed method for (i)
the number of input frames, (ii) deep metric learning, and (iii)
conventional method, following the SiW evaluation protocol.

1) The number of input frames: In the baseline and the
method combining the baseline and FlowNetS, the detection
accuracy is compared by changing the number of input frames.
Table II shows the experimental results. For all the protocols,
the method combined with FlowNetS was more accurate than
the baseline. Features based on the optical flows estimated
by FlowNetS were distributed at different locations in the
feature space for real, print attack, and display attack, which
may have contributed to reducing the intra-class variance and
increasing the inter-class variance. The accuracy is lower when
the number of input frames is low and higher when the number
of input frames is high, however, the greater the number of
input frames, the longer it takes to process, therefore an input
of about 5 frames is considered to be suitable.

2) Deep metric learning: We compare the accuracy of the
proposed method trained by deep metric learning. In this
experiment, we use cosine similarity as the distance function
D between the feature vectors. Table III shows the results
of the experiments with each deep metric learning method.
From the experimental results, the proposed method trained by
ArcFace showed the best accuracy. The result is expected to
be due to the better discrimination of spoofing attacks in terms
of penalties compared to SphereFace and CosFace, which are
methods based on the same cosine similarity. In particular,
in protocol 3, the method using deep metric learning is more
accurate than the method using the cross entropy Loss. In this
paper, we demonstrate that deep metric learning can improve
detection accuracy against unknown spoofing attacks.

3) Comparison with conventional method: The accuracy of
the proposed method is compared with that of the conventional
method, FAS-BAS[15]. Table IV shows the results of the
experiment. In protocol 2, the accuracy of the proposed
method is higher than that of the conventional method. On the
other hand, the accuracy of the conventional method is high,
especially in protocol 3. While the proposed method requires

2http://dlib.net/
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Fig. 4. Examples of activation maps for each protocol obtained using Grad-
CAM

5 frames of video input, FAS-BAS requires about 100 frames
of input to obtain rPPG. Therefore, it is possible to detect the
display attack with higher accuracy compared to the proposed
method.

F. Discussion

We discuss what kind of evidence the proposed method uses
to discriminate between real and spoofing attacks by visu-
alizing regions of interest in CNN using Gradient-weighted
Class Activation Mapping (Grad-CAM) [24]. An example
of an activation map generated by testing the SiW dataset
according to the evaluation protocol is shown in Fig. 4. This
is a kind of the heat map, where the more important the
area is with the closer to red. In protocol 1, we focus on the
entire face area for the real, the reflection of printed matter
for print attack, and the reflection and noise of the display
for display attack. Protocol 2 focuses on reflections and noise
in the display display display as well as on the trained data
for untrained display displays. Protocols 1 and 3 determined
that the real was the spoofing attack and print attack was the
real, respectively. In conclusion, in order to correctly identify
the print attack in the proposed method, it is necessary to
combine it with a method using depth features and a method
that is robust to expression change.

V. CONCLUSION

In this paper, we proposed a spoofing detection method
based on 3D CNN and deep metric learning. Through per-
formance evaluation experiments using the SiW dataset, we
demonstrated the effectiveness of a combination of 3D CNN,
optical flow, and deep metric learning techniques. We also
demonstrated that the proposed method, which requires 5
frames as input, is more accurate in display attack than the
conventional method, which requires about 100 frames as
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TABLE II
COMPARISON FOR THE NUMBER OF INPUT FRAMES.

Prot. Method # of frames APCER [%] BPCER [%] ACER [%]

1

2 1.83 37.1 19.5
Baseline 3 0.82 28.3 14.6

5 0.81 28.3 14.6
2 0.74 27.2 14.0

Baseline w/ FlowNetS 3 0.76 27.3 14.0
5 0.73 26.2 13.5

2

2 1.12±0.40 1.06±0.41 1.09±0.40
Baseline 3 0.45±0.29 0.50±0.22 0.48±0.23

5 0.45±0.28 0.46±0.22 0.46±0.23
2 0.65±0.22 0.66±0.45 0.66±0.23

Baseline w/ FlowNetS 3 0.39±0.30 0.58±0.19 0.48±0.24
5 0.37±0.30 0.43±0.10 0.40±0.19

3

2 46.35±8.61 0.90±0.32 23.63±4.44
Baseline 3 33.35±7.72 0.78±0.20 17.06±3.93

5 24.29±6.89 0.53±0.20 12.96±3.53
2 29.35±5.89 0.78±0.20 15.06±3.94

Baseline w/ FlowNetS 3 22.82±5.45 0.62±0.16 11.72±3.04
5 21.91±5.27 0.61±0.16 11.26±2.90

TABLE III
COMPARISON FOR DEEP METRIC LEARNING METHODS.

Protocol Loss APCER [%] BPCER [%] ACER [%]

1

Cross Entropy 0.83 45.1 26.7
Cont 4.30 37.1 23.7

Triplet 1.67 31.8 16.7
ArcFace 0.73 26.2 13.5
CosFace 0.88 26.3 13.6

SphereFace 1.33 30.1 15.7
ArcFace+Triplet 0.77 26.8 13.8
ArcFace+Cont 2.44 46.2 24.3

2

Cross Enptropy 0.22±0.33 0.35±0.13 0.33±0.18
Cont 1.22±0.37 1.11±0.20 1.17±0.29

Triplet 1.01±0.39 1.00±0.40 1.01±0.40
ArcFace 0.37±0.30 0.43±0.10 0.40±0.19
CosFace 0.37±0.30 0.45±0.11 0.41±0.20

SphereFace 0.77±0.28 0.99±0.20 0.88±0.25
ArcFace+Triplet 0.44±0.33 0.62±0.20 0.53±0.28
ArcFace+Cont 1.19±0.44 1.43±0.51 1.31±0.48

3

Cross Entropy 73.13±9.45 0.39±0.24 56.76±4.60
Cont 26.22±6.27 1.00±0.21 13.61±3.22

Triplet 28.97±8.27 1.01±0.33 15.00±4.28
ArcFace 21.91±5.27 0.61±0.16 11.26±2.90
CosFace 22.37±5.40 0.90±0.20 11.64±2.76

SphereFace 22.50±6.27 0.61±0.16 11.26±3.20
ArcFace+Triplet 21.91±6.02 0.61±0.16 11.26±3.08
ArcFace+Cont 21.93±7.27 1.33±0.21 11.63±3.73

input. In the future, we will investigate the network archi-
tecture in combination with depth estimation and evaluate the
performance of the data set with other spoofing attacks.
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