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Abstract—With the development of machine learning tech-
nologies and the spread of mobile terminals, cloud-based image
recognition services are getting popular in recent years. However,
these services might suffer from a new type of attack called
“recognizer cloning attack” (RCA), in which an attacker sends a
lot of images to a recognition server and receives their recognition
results to train a new recognizer that mimics the function of the
server’s original recognizer. We refer to the recognizers trained
by RCA as “cloned recognizers” (CR). CRs allow attackers to
analyze the weakness of their original recognizer and cause
serious damage to the providers of the original service. To defend
against RCA, we propose a method for detecting CRs in this
paper. Our proposed method receives two recognizers as input
and discriminates whether one of them is a CR of the other or
not. We experimentally analyzed the properties of CRs and got
the following two findings. First, CR and its original recognizer
have the almost same recognition boundary. Second, CR provides
a recognition confidence score that is almost same or quite
higher than that provided by the original recognizer. Using these
properties as clues, the proposed method was able to detect CRs
with an accuracy of more than 80% in our experiments.

I. INTRODUCTION

With the development of machine learning technologies and
the spread of mobile terminals such as smartphones, cloud-
based image recognition services are getting popular in recent
years, whose typical examples include Google Cloud Vision
[1] and Amazon Rekognition [2]. In these services, users
first send an image to a recognition server from their own
smartphones, and then the server recognizes the sent image
and returns its recognition result to the users. This will be
a mainstream form of image recognition services in the near
future because it is difficult to install a high-end GPU, which
is necessary for running modern image recognition processes,
into smartphones.

On the other hand, some researchers warn about the possi-
bility that cloud-based image recognition services are attacked
by malicious users or attackers [3], [4]. In this paper, we
particularly focus on the following type of attack: An attacker
sends a lot of images to the recognition server and receives
their recognition results, which are used as a training dataset
to train a new recognizer that mimics the function of the
server’s original recognizer. We refer to this type of attack
as recognizer cloning attack (RCA) and the trained new
recognizer as a cloned recognizer (CR).

We believe that it is important to prepare for the future risk
of RCA and develop its defending method, which is the goal of
this work. To clearly specify our research interest, we start to

Fig. 1. General process of recognzer cloning attack and its problem.

describe a general process of RCA and the problem of trained
CRs in detail in the subsequent subsections.

A. Process of Recognizer Cloning Attack

For convenience of formulation, we only focus on single-
label recognizers here. Let X be the whole set of image data
and Y be a finite set of class labels. For an image x ∈ X
sent from a user, the server computes its class label y as
y = fL(x) ∈ Y , where fL : X → Y is the server’s image
recognizer. In most image recognition services, the confidence
score of the recognition result is also computed and returned
to the user together with y. Let z = fS(x) ∈ [0, 1] be
the confidence score, where fS : X → [0, 1] is a map for
measuring the confidence score from an input image x.

Sending a set of unlabeled images {xi ∈ X | i = 1, 2, · · · }
to the server, an attacker can obtain their recognition results
{yi ∈ Y | i = 1, 2, · · · } and the corresponding confidence
scores {zi | i = 1, 2, · · · }. The ultimate goal of the attacker
is to construct a CR g =

(
gL, gS

)
that satisfies

∀x ∈ X fL(x) = gL(x) (1)

by using D = {(xi, yi, zi) | i = 1, 2, · · · } as a training
dataset. Note that

∀x ∈ X fS(x) = gS(x) (2)

is an optional condition; some attackers might attach impor-
tance to this condition while some other attackers might ignore
it. Fig. 1 shows an overview of the above process of RCA.

B. Problems Caused by Cloned Recognizers

It is an urgent issue to develop a method for defending
against RCA, because the CRs trained by RCA can cause the
following serious problems:
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• If an attacker trains a CR and makes it publicly available
for free, it would be more preferred than its original
recognizer by most users. This decreases the profit of
the owner of the original recognizer. Moreover, privacy
information of the users using the CR would be leaked
to the attacker.

• The server’s original recognizer and its CR would have a
common weakness. Hence, the weakness of the original
recognizer would be easily found by analyzing the prop-
erty of its CR. For instance, once adversarial examples
that can fool a CR are generated, they can also fool its
original recognizer.

There are two strategies for defending against RCA: ex-ante
defense and ex-post defense. More specifically, the former is
to prevent attackers from training CRs, and the latter is to
detect already trained CRs. However, the former, namely ex-
ante defense, is difficult to realize. Hence, in this paper, we
focus on the latter, namely ex-post defense, and propose its
specific method. The contribution of this paper is summarized
as follows: First, this is the first work deeply considering the
threat of RCA, to the best of our knowledge. Second, we
experimentally analyze the characteristics of CRs to realize
a method for effectively detecting them.

The remainder of this paper is organized as below. In
Section II, we briefly review the attacks on pattern recognition
models including RCA. Next, in Section III, we describe our
proposed method for detecting CRs in detail. Then, in Section
IV, we report the results of the experiments conducted to
examine the performance of the proposed method, and finally
conclude this paper in Section V.

II. RELATED WORK

There are many kinds of attacks on pattern recognition
models constructed by machine learning techniques. Huang
et al. [3] roughly divided them into two categories: causative
attacks (CA) and exploratory attacks (EA). CAs directly
influence their target recognition model by altering its training
dataset, whereas EAs do not make any influence on the target
model. Instead, an attacker analyzes the target model itself
using pairs of its inputs and outputs in EAs.

A typical example of CAs is poisoning attack [5], which is
generally carried out against a recognition model constructed
by an online learning algorithm. Suppose that a spam filter
updated in real time with continually received e-mails. The
recognition model of this filter could be drastically changed
when it receives new “unnatural” spams whose characteristic
is totally different from that of past received ordinary spams.
Based on this property, in poisoning attack, an attacker creates
“unnatural” spams and sends them to the target filter in order
to corrupt its recognition model. In the above process, the at-
tacker’s focus is how to efficiently create or select “unnatural”
data, which depends on individual recognition model. Kloft
et al. investigated a poisoning attack approach particularly
focusing on nearest neighbor-based anomaly detection models
[6], while Biggio et al. focused on support vector machine

(SVM)-based malware detection models [7]. These model-
specific methods can hardly work when the target recognition
model is a black-box.

A typical example of EAs is model inversion attack (MIA),
where an attacker analyzes the target recognition model in
order to reconstruct its training examples. MIA could cause a
serious privacy issue when it is carried out against biometric
recognition models (e.g. face recognition). Fredrikson et al. in-
vestigated a method of MIA and experimentally demonstrated
that it is possible to reconstruct an individual’s face image only
from a face recognition model by using its outputting confi-
dential score [8]. Methods of generating adversarial examples
[9], [10] are another example of EAs, where an adversarial
example means the data leading a neural network model into
incorrect outputs. The threat of these attacks is larger if the
target recognition model is not a black-box.

Our focused RCA, which is the abbreviation of recognizer
cloning attack, is a kind of EA, because it does not influence
the target recognizer itself. RCA is different from the other
attacks in that it can be carried out against black-box models.
Moreover, for attackers, a CR constructed by RCA is totally
a white-box as well as shares the same weakness with its
original recognizer. Hence, RCA could form a hotbed of the
other attacks, that is, it could make the other attacks much
easily carried out.

III. METHOD FOR DETECTING CLONED RECOGNIZERS

In this section, we first explain our assumed scenario for
detecting a CR in subsection III-A, and then we describe the
proposed method in detail with the result of a preliminary
experiment in subsection III-B.

A. Assumed Scenario

Since different image recognizers have different charac-
teristics, it is difficult to detect CRs without any auxiliary
information. Therefore we assume the scenario similar with
near-duplicate detection of documents [11], [12] and that
of program source codes [13], [14]; that is, the owner of
an image recognition service compares his own recognizer
f =

(
fL, fS

)
and another recognizer h =

(
hL, hS

)
to check

whether h is a CR of f or not (see Fig. 2). Of course he knows
f is not a CR of any other recognizers and h is not owned by
himself. This means h is a black-box for the owner of f , and
therefore only the following information can be used.

• A set of images for the comparison process, U = {ui ∈
X | i = 1, 2, · · · }

• Outputs of f for each ui, i.e., UL
f = {fL(ui) | i =

1, 2, · · · } and US
f = {fS(ui) | i = 1, 2, · · · }

• Outputs of h for each ui, i.e., UL
h = {hL(ui) | i =

1, 2, · · · } and US
h = {hS(ui) | i = 1, 2, · · · }

We believe that the relationship between UL
f and UL

h has a
certain characteristic if and only if h is a CR of f , which
is also the case with the relationship between US

f and US
h .

Hence, we first experimentally investigate the characteristic.
Note that h could be constructed by the following two

strategies when it is a CR, as mentioned in Section I-A:
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Fig. 2. Assumed scenario of detecting cloned recognzer.

(a) Aiming to satisfy only hL(ui) = fL(ui) for all x ∈ X .
(b) Aiming to satisfy not only hL(ui) = fL(ui) but also

hS(ui) = fS(ui) for all x ∈ X .
The characteristic of the relationship between US

f and US
h

highly depends on which strategy is employed by the con-
structor of h. Thus we have to consider both strategies.

B. Features for Detecting Cloned Recognizers

We made three hypotheses about the relationship between
UL
f and UL

h and that between US
f and US

h . First, it can be
naturally hypothesized that the output of fL and that of hL

are consistent for most images if h is a CR of f . This would
be satisfied in both the case (a) and the case (b) described
above. Second, in the case (b), the output of fS and that of
hS are also consistent (or quite similar with each other) for
most images. Third, in the case (a), hS(x) tends to be much
higher than fS(x) for most images x ∈ X . The reason can be
explained as below.

Generally, two different classes often overlap with each
other in a feature space in most pattern recognition systems be-
cause of outliers in the training dataset. Hence, the confidence
score of the datapoint located near the decision boundary tends
to be low. However, this is not satisfied in the case of CRs
constructed with the strategy (a), because its training dataset
was collected from a certain original recognizer and therefore
has no outliers. Hence, the confidence score tends to be always
high in the case (a).

To test the above three hypotheses, we conducted a pre-
liminary experiment. In this experiment, we first designed a
convolutional neural network shown in Fig. 3 and trained it
with MNIST database [15]. Next, we input 30,000 images
in MNIST database into the feature extractor part of the
network and collected a labeled set of two-dimensional feature
vectors (x1, x2) ∈ [−1, 1]2. Using the feature vector set, we
constructed two original recognizers by SVM and Random
Forest (RF). The SVM-based original recognizer was trained
under the setting of C = 1 with RBF kernel, and the RF-based
one was consisting of 100 trees. Then, we also constructed two
CRs of the SVM-based original recognizer, using k-nearest

Fig. 3. Convolutional neural network used in preliminary experiment.

neighbor method (k-NN) and RF, respectively. The k-NN-
based CR was constructed with the strategy (a) under the
setting of k = 100. The RF-based CR was constructed with
the strategy (b), which was actually a pair of a class label
estimator and a confidence score regressor trained separately.
Both the estimator and the regressor was consisting of 100
trees. Note that we used 30,000 vectors randomly sampled
from the range of [−1, 1]2 to train the two CRs. After that,
we compared these four recognizers from the aspect of their
outputs. Fig. 4 shows the comparison result.

As shown in the first row in Fig. 4, decision boundaries
of the two different original recognizers (i) and (ii) are not
similar with each other even when their training dataset is
totally same. On the other hand, decision boundaries of the two
CRs (iii) and (iv) are almost same with that of their original
recognizer (i). This result supports the first hypothesis; that is,
the output of fL and that of hL are too consistent if h is a
CR of f . For the confidence score, the result of the CR (iv) is
almost same with that of its original recognizer (i), as seen in
the second row in Fig. 4. This supports the second hypothesis;
that is, the output of fS and that of hS are too consistent if
h is a CR constructed with the strategy (b). Moreover, in the
result of the CR (iii), we can see that the confidence score is
almost always high. This supports the third hypothesis; that is,
hS(x) tends to be higher than fS(x) for most images x ∈ X
if h is a CR constructed with the strategy (a).

Based on the above consideration and experimental results,
we propose the following α, β, and γ as the features for
detecting CRs.

• Consistency rate of recognition results between fL and
hL, i.e.,

α =
1

U

∣∣{ui | hL(ui) = fL(ui)
}∣∣ (3)

• The amount of images taking smaller confidence score
from hS than fS , i.e.,

β =
1

U

∣∣{ui | fS(ui)− hS(ui) > 0
}∣∣ (4)

• Variance of the difference between the confidence score
of fS and that of hS , i.e.,

γ =
1

U

∑
i

{
fS(ui)− hS(ui)

}2
(5)
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Fig. 4. Result of the preliminary experiment. Each square in this figure visualizes the recognition results and their confidence score output by the corresponding
recognizer. The horizonral axis and the vertical axis of the square represents the value of x1 and that of x2, respectively. The color of the squares in the
first row means the estimated class label ID for each (x1, x2), while the color of the squares in the second row means the confidence score (white: high
confidence, black: low cofidence).

The feature α would be too large if h is a CR of f . The
feature β would be small if h is a CR constructed with the
strategy (b). The feature γ would be too small if h is a CR
constructed with the strategy (a). Using these three features
as a three-dimensional feature vector, the proposed method
trains a decision tree that judges whether h is a CR of f or
not, which is used for detecting CRs afterward.

We also found from the preliminary experiment that it
makes α and γ much effective to sample each ui near the
recognition boundary of the original recognizer f . This is
because the datapoints far from the recognition boundary take
almost same label and confidence score from f and h even
when the h is not a CR of f , as shown in Fig. 4. Hence,
we propose a way to collect the image set U as follows.
First, for the feature β, we randomly sample each ui from
a uniform distribution. In practice, we can use an image
set randomly collected from the Web as U . Next, for the
features α and γ, we randomly sample two datapoints v

(1)
i

and v
(2)
i from a uniform distribution to obtain each ui so that

fL(v
(1)
i ) ̸= fL(v

(2)
i ) is satisfied. Then we repeat the following

procedure:
1) Claculate vi =

1
2 (v

(1)
i + v

(2)
i ) and fL(vi).

2) Compare fL(vi) with fL(v
(1)
i ) and fL(v

(2)
i ).

3) If fL(v
(1)
i ) = fL(vi), update v

(1)
i as v

(1)
i ← vi.

Fig. 5. Way to obtain datapoint near recognition boundary.

Otherwise, update v
(2)
i as v

(2)
i ← vi

After repeating the above procedure several times, we finally
use vi as ui. Theoretically, this is the binary search of the
recognition boundary between the initial v

(1)
i and v

(2)
i (see

Fig. 5). In practice, we can use two images randomly collected
from the Web as v

(1)
i and v

(2)
i .

To further verify our three hypotheses, we actually com-
puted the values of α, β, and γ between the following
recognizer-pairs: [(i), (ii)], [(i), (iii)], and [(i), (iv)]. We note
again that the recognizers (i) and (ii) are original, the recog-
nizer (iii) is a CR of (i) constructed with the storategy (a),
and the recognizer (iv) is a CR of (i) constructed with the
storategy (b). The results are shown in TABLE I. As seen
in this table, the value of α is more than 0.7 for the pairs
of [(i), (iii)] and [(i), (iv)]; the class labels resulted from a
CR is almost same with those resulted from its original, as

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1378



TABLE I
ACTUAL VALUES OF FEATURES α, β , AND γ COMPUTED BETWEEN THREE

PAIRS OF RECOGNIZERS.

Recognizer pair α β γ
(i) and (ii) 0.580 0.217 0.342
(i) and (iii) 0.866 0.050 0.172
(i) and (iv) 0.752 0.118 0.026

mentioned above. The value of β is less than 0.07 for the pair
of [(i), (iii)]. Furthermore, the value of γ is less than 0.05 for
the pair of [(i), (iv)], which indicates the confidence scores
resulted from a CR is too consistent with those resulted from
its original.

IV. EXPERIMENTS

We experimentally evaluated the proposed CR detection
method using MNIST database [15] and CIFAR10 database
[16]. For both databases, we first prepared a set of two-
dimensional feature vectors using the same way with the
above preliminary experiment. Next, with the feature vectors
of MNIST images, we constructed four original recognizers,
each of which was trained by SVM, k-NN, RF, and multi-layer
perceptron (MLP) using randomly selected 30,000 samples.
The parameter settings of SVM, k-NN, and RF were totally
same with those used in the preliminary experiment. For MLP,
we employed a network structure only containing 10 hidden
fully-connected layers, each of which was consisting of 100
units with ReLU activation gate. This network was trained
for 200 epochs. After that, for each of the four original
recognizers, we constructed its CRs using k-NN, RF, and MLP.
Note that we employed both of the strategies (a) and (b) to
train the CRs, also using randomly selected 30,000 samples.
In the case of strategies (b), we separately constructed a class
label estimator and a confidence score regressor for each of the
four machine learning models, i.e., k-NN, RF, and MLP, and
the pair of the estimator and the regressor was used as a CR.
The parameter settings of k-NN, RF, and MLP were totally
same as above. As a result, we prepared six (= 3 × 2) CRs
for each original recognizer. With this procedure, we obtained
12 pairs of original recognizers and 24 pairs of a original
recognizer and its CR. We conducted the same proceedure for
the feature vectors of CIFAR10 images, thus finally obtained
24 pairs of original recognizers and 48 pairs of a original
recognizer and its CR. At last, we equally divided a set of the
above recognizer-pairs into two parts, one of which was used
for training the decision tree for CR detection and the other
was used for evaluating its accuracy, under the cross validation
procedure. As the image set U that was used to compute the
three features α, β, and γ, we used randomly selected 1,000
samples.

When dividing the set of the recognizer-pairs, we employed
the following three division criteria, where the term “model”
means one of SVM, k-NN, RF, and MLP.

(I) Divide the set of the recognizer-pairs so that the models
of the original recognizers in the first subset are different
those in the second subset.

TABLE II
DETECTION ACCURACY OF CRS BY PROPOSED METHOD. TP, TN, FP, AND

FN ARE ABBREVIATION OF TRUE POSITIVE, TRUE NEGATIVE, FALSE
POSITIVE, AND FALSE NEGATIVE.

Criterion for dividing the recognizer-pair set (I) (II) (III)
Precision ( TP/(TP+FP) ) 95.5% 90.9% 86.4%
Recall ( TP/(TP+FN) ) 87.5% 83.3% 79.2%
Accuracy ( (TP+TN)/(TP+TN+FP+FN) ) 88.9% 83.3% 80.6%

Fig. 6. Example of trained decision trees for detecting cloned recognizers.

(II) Divide the set of the recognizer-pairs so that the models
of the CRs in the first subset are different those in the
second subset.

(III) Divide the set of the recognizer-pairs so that both the
condition of (I) and that of (II) are satisfied.

TABLE II shows the result of the experiment. As seen in
this table, more than 80% of detection accuracy was achieved
for all division criteria. We think this is a little insufficient for
protecting cloud-based image recognition services in the real
world. However, interestingly and importantly, the accuracy
of the proposed method is not so degraded even when a
recognizer trained by an unknown model is input to the
decision tree-based detector. This fact shows the effectiveness
of the proposed method, especially the three features α, β,
and γ.

We showed an example of the decision trees obtained in
this experiment in Fig. 6. The trained splitting rules seen in
this figure are consistent with the hypotheses described in
the previous section as well as the feature values shown in
TABLE I. This also shows the effectiveness of the proposed
three features.

V. CONCLUSIONS

In this paper, we proposed a method for detecting already
trained CRs as an ex-post defense against RCA on cloud-
based image recognition services. Our method is assumed to
be used by a service owner: when he inputs his own original
recognizer f and another (suspicious) one g owned by another
person, the proposed method judges whether g is a CR of f
or not by comparing them. With the preliminary experiment,
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we found three characteristics of CRs, which are used as clues
for CR detection. The effectiveness of the proposed method
was shown through the experiments in which it was able to
detect CRs with the accuracy of more than 80%.

However, since this is a pilot study, we experimentally
evaluated the proposed methods only in the limited situations.
Therefore, we will test the proposed method by further exper-
iments and update them in a future work.

This work was supported by JSPS KAKENHI Grant Num-
bers JP17K00235 and JP16H06302.
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