
Data Embedding Method Using Photo Effects
with Resistance to Compression

William K.W. Yeong,∗ Simying Ong,∗ and KokSheik Wong†
∗ University of Malaya, Malaysia

E-mail: {woa180021@siswa., simying.ong@}]um.edu.my Tel: +60-3-79576300
† Monash University Malaysia, Malaysia

E-mail: wong.koksheik@monash.edu Tel: +60-3-55146090

Abstract— This work aims to integrate data embedding
capability into common photo effects, which simplifies the 2-
step process of achieving photo effect and data embedding.
Specifically, three novel data embedding methods using photo
effect are put forward. A preliminary study is first conducted on
popular editing software to identify the commonly available photo
effects. The photo effects are found to be sketch, halftone, and
vintage, and they are modified to incorporate the data embedding
capability. The data embedding algorithms are designed in a
way so that the embedded data can survive compression. Three
prototypes are built as proof of concepts to verify the feasibility
of achieving photo effect generation and data embedding simulta-
neously. Experiments are carried to verify the basic performance
of the proposed data embedding method, including embedding
capacity, image quality and robustness against compression.

Index Terms—data embedding, photo effect, sketch, halftone,
vintage

I. INTRODUCTION

Thanks to the affordable price tag for ubiquitous data
network services and smart devices, contents such as image
are increasingly generated and shared online. To put statistics
into context, in every minute, an average of 55, 140 photos
are posted online on the Instagram platform in the year of
2019 [1] while 14, 700 photos are uploaded into Facebook
in the year 2020 [2]. To achieve self-presentation [3, 4],
users share photo via various social networking service (SNS)
platforms, including Facebook, Snapchat, and Instagram. In
fact, this high rate of photo posting is generating a vast pool
of free photos, which can be exploited by certain parties. For
example, these photos often contain users’ private information,
and they are uncovered for purposes such as social phishing
and advertisement [5, 6].

As the number of users of SNS platforms and photo sharing
sites increases, the risk of copyright and privacy infringement
also increases, particularly when the platforms / sites allow
a user to save, download or share other users’ photos by a
single click of a button. Infringing on an author’s copyright
by re-posting, sharing or downloading the photo without
owner’s consent is no different than other forms of copyright
violation [7]. Furthermore, the increasing number of online
photos also causes issues related to storage and image retrieval.

This work was part of the research project entitled Information Hiding
using Pattern Image Synthesis Approach (Project ID:BK025-2018) supported
by the BKP Faculty Grant awarded by University of Malaya, Malaysia.

Issue such as lack of coherent metadata for images have
also caused some challenges for the users in perceiving their
favorite image content [8, 9].

Therefore, online images need to be better managed. Data
embedding, which inserts some data into an image, is one
of the solutions for addressing the aforementioned problems.
Here, the data can be external to the image, derived from the
image, or a combination of both. For instance, an embedded
watermark is utilized to claim ownership of the image [10], a
fingerprint is inserted as a trace to identify user who distributed
the photo [11], a metadata is added for multimedia enrichment
such as image retrieval and hyper-linking related content [12],
etc.

Various data embedding techniques are proposed over the
years. The techniques include Least Significant Bit (LSB)
insertion [13, 14, 15, 16], Histogram Shifting (HS) [17, 18, 19]
and Prediction Error Expansion (PEE) [20, 21, 22]. As the
name implies, LSB insertion hides data into the image by
replacing the LSB bitplane with the data to be embedded.
HS utilizes the peak bin (i.e., the pixel value with the highest
frequency) and the adjacent emptied bin to represent data. PEE
uses the errors between the original and predicted pixel values
to achieve data embedding. Regardless of their purposes,
most conventional methods [13] - [22] hide information by
modifying the pixels or coefficients in the transformed domain.
However, these direct modifications on the image pixels or
coefficients are distorting or damaging the image, which is
a common drawback in the conventional data embedding
methods. In addition, they also change the statistical properties
of the image, which may attract attacker’s attention.

Therefore, in this work, we exploit the commonly utilized
photo effects to embed data. Our proposal is motivated by
the fact that photo editing is one of the important steps
performed prior to the sharing of a photo on SNS. By adopting
our proposal, user does not need to face the trouble of
switching between apps or programs to edit the photo and
embed data. This integrated process will eliminate extra step(s)
needed for data embedding, and also encourage user to protect
his/her photo prior to sharing it online. Furthermore, from the
perspective of photo editor, metadata can be inserted into the
image for managerial purposes in both the online and local
environments.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1361978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020



Fig. 1: Proposed photo effect-based data embedding framework.

TABLE I: Results of preliminary study on photo editing
applications and software.

Photo Effect PicsArt GIMP Photoshop Paint.net Pixlr
Halftone X X X X X
Vintage X X X X X
Sketch X X X X X

II. PHOTO EFFECTS

Figure 1 shows the proposed photo effect-based data em-
bedding framework. Let G denotes the image of interest,
which will be transformed by adding the attribute effect A for
embedding the payload bit M with the key K. Specifically,
G,M , and K are the input of the embedding function E, i.e.,

G′ ← E(G,M,K,A), (1)

where A is the effect attribute information and G′ is the output
image with embedded data. In particular, M is encoded by
using the effect attribute in the redesigned data embedding
algorithm using photo effects.

To identify the popular photo effects, we surveyed various
photo editors, including Adobe Photoshop, GIMP, Paint.net,
PicsArt and Pixlr. The findings are summarized in Table I.
Three common effects, namely, Sketch, Halftone and Vintage,
are considered in this work. Specifically, these effects are
short-listed because they contain attributes which can be
redesigned for data embedding purposes. Another deciding
factor is that they are available in various popular photo
editors. It is important to ensure that the proposed method
is applicable in common photo effects so that the proposed
photo effect-based data embedding method can be utilized in
place of its photo-effect-only filter.

III. PROPOSED METHOD

The proposed photo effect-based data embedding methods,
each using a different photo effect, are elaborated in the
following subsections. For the rest of the presentation, assume
that the input image G is of size M × N pixels, and each
pixel is referred to as G(x, y) where x ∈ {1, . . . ,M} and
y ∈ {1, . . . , N}.

A. Prototype 1 (P1): Sketch Effect

Sketch effect turns the image into a rough pencil drawing
which concentrates on the essential features of the image.
Essentially, the sketch function in P1 converts the color
input image into 24-bit grayscale image G∗ (i.e., three 8-bit
RGB color channels, denoted as ŁR,ŁG,ŁB). To generate the
Sketch Effect, the Sobel kernel is applied for edge detection,
and the adopted algorithm [23] selects the specific segments
from the image then converts them white or black segments.
Sobel kernel is utilized in this prototype to search for the
smooth regions in a simple and time-efficient manner [24].

Next, the resulting pixel values are exploited to encode the
payload M . In particular, the carrier pixels are pixels with
their RGB values each less than a predefined threshold value
φ. Here, τ is chosen based on empirical experiments and it
is chosen to achieve two objectives: (i) identify the black
pixels which are utilized to embed the payload, and; (ii) to
classify the payload bit from the carrier pixel, even after the
image G′ is compressed. The threshold should be chosen to
for the best performance in terms of payload recovery, even
after compression.

Subsequently, all selected carrier pixels in each row are
modified by replacing them by a certain value to embed one
payload bit. Here, we show an example to step through the
embedding process:

S1 Convert the message into binary representation. Without
loss of generality, consider the payload M = 910 =
10012.

S2 Scan the pixels of the sketched image G∗, row-by-row,
to identify the embeddable row. Here, an embeddable
row is a row of pixels consisting of at least one pixel
where ŁR,G,B < φ, while Figure 2(a) shows an example
of the searching process for embeddable rows when φ =
20.

S3 Each embeddable row is manipulated to carry one
payload bit. For instance, if the payload bit is ‘1’, the
algorithm modifies the value of ŁG of all carrier pixels
in that selected row while maintaining the values of
ŁR and ŁB , as shown in the first row of Figure 2(a).
Otherwise, if the payload bit is ‘0’, the ŁG value of all
carrier pixels are replaced by 0 while the values in other
channels remain unchanged. Furthermore, the values of

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1362



Fig. 2: Illustration of the embedding processing for handling the payload M = 10012 using φ = 60.

those non-carrier pixels in the embeddable row are also
maintained, i.e., not modified.

S4 S2 and S3 are repeated until all the rows were processed.
Figure 2 shows the final outcome after embedding
M = 1001 into the embeddable rows. Finally, the output
image with embedded data, G′, is generated.

The algorithm summarized above (i.e., P1) creates a pattern
in three channels, namely, ŁR, ŁG and ŁB to embed data.
In particular, a pixel’s RGB-channels are modified to assume
to pattern low-high-low to encode ‘1’, while the pattern low-
low-low encodes ‘0’. The purpose of exploiting color channel
pattern for data embedding is to ensure that the processed
image can maintain the relative pattern even after compression
is applied.

At the receiver’s end, the algorithm has to first identify the
embeddable rows with carrier pixels. To ensure the correct
payload bit is extracted, a majority vote strategy is also utilized
to determine the payload bit encoded by each embeddable row.

Based on our empirical experiments, compression often
increases the values in the range of [20, 40]. Therefore, the
threshold value φ is set at 100 for decoding purpose. For
instance, if any of the RGB-channels for a particular pixel is
less than 100, it will be identified as a carrier pixel. Similarly,
if the row consists of at least one carrier pixel, it is categorized
as an embeddable row. For each embeddable row, each carrier
pixel is examined. In our example, ŁG of each carrier pixel
is modified to encode either ‘1’ or ‘0’. If the ŁG is of
high pattern, then it encodes ‘1’, otherwise it encodes ‘0’.
Therefore, any value between 0 and 60 (viz., our previously
modified values in the embedding algorithm) can be selected
to distinguish the low-high pattern. The decoded bits from all
carrier pixels in an embeddable row are collected accordingly.
If the majority bits are of value ‘1’, then payload bit ‘1’ is
output. On the other hand, if the majority yielded ‘0’, then
the payload bit ‘0’ is output. The decoding process is repeated
until all rows are analyzed to recover the entire payload.

B. Prototype 2 (P2): Halftone Effect

Halftone is a reprographic technique that simulates
continuous-tone imagery through an assemble of dots with
varying sizes and spacing, thus generating a gradient-like
effect [25]. For our second prototype, Halftone effect is
generated by implementing the standard error diffusion algo-
rithm using Floyd and Steinberg’s weights. We observed that
Praveen et al.’s algorithm [26] generates 8-bit grayscale image
with halftone effect G∗, which is made up of a large number
of black dots. Hence, in our proposed algorithm, the black
dots are not only utilized to generate gradient-like feature in
producing halftone effect, but they are also redesigned to carry
data.

S1 Similar to P1, the message is first converted into binary
representation. Again, we consider the payload M =
1001.

S2 We calculate and record the total number of black dots
for each row τi, i.e., T = {τ1, τ2, . . . , τM}. A pixel
is called black dot if it is less than a threshold value
ψ. For instance, by referring to the example shown in
Figure 3, the recorded black dot information for each
row is T = [3, 4, 3, 3] when ψ = 80.

S3 Our halftone effect-based data embedding method uti-
lizes odd-oven τ value to encoded the payload bit. In
particular, odd τ encodes ‘1’, while τ encodes ‘0’. For
instance, consider the example given in Figure 4. If τ1 is
odd and the first payload bit is ‘1’, then no changes are
needed for the first row. However, if the total number
of black dots in a row cannot represent the secret bit
(e.g., the third row), some modifications are performed
to enforce relevant odd-even value. Here, the embedding
algorithm transforms one non-black-dot value to become
a black dot (viz., modify to the value 0). However,
the selected non-black-dot to be converted must fulfill
the following two conditions: (i) it has a value more
than 200, and (ii) located adjacent to another black

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1363



Fig. 3: Count the number of black dots.

Fig. 4: Data embedding using P2 algorithm.

pixel to ensure the correct data extraction and enhance
imperceptibility of output image. In the case where there
is no black dot in the row of interest, our method chooses
an arbitrarily pixel in the row to modify.

S4 Repeat S3 and S4 until all rows are processed to encode
the payload bit. Figure 5 shows the final output of image
rows after data embedding. Finally, the output image
with embedded data, denoted by G′, is generated.

In the decoding stage, the reserve steps are performed on
G′ to identify T . Based on empirical experiment, ψ = 80 is
chosen as the threshold to identify the black dot. The total
number of identified black dots are collected and stored in
the string T in sequential order. Finally, the payload bits are
extracted by examining the odd-oven property of all τ values
in the string T .

C. Prototype 3 (P3): Vintage Effect

Vintage effect transforms an image to mimics dated and
retro-liked photo. Our method adds jagged border (viz., uneven
pattern) on the edges of the vintage image for data embed-
ding purposes while enhancing the natural appearance of the
vintage effect. First, the input image G is pre-processed as
follows:

S(ŁR) = 0.383 ·G(ŁR) + 0.769 ·G(ŁG) + 0.189 ·G(ŁB)

S(ŁG) = 0.349 ·G(ŁR) + 0.686 ·G(ŁG) + 0.168 ·G(ŁB)

S(ŁB) = 0.274 ·G(ŁR) + 0.534 ·G(ŁG) + 0.131 ·G(ŁB)
(2)

where G(ŁR), G(ŁG), G(ŁR) are the RGB channels, operator
(·) and operator (+) denote matrix multiplication and addition
operations, respectively. The output S(ŁR), S(ŁG), S(ŁR) are
the RGB channels of the transformed image after applying

Fig. 5: Output with payload bit 1001 embedded.

sepia toning. Next, noise is added1 to S, and the result-
ing image is overlapped with a vintage background image
downloaded online [27] to create the vintage image G∗.
Subsequently, the following steps are performed to embed
data:

S1 Convert the payload into binary conversion. Again, we
consider the payload M = 1001.

S2 A white frame is created on the vintage image G∗

by manipulating the pixels near the image border. We
designed our algorithm so that the four borders of the
white frame are of the same width. Specifically, let ω
denote the width of the white frame in terms of number
of pixels. The pixel values at the image borders (i.e.,
top ω rows, bottom ω rows, left ω columns and right
ω columns) are set to {255, 255, 255} to produced an
artificial white frame.

S3 Starting from the ω + 2th row to the M − ω − 2th row,
each row is processed to embed one payload bit. Here,
no jagged pattern is added to the row if the payload bit
is ‘0’. On the other hand, the jagged pattern is added
next to the white frame pixels of a row to represent
the payload bit ‘1’. The jagged pattern is added by
transforming two pixels located next the white frame
into white pixels. To create a balance jagged pattern,
if it is an odd row, the RGB values of G∗(x, ω + 1)
and G∗(x, ω + 2) are modified to the value of 255.
On the contrary, if it is an even row, the values in
G∗(x,N − ω − 1) and G∗(x,N − ω − 2) are set to
255. The rows are processed until all the payload bit are
embedded. Figure 6 shows the results after modifying
G∗ to embed ‘1001’.

S4 An extra processing step is performed to enhance the
overall appearance of the jagged patterns around the
vintage image. In particular, Figure 7 shows an example
where arbitrarily pixels are converted into white pixels
(viz., set to 255) (see to those in red boxes) around the
white frame.

S5 Finally, the output image with embedded data, denoted
by G′, is generated.

In the decoding stage, the algorithm detects the jagged
pattern near the white frame pixels to determine the payload
bit. If there is no jagged pattern on both sides, the payload bit
‘0’ is extracted. On the other hand, if there is a jagged border

1In this work, the imnoise function in Matlab v2019 is utilized to add
noise.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1364



Fig. 6: Data embedding by modifying two pixels near the
white frame pixels.

Fig. 7: Adding random jagged pattern to enhance the natural
appearance of the output image G′.

(viz., two white pixels) on either side of the row, the payload
bit ‘1’ is extracted.

IV. EXPERIMENT RESULTS

The aforementioned data embedding methods are imple-
mented in MATLAB v2019. To evaluate the performance of
the proposed methods, the Berkeley Segmentation Dataset
(BSD300) [28] is utilized as the test images. The current public
distribution of the BSD300 dataset contains 300 color images
each of dimension 481 × 321 pixels (or 321 × 481 pixels).
BSD is consider for conducting experiments because they are
not biased towards any specific images properties, thus they
can realize an objective evaluation which covers most types of
image. Performance in terms of embedding capacity, extraction
rate after applying JPEG compression with different quality
factors, and image quality are evaluated. In all experiments,
the prototypes will pre-process the input image by resizing
them into the dimension of 512× 512 pixels.

A. Embedding Capacity

Each prototype is implemented by utilizing only one photo
effect. In other words, either (i) sketch effect which enforces

TABLE II: Average embedding capacity per image for each
prototype.

Prototype (Effect) Average Embedding Capacity [bits]
P1 (Sketch) 468.1

P2 (Halftone) 512.0
P3 (Vintage) 490.0

TABLE III: Average image quality for each prototype when
comparing between the output images with and without em-
bedded data.

Prototypes (Effect) SSIM PSNR [dB]
P1 (Sketch) 0.994 30.573

P2 (Halftone) 0.993 30.111
P3 (Vintage) 0.978 31.296

pattern in all three color channels, (ii) halftone effect which
utilizes the odd-even count of black dots, or (iii) vintage effect
which utilizes the jagged pattern, is utilized. Table II shows
the average embedding capacity for each prototype for 300
images in the BSD300 dataset. The results indicate that P2
has the highest embedding capacity (i.e., 512 bits) among the
proposed methods. This is also the maximum capacity that can
be achieved by using the proposed algorithm because each row
is designed to carry exact one bit of the payload data.

On another hand, P1 and P3 each has a lower embedding
capacity in comparison to P2 because they are not able to
utilize all rows for data embedding purposes. Recall that P1
relies on the carrier pixels in an image to embed data. Some
images may have less or even no black pixels at all in some
rows, thus not all the rows are embeddable. In the case of P3,
it can only embed, on average, ∼490 bits of payload data per
image (for the settings of ω = 10) because some of the rows
in the images are reserved for the artificial white frames and
jagged patterns.

B. Image Quality

To quantify the distortion caused by data embedding, image
quality is measured between the original image (i.e., image
with photo effect only), and the ‘processed’ image (i.e.,
image with photo effect and embedded data). Specifically,
the quality will be investigated in terms of SSIM (Structural
Similarity Index Measure [29] and PSNR (Pixel Signal-to-
Noise Ratio) [30]. Results are recorded in Table III. In general,
SSIM are high for all 3 proposed methods (i.e., near to
unity), which indicates that these data embedding methods
are able to preserve the perceived quality of the image.
Specifically, the luminance, contrast and structure properties
are well maintained even after data embedding.

In terms of PSNR, the proposed methods are able to achieve
around 30dB - 32dB, which is considerably low. It is an
expected outcome because PSNR compares pixel-to-pixel and
the proposed methods make drastic changes to the pixel values
during data embedding. For instance, the carrier pixel values
of ŁG in P1 are modified to high pixel values to carry payload
bit. Likewise, for P3, the white frames are introduced near the

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1365



Fig. 8: Output images (with embedded data) generated by P1
(top row), P2 (middle row) and P3 (last row).

Fig. 9: Input images to be used by P1 (top row), P2 (middle
row) and P3 (last row) for experiments

image borders, and the jagged patterns are also modified by
changing all the relevant pixels to {255, 255, 255}.

Figure 8 shows the output images (with embedded data)
produced by our prototypes by using original input images
as shown in Figure 9. Although the PSNR values reveal
some degradation in terms of pixel changes, the modification
caused by data embedding is blending well with the image

TABLE IV: Average data extraction rate for each prototype
after applying JPEG compression with various quality factors.

Prototype (Effect) η [%] of various quality factors
60 70 80 90

P1 (Sketch) 82.06 82.46 82.77 85.12
P2 (Halftone) 99.98 99.98 99.99 99.98
P3 (Vintage) 91.11 96.50 99.44 99.92

from the subjective evaluation point of view. This is because
our methods are designed to incorporate the data embedding
processes into the photo effect algorithms.

C. Robustness against compression

Recall that the motivation of this work is to encourage users
to protect their images before they upload them to any SNS
platforms. However, most SNS platforms (including Facebook
and Snapchat) compress all uploaded images to reduce the file
size [31]. Following that, the embedded data can potentially be
destroyed by the compression operation. Therefore, robustness
against compression, i.e., the ability to extract the embedded
data after G′ is compressed, is greatly desired. Since most SNS
platforms support the JPEG standard, which is one of the most
widely adopted image compression standards [32], we evaluate
our proposed methods against JPEG compression. Specifically,
the robustness is measured by calculating the data extraction
rate (referred to as η) by using the following equation:

η =
correctly extracted bits

embedding capacity
× 100. (3)

Here, JPEG compression is performed on the output image G′

by using the quality factors of 60, 70, 80, and 90.
Table IV records η the results for the proposed meth-

ods.Results suggest that, among the proposed methods, P2 has
the highest robustness against JPEG compression because it is
able to extract the payload bits correctly, with η ∼ 100%.
This is because P2 operates on 8-bit grayscale images, which
do not consists of redundant color information (in comparison
to 24-bit images generated by P1 and P3). Hence, the output
image generated in P2 is less affected by compression.

V. DISCUSSIONS

A. Comparison with conventional methods

The proposed method exploits photo effect to hide data,
which simplifies the photo-uploading process for actual ap-
plications. When the proposed data embedding methods are
incorporated into general photo editing applications (e.g.,
Adobe Photoshop, GIMP, PixsArt), the benefits are threefolds,
namely: (i) no additional steps / applications are needed
to embed data because data embedding becomes part of
the photo editing process; (ii) metadata can be added into
a photo either by the photo editing application or by the
owner herself for managerial purposes, and (iii) by using the
proposed method, the pixels are not modified solely for data
embedding purpose. Therefore, no extra and obvious distortion
is introduced. To the best of our knowledge, there is no

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1366



similar work which integrates data embedding capability into
the application of photo effects. Although we acknowledge
that there are some work in data hiding as part of the image
enhancement processes [33, 34], but they are not robust against
JPEG compression.

B. Possible future improvements
In this work, the experiment results infer the general fea-

sibility of our proposed photo effect-based data embedding
methods. That is, the proposed algorithms are able to embed
data in the host image by using effect attributes, and they
are able to achieve high image quality and robustness against
JPEG compression.

However, the embedding capacity is limited. In the proposed
method, embedding capacity is limited to ensure high data
extraction accuracy after image compression, i.e., a trade-off
between capacity and robustness. This is based on the fact that
all images uploaded to any SNS platforms are compressed
prior to sharing. Hence, in comparison to high embedding
capacity, achieving high robustness is of a higher priority
in this preliminary study. In the current implementation, the
highest achievable embedding capacity is 512 bits per image,
but the embedding capacity of each algorithm can be further
enhanced. For instance, each row can be divided into p
partitions to carry p payload bits for both P1 and P2, instead
of using all available spaces to carry only a single payload
bit in each row. On the other hand, for P3, the jagged pattern
can be further extended (e.g., include some number of pixels
to create jagged patterns) to represent more payload bits. The
aforementioned possible improvements will be explored as our
future work.

VI. CONCLUSIONS

In this research, three novel data embedding methods based
on photo effects are proposed. The proposed methods embed
data during the generation of photo effect. To the best of our
knowledge, they are the first of the kind, and they are robust
against the legacy JPEG compression standard. Experiment
results suggest the feasibility of the proposed methods for the
purposes of data embedding.

As future work, we focus on improving the embedding
capacity and identify innovative ways to integrate the join
utilization of the proposed photo effect based data embedding
methods.

REFERENCES

[1] Domo Inc. Data never sleeps 7.0 infographic —
domo. https://www.domo.com/learn/data-never-sleeps-7,
2019. Accessed on 15 August 2020.

[2] Domo Inc. Data never sleeps 8.0 infographic —
domo. https://www.domo.com/learn/data-never-sleeps-8,
2020. Accessed on 15 August 2020.

[3] C. M. Cunningham and N. Brody. Social networking and
impression management: Self-presentation in the digital
age. 2012.

[4] Zizi Papacharissi. The presentation of self in virtual
life: Characteristics of personal home pages. Journalism
Mass Communication Quarterly, 79:643 – 660, 2002.

[5] Markus Jakobsson Filippo Menczer Tom N Jagatic,
Nathaniel A Johnson. Social phishing. Communications
of the ACM, 50:94–100, 2007.

[6] Zhiyong Zhang and Brij B. Gupta. Social media security
and trustworthiness: Overview and new direction. Future
Generation Computer Systems, 86:914–925, September
2018.

[7] Amanda G. Ciccatelli. Photo sharing on social
media & copyright infringement: What you need
to know - ipwatchdog.com — patents & patent
law. https://www.ipwatchdog.com/2017/12/15/photo-
sharingsocial-media-copyright-infringement/id=91022/,
December 2017. Accessed on 08/15/2020.

[8] Hyuk-Jin Lee and Diane Neal. A new model for semantic
photograph description combining basic levels and user-
assigned descriptors. Journal of Information Science,
36(5):547–565, July 2010.

[9] Rachana C. Patil and Prof. S. R. Durugkar. Content
based image re-ranking using indexing methods. Inter-
national Journal of Emerging Technology and Advanced
Engineering, 5:447–453, August 2015.

[10] Sahar Haddad, Gouenou Coatrieux, and Michel Cozic. A
new joint watermarking-encryption-JPEG-LS compres-
sion method for a priori & a posteriori image protection.
page 1688–1692, October 2018.

[11] Jutta Hammerle-Uhl, Christian Koidl, and Andreas Uhl.
Multiple blind re-watermarking with quantisation-based
embedding. September 2011.

[12] B. Ferreira, J. Rodrigues, J. Leitão, and H. Domingos.
Privacy-preserving content-based image retrieval in the
cloud. pages 11–20, 2015.

[13] R. van Schyndel, A. Tirkel, and C. Osborne. A digital
watermark. 2:86,87,88,89,90, November 1994.

[14] K Thangadurai and G Sudha Devi. An analysis of lsb
based image steganography techniques. pages 1–4, 2014.

[15] M.S. Sutaone and M.V. Khandare. Image based steganog-
raphy using LSB insertion. 2008.

[16] Andysah Putera Utama Siahaan. Technique of hiding in-
formation in image using least significant bit. November
2018.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1367



[17] Zhicheng Ni, Yun-Qing Shi, N. Ansari, and Wei Su. Re-
versible data hiding. IEEE Transactions on Circuits and
Systems for Video Technology, 16(3):354–362, March
2006.

[18] Zhibin Pan, Sen Hu, Xiaoxiao Ma, and Lingfei Wang.
Reversible data hiding based on local histogram shifting
with multilayer embedding. Journal of Visual Commu-
nication and Image Representation, 31:64–74, August
2015.

[19] C. Tseng, Y. Chiu, and Y. Chou. A histogram shifting-
based reversible data hiding scheme using multi-pattern
strategy. pages 125–128, 2015.

[20] Jun Tian. Reversible data embedding using a difference
expansion. IEEE transactions on circuits and systems for
video technology, 13(8):890–896, 2003.

[21] Zhicheng Ni, Yun-Qing Shi, Nirwan Ansari, and Wei Su.
Reversible data hiding. IEEE Transactions on circuits
and systems for video technology, 16(3):354–362, 2006.

[22] X. Li, B. Yang, and T. Zeng. Efficient reversible
watermarking based on adaptive prediction-error expan-
sion and pixel selection. IEEE Transactions on Image
Processing, 20(12):3524–3533, 2011.

[23] Lin Bai. converting natural image to sketch style
using vision hdl - file exchange - matlab central.
https://la.mathworks.com/matlabcentral/fileexchange/72215-
converting-natural-image-to-sketch-style-using-vision-
hdl?stid=profcontriblnk, July 2019. Accessed on
08/15/2020.

[24] GeeksforGeeks. Matlab - image edge detection
using sobel operator from scratch - geeksforgeeks.
https://www.geeksforgeeks.org/matlab-image-edge-
detection-using-sobel-operator-from-scratch/, May 2020.
Accessed on 10/19/2020.

[25] Fan Zhang, Zhenzhen Li, Xingxing Qu, and Xinhong
Zhang. Inverse halftoning algorithm based on SLIC
superpixels and DBSCAN clustering. pages 466–471,
2018.

[26] Praveen Settipalli. Error diffusion algorithm - file ex-
change - matlab central. February 2005. Accessed on
08/15/2020.

[27] Canvas - all white background.
http://www.allwhitebackground.com/canvas-background
.html/download/19993. Accessed on 08/15/2020.

[28] David Martin and Charless Fowlkes. The
berkeley segmentation dataset and benchmark.
https://www2.eecs.berkeley.edu/Research/Projects/CS/
vision/bsds/, June 2007. Accessed on 08/15/2020.

[29] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Si-
moncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

[30] Ratnakirti Roy and Suvamoy Changder. Quality eval-
uation of image steganography techniques: A heuristics
based approach. International Journal of Security and
Its Applications, 10(4):179–196, April 2016.

[31] Vijay Koushik. Data compression: How
social media changes quality of your photos.
https://svijaykoushik.github.io/blog/2017/05/10/how-
social-media-changes-quality-of-your-photos/, May
2017. Accessed on 10/19/2020.

[32] T. Chuman, K. Iida, and H. Kiya. Image manipulation on
social media for encryption-then-compression systems.
In 2017 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA
ASC), pages 858–863, 2017.

[33] H. Wu, W. Mai, S. Meng, Y. Cheung, and S. Tang.
Reversible data hiding with image contrast enhancement
based on two-dimensional histogram modification. IEEE
Access, 7:83332–83342, 2019.

[34] Simying Ong and KokSheik Wong. Information hiding
in image enhancement. In 2020 IEEE International
Conference on Image Processing, ICIP 2020, Abu Dhabi,
UAE, Oct. 25-28, 2020, pages To–appear. IEEE, 2020.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1368


