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Abstract—Anti-spoofing has attracted increasing attention 

since the inauguration of the ASVspoof Challenges, due to the fact 

that automatic speaker verification (ASV) systems are vulnerable 

to spoofing attacks. The latest ASVspoof 2019 Challenge was 

dedicated to addressing attacks in three major classes: speech 

synthesis, voice conversion, and replay audio. In this paper, we 

propose a novel method that includes feature extraction, a densely 

connected convolutional network, and fusion strategies to answer 

the ASVspoof 2019 Challenge and to defend against spoofing 

attacks. Features are extracted using different algorithms and 

then fed separately into variants of our model, which differ only 

in terms of the kernel size of the global average pooling layer. A 

dense connectivity pattern with better parameter efficiency is 

introduced to the proposed network to strengthen the 

propagation of the audio features. The experimental results show 

that the proposed method improves the tandem decision cost 

function and equal error rate scores by 75% and 78%, 

respectively, in the logical access challenge. In the physical access 

challenge, the proposed method improves the t-DCF and EER 

scores by 73% and 72%, respectively, compared with state-of-the 

-art methods.  

 

Index Terms—ASVspoof, Automatic Speaker Verification, 

Audio Spoofing Detection, Dense Connectivity 

 

I. INTRODUCTION 

Automatic speaker verification (ASV) is deployed in an 

increasing number of diverse applications and services, e.g., 

mobile telephones, smart speakers, and call centers, in order to 

offer a low-cost and flexible biometric solution for personal 

authentication [1]. ASV systems are vulnerable to spoofing 

attacks, although their performance has gradually improved in 

recent years.  

There are three major classes of spoofing attacks: replay 

audio (RA), speech synthesis (SS), and voice conversion (VC) 

[2]. These three attacks are significant threats to ASV systems. 

RA attacks are the most straightforward to implement and can 

be performed using recordings of bona fide speech [3]. RA 

attacks do not need any additional knowledge of audio signal 

processing and are more likely to be used by a non-professional 

attacker. However, the implementation of SS and VC attacks 

usually requires specific knowledge or familiarity with 

complex speech technology. SS systems can generate 

completely artificial speech signals, whereas VC systems 

operate on natural speech [3]. Both SS and VC technologies 

can produce high-quality speech signals that mimic the speech 

of a specific target individual. 

Recent efforts in the field of anti-spoofing have been 

encouraged by the ASVspoof Challenges [4-6]. Previous 

ASVspoof Challenges have focused on raising awareness and 

developing solutions to spoofing attacks via SS, VC, and RA 

[7]. However, the ASVspoof 2019 Challenge aims to address 

all previous types of attack and is composed of two sub-

challenges: the logical access (LA) and physical access (PA) 

challenges. LA considers spoofing attacks generated using SS 

and VC, whereas PA refers to spoofing attacks using RA. 

Besides using an equal error rate (EER) metric [6], a new 

tandem decision cost function (t-DCF) metric is adopted to 

reflect the impact of spoofing and countermeasures on ASV 

performance. 

Research in the area of anti-spoofing can be divided into 

three categories: feature learning [8-11], statistical modeling 

[12-14], and deep neural networks (DNNs) [15-21]. Some 

DNN-based methods perform well in ASVspoof 2019. For 

example, the authors of [19] proposed a light convolutional 

gated recurrent neural network by fusing Light CNN 

(convolutional network) [22] and RNN (recurrent neural 

network) based on gated recurrent units (GRU). The network 

was used as a deep feature extractor to assist in the training of 

the classifier. Among them, LC-GRNN not only had the ability 

of Light CNN to extract discriminative features at the frame 

level but also included the ability of RNN to learn deep features. 

To solve the problem of poor generalization in speech detection 

algorithms based on a single feature, the authors of [20] 

proposed a speech detection framework based on multiple 

features integration and multi-task learning (MFMT). The 

authors of [18] built five DNN models and adopted different 

forms of feature engineering to detect spoofing attacks. 

Features included acoustic features, a unified feature map, and 

whole utterances, were fed into five DNN models based on 

variants of squeeze-excitation networks (SENets) [23] and 

ResNets [24]. Rather than using models with different 

architectures, the authors of [21] proposed three residual 

convolutional networks based on a unified residual block for 

anti-spoofing. Using three acoustic features as input, these 

Three models differed in terms of the number of blocks, the 
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number of units in the fully connected layer, and the use of 

pooling layer. 

In this paper, taking the advantages of multiple features 

integration and the success of DNN-based methods, we 

propose a new method that includes feature extraction, a 

densely connected convolutional network, and fusion strategies 

for audio spoofing detection. The 2D feature representation 

shaped by different feature extraction algorithms is then fed as 

input into our model. Considering that dense connectivity 

alleviates the vanishing gradient problem, strengthens the 

feature propagation, especially for audio features learned by 

shallow layers, the dense connectivity pattern with high 

parameter efficiency is introduced into our model, in which all 

layers with matched feature maps are directly connected. The 

performance of our proposed densely connected network with 

different types of input features is evaluated separately for the 

two sub-challenges in ASVspoof 2019 (LA and PA). To 

increase the accuracy of spoofing detection, different fusion 

strategies are adopted for different features for the two sub-

challenge. 

The major contributions of this work are as follows: We 

design a novel convolutional network for audio spoofing 

detection that includes dense connectivity. To the best of our 

knowledge, it is the first work to leverage dense connectivity 

for the task of audio spoofing detection. This dense 

connectivity strengthens the propagation of audio features and 

ensures the maximum flow of information between layers in 

the network through feature reuse. The developed network 

model with single feature-map input (single model in short 

form) achieves better results in the two sub-challenges (LA and 

PA) of ASVspoof 2019 than state-of-the-art single methods. 

For example, in the LA challenge, the proposed single model 

improves the t-DCF and EER scores by 68% and 67%, 

respectively. In the PA challenge, the proposed single model 

improves these scores by 47% and 45%, respectively. The 

fusion model, which is fused from several single models, 

improves the t-DCF and EER scores by 75% and 78%, 

respectively, in the LA challenge, and the t-DCF and EER 

scores by 73% and 72%, in the PA challenge, compared with 

state-of-the-art fusion models.  

The rest of this paper is organized as follows. Section II 

describes the proposed method, including the feature extraction 

algorithms and the structure of the proposed network. 

Experimental results, comparisons, and analyses are presented 

in Section III. Finally, concluding remarks are made in Section 

IV. 

II. PROPOSED METHOD 

We propose a novel method with feature extraction 

algorithms, a densely connected convolutional network, and 

fusion strategies for audio spoofing detection. 

A. Feature Extraction 

The extracted features include Mel-frequency cepstral 

coefficients (MFCC), constant Q cepstral coefficients (CQCC), 

the logarithmic magnitude spectrum of STFT (Spec), and linear 

frequency cepstral coefficients (LFCC). Different input feature 

has different size, that is, different M and different N as shown 

in Fig. 1. 

MFCC is one of the most popular magnitude-based features 

in speech processing. It uses cepstral analysis on the log 

magnitude spectrum in the Mel scale. The MFCC contains 

vocal tract dynamics, and its corresponding pulse train is 

related to glottal motor control, which makes the feature 

suitable for distinguishing spoofed speech from human speech. 

The MFCC is defined as: 
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where N is the number of Mel-frequency bins of log spectrum, 

and i is the number of cepstral coefficients. The first 24 

coefficients are selected in this study, and the sampling rate is 

set to 16000. The MFCC is concatenated with its first 

derivative △  MFCC and second derivative △ ² MFCC to 

obtain the MFCC feature input with size of M × N as shown in 

Fig.1. M × N is 72 × 126 here in our work. 

CQCC is reported to be sensitive to the general form of 

spoofing attack, and yields superior performance among 

various kinds of features [25]. The CQCC is an amplitude-

based feature that uses the constant Q transform (CQT) in 

combination with traditional cepstral analysis. The frequency 

bins of ( )cqX k  are obtained by the CQT of an input speech 

signal sequence ( )x n . Uniform sampling is applied to the 

constant Q power spectrum 
2
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Fig.1. Illustration of the proposed densely connected convolutional network, where the input feature includes MFCC, CQCC, Spec, and LFCC with size of 

M × N. Note that different feature input has different M and different N. 
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2

log( ( ) )cqX k can then be applied with DCT to obtain the 

feature representation with size 90 × 469. More details of 

CQCC can be found in [25]. 

 Spec is captured by computing the STFT on hamming 

windows firstly, then calculating the magnitude of each 

component. Let 𝑥(𝑛) be a given speech sequence and 𝑋𝑛(𝑤) 

is STFT after applying a window 𝑤(𝑛) on the speech signal 

𝑥(𝑛) . The length of the window is set to 2048. 𝑋𝑛(𝑤)  is 

defined as:  

( )
( ) ( ) ,nj w

n nX w X w e


                      (2) 

where |𝑋𝑛(𝑤)| corresponds to the short-time magnitude 

spectrum and 𝜃𝑛(𝑤) corresponds to the phase spectrum. The 

square of the magnitude spectrum is called the STFT power 

spectrum. The logarithm of the power spectrum is adopted as 

the Spec feature with size of 1025 × 126.  

LFCC is a kind of cepstral feature based on a triangle filter-

bank similar to the MFCC. It is extracted in the similar way as 

MFCC, but the filters are in the triangular shape rather than on 

the Mel scale. Therefore, The LFCC has better resolution in the 

higher frequency region [26]. The first 20 coefficients are 

selected. The LFCC is concatenated with its first derivative △  

LFCC and second derivative △ ² LFCC to produce the feature 

representation with size of 60 × 399. 

B. Proposed Network Model 

1. Overall Architecture 

The overall architecture of the proposed network model is 

shown in Fig. 1. The network contains 11 regular convolutional 

layer groups, each of which consists of three steps: convolution, 

batch normalization [27], and leaky-ReLU [28]. In addition, it 

has one standard convolutional layer, four transitional layers, 

two max-pooling layers, one average-pooling layer, one global 

average-pooling layer, and one fully connected layer. 

The first standard convolutional layer has a filter size of 3 × 

3, with stride and padding one, and outputs eight feature maps. 

There are four dense blocks in total, as shown in Fig. 1. The 

dense connection is introduced in each dense block. For each 

convolutional layer in the same block, the feature maps of all 

preceding group layers are used as input. We adopt three 

convolutional layer groups in the first three dense blocks, and 

two convolutional layer groups in the last dense block. The 

receptive field of the four dense blocks is 3 × 3. For the first 

dense block, the growth rate is eight, which means that each 

convolutional layer outputs eight feature maps in this block. 

The growth rate is 32 for the second block, 16 for the third 

block and 32 for the last block. The transition layers applied 

after each block are designed to reduce the number of input 

feature maps by using 1 × 1 convolutions. The pooling layers 

are adopted in order to facilitate down-sampling and to change 

the size of the feature maps. The output from the global average 

pooling layer is fed into a dropout layer [29] (dropout rate = 

50%) followed by a two-way Softmax layer that produces a 

Table I. Architecture of the proposed network, where the input feature includes MFCC, CQCC, Spec, and LFCC. Note that each “conv” layer shown in the 

table corresponds the sequence Conv-BN- leaky-ReLU. 

Layers Architecture MFCC CQCC Spec LFCC 

Convolution 3 × 3 conv, stride 1 72 × 126 90 × 469 1025 × 126 60 × 399 

Dense Block1 (3 × 3 conv) × 3 72 × 126 90 × 469 1025 × 126 60 × 399 

Transition layer 1 × 1 conv 72 × 126 90 × 469 1025 × 126 60 × 399 

Max pooling 2 × 2 max pool, stride 2 36 × 63 45 × 234 512 × 63 30 × 199 

Dense Block2 (3 × 3 conv) × 3 36 × 63 45 × 234 512 × 63 30 × 199 

Transition layer 1 × 1 conv 36 × 63 45 × 234 512 × 63 30 × 199 

Average pooling 2 × 2 average pool, stride 2 18 × 31 22 × 117 256 × 31 15 × 99 

Dense Block3 (3 × 3 conv) × 3 18 × 31 22 × 117 256 × 31 15 × 99 

Transition layer 1 × 1 conv 18 × 31 22 × 117 256 × 31 15 × 99 

Max pooling 2 × 2 max pool, stride 2 9 × 15 11 × 58 128 × 15 7 × 49 

Dense Block4 (3 × 3 conv) × 2 9 × 15 11 × 58 128 × 15 7 × 49 

Transition layer 1 × 1 conv 9 × 15 11 × 58 128 × 15 7 × 49 

Classification layer 
global average pool 1 × 1 1 × 1 1 × 1 1 × 1 

Dropout, 128 FC, softmax - - - - 

 

Batch Normalization LeakyReLUConvolution

𝑥0 𝑥1 𝑥𝑙  

 
Fig.2. Illustration of the dense connectivity in dense block. 
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distribution of two class labels. Table Ⅰ shows the detailed 

architecture of the proposed network. And when accepting 

different input features, the output size of each layer is 

presented. 

The goal of the ASVspoof challenge is to calculate a 

countermeasure (CM) score for each input audio file. A high 

CM score represents bona fide speech, whereas a low CM score 

represents a spoofing attack. The final CM score is computed 

from the Softmax outputs using the log-likelihood ratio: 

 

( ) log( ( ; )) log( ( ; )),CM s p bonafide s p spoof s       (3) 

 

where s  is the audio signal under test and   represents the 

model parameters. 

2. Dense Connectivity  

Dense connectivity is introduced to our model inspired by 

[30]. In this pattern, direct connections are applied from each 

layer to all subsequent layers with the same feature map size. 

As shown in Fig.2, the thl  layer receives the feature maps from 

all preceding layers, 
0 1 1, , , lx x x  , as the input:  

 

0 1 1([ , , , ]),l l lx H x x x                          (4) 

 

where 
0 1 1[ , , , ]lx x x   refers to the concatenation of the feature 

maps produced in layer 0, , 1l  . ( )lH   is a composite 

function of operations including batch normalization, leaky-

ReLU and convolution.  

Concatenating the feature maps learned by different layers 

can increase the variation in the input of subsequent layers and 

ensure maximum information flow between layers in the 

network. Depending on the dense connectivity pattern, some 

general audio features that are only extracted in the preceding 

layers can be shared in the deeper layers in our architecture. In 

this way, the propagation of audio features is strengthened. In 

addition, the gradients can flow directly through the identity 

function, from the later layers to the former layers, leading to 

implicit deep supervision [30] that alleviates the vanishing-

gradient problem and makes the network easy to train. 

Compared with L-layer traditional convolutional neural 

networks with L connections, the dense connectivity introduces 

1

2

L 
 connections without relearning redundant feature maps. 

The dense pattern has better parameter efficiency than the 

traditional pattern in convolutional networks.  

C. Model Symbol Definition and Fusion Strategies 

The single CNN model variant is built by accepting MFCC, 

CQCC, Spec and LFCC input features. Define the single model 

as fD , where f  represents MFCC, CQCC, Spec, and LFCC. 

MD (MFCC), 
CD (CQCC), 

SD (Spec), and 
LD (LFCC) differ 

only in the kernel size of the global average pooling layer. 

Suppose that the size of the input feature is M N , the kernel 

size of the global average pooling layer is 
8 8

M N   
   

   
, where 

    represents the function of rounding down.  

The outputs of several single-model fD  are fused together 

to get the fusion model. The fusion result is obtained by taking 

average of the outputs (CM scores) of the individual single-

models. The scores of the single-models are obtained by using 

the formula (3) with the parameters of best performance on the 

development dataset. This fusion model is defined as
1 2, , , nf f fD  . 

For the two sub-challenges (LA and PA) of ASVspoof 2019, 

different fusion strategies are adopted. For example, ,S LD for 

the LA challenge and , ,C S LD  for the PA challenge.  

III. EXPERIMENTAL RESULTS 

In this section, experiments are carried out to demonstrate 

the effectiveness of the proposed method. In addition to 

comparing with two baseline models provided by ASVspoof 

2019, we also compare it with state-of-the-art DNN-based 

methods [21]. 

A. Experimental Setup 

The dataset used in this study containing non-overlapping 

short audio files is provided by the organizers of ASVspoof 

2019. The dataset consists of both bona fide and spoofed audio 

recordings, and is divided into three parts: training, 

development, and evaluation. For the LA sub-challenge, 

spoofed audio is generated using 19 different SS and VC 

algorithms (A01 to A19). Six of these attack algorithms (A01 

to A06) are considered to be known attacks, and are used to 

generate the training and development datasets. The other 13 

algorithms are used to generate the evaluation dataset. A07 to 

A18 (except A16) represent eleven unknown attacks, while 

A16 and A19 are known attacks using the same algorithms as 

A04 and A06. Summary of the logical access spoofing systems 

is shown in Table Ⅱ. For the PA sub-challenge, replay attacks 

Table Ⅱ. Summary of the ASVspoof 2019 logical access (LA) spoofing 
systems. Note that A04 and A16 use same waveform concatenation SS 

algorithm, and A06 and A19 use same VC algorithm. 

 

Training and 

development set 
Evaluation set 

SS VC SS VC 

A01  A07  A11 A13  A18 

A02 A05 A08  A12 A14  A19 

A03 A06 A09  A16 A15 

A04  A10 A17 

 

Table Ⅲ. Replay attack is defined as duple (D, Q), each element of which 
takes one value in set (A, B, C) as a categorical value. 

 

Attack definition 
labels 

A B C 

D : Recording distance 10-50 50-100 >100 

Q : Replay device quality perfect high low 
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are recorded and replayed in 27 different acoustic 

configurations with nine different settings (i.e. combinations of 

three categories of recording distance and three levels of replay 

device quality). Evaluation data for PA are generated from 

different impulse responses and therefore represent unknown 

attacks. The definition of nine different settings is shown in 

Table Ⅲ. 

All of the experiments using the CNN reported in this study 

are performed using PyTorch on Nvidia Tesla K80 GPUs. The 

models are trained using a batch size of 32 and a learning rate 

of 55 10 for 200 epochs. In order to mitigate the imbalance in 

the distribution of training data, we train our models by 

minimizing a weighted cross-entropy loss function where the 

ratio between the weights assigned to genuine and spoofed 

examples is 9:1. The cost function is minimized using the 

Adam optimizer [31]. After each epoch, we save the model 

parameters, and finally, we use the parameters with the best 

performance on the development dataset. 

We denote the variants of single model as
MD ,

CD ,
SD  and

LD . Several state-of-the-art methods are used for comparison 

with these variants. The residual model variants provided by 

[21] are denoted as
MR ,

CR  and
SR . 

MR consists of nine 

residual blocks and inserts pooling layers between every three 

blocks, while 
CR  adopts six residual blocks and inserts pooling 

layers between blocks, and 
SR  consists of six residual blocks. 

The baseline models, namely Gaussian mixture models 

(GMMs), provided by [6] are denoted as 
LG  and 

CG . The 

scores of these model variants are compared on both the 

development and evaluation datasets. 

For the LA challenge, the scheme in [21] fuses MFCC, 

CQCC, and Spec features to get a fusion model which is 

denoted as , ,M C SR . For the PA challenge, the MFCC feature 

performs poorly on the development set, so it is not considered 

in the fusion strategies. The scheme in [21] fuses CQCC and 

Spec features to get a fusion model denoted as ,C SR  for the PA 

challenge. In contrast, we select two new fusion strategies and 

denote ,S LD  for the LA challenge and , ,C S LD  for the PA 

challenge. Both strategies are shown to be more suitable for 

audio spoofing detection than the state-of-the-art alternative. 

Table Ⅳ.  t-DCF and EER scores of different models were measured 

using the development and evaluation sets in logical access (LA) 

scenarios. Baseline models are denoted as 
LG  and 

CG . The residual 

model variants provided by [21] are denoted as 
MR , 

CR  and 
SR . Our 

single models are denoted as 
MD , 

CD , 
SD  and 

LD . The residual 

fusion model is denoted as 
, ,M C SR  and our fusion models are denoted as 

, ,M C SD  and 
,S LD . Subscripts represent different features. 

 

Model 
Development Evaluation 

t-DCF EER% t-DCF EER% 

LG  0.0663 2.71 0.2116 8.09 

CG  0.0123 0.43 0.2366 9.57 

MR  0.2319 7.18 0.2780 12.07 

CR  0.0899 2.98 0.2626 11.34 

SR  0.0197 0.68 0.2094 9.82 

MD  0.0580 2.00 0.2209 9.64 

CD  0.0319 1.02 0.2616 10.87 

SD  0.0029 0.11 0.1979 7.14 

LD  0.0007 0.04 0.0676 3.27 

, ,M C SR  0.0231 0.82 0.1853 8.99 

, ,M C SD  0.0024 0.08 0.1387 5.76 

,S LD  0.0001 0.01 0.0469 1.98 

 

Fig.3. t-DCF scores of different models against different types of 

attacks (A01 to A09) in logical access (LA) scenarios, showing detailed 
comparisons between the two baseline models, the two single models, 

and the three fusion models. The meaning of model symbol can refer to 

the title of Table Ⅳ. 
 

Table Ⅵ. t-DCF and EER scores of different models are measured on the 
development and evaluation sets in physical access (PA) scenarios. The 

meaning of model symbol can refer to the title of Table Ⅳ. 

 

Model 
Development Evaluation 

t-DCF EER% t-DCF EER% 

LG  0.2554 11.96 0.3017 13.54 

CG  0.1953 9.87 0.2454 11.04 

MR  0.3945 16.80 - - 

CR  0.2076 8.82 0.2982 12.06 

SR  0.1256 4.74 0.1416 5.52 

MD  0.3749 15.67 - - 

CD  0.1068 4.87 0.1518 6.40 

SD  0.0716 2.80 0.0754 3.01 

LD  0.1110 5.45 0.1871 7.48 

,C SR  0.0925 3.80 0.1274 5.02 

,C SD  0.0374 1.52 0.0445 1.76 

, ,C S L
D  0.0265 1.19 0.0341 1.40 
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The t-DCF [32] and EER metrics are adopted to assess the 

performance of the anti-spoofing methods. The t-DCF metric 

takes into consideration both the ASV system and spoofing 

countermeasure errors, and more details can be found in [32]. 

The EER metric is determined by the point at which the miss 

(false negative) rate and false alarm (false positive) rate are 

equal. 

B. Results for ASVspoof 2019 LA 

Table Ⅳ shows the scores for both the development and 

evaluation dataset for the LA sub-challenge. For the 

development set, 
MR , 

CR , and 
SR  perform worse than 

CG  in 

terms of the t-DCF and EER metrics. For the evaluation dataset, 

SR  performs better than 
LG  on the t-DCF metric, but worse 

than 
LG  on the EER metric. The single top model 

LD  has a 

significantly lowest t-DCF and EER scores for both the 

development and evaluation datasets among single models. 

Our fusion model , ,M C SD  achieves a t-DCF score of 0.1387 

and an EER score of 5.76, representing improvements of 25% 

and 36%, respectively, over the fusion model , ,M C SR . Our 

fusion model ,S LD  achieves a t-DCF score of 0.0469 and an 

EER score of 1.98, representing improvements of 75% and 

78%, respectively, over the fusion model , ,M C SR . This obvious 

improvement indicates that the proposed method is more 

Table Ⅴ. Detailed comparison of t-DCF and EER scores for the three fusion models under different replay attacks for logical access (LA) scenarios. The 

residual fusion model is denoted as 
, ,M C SR  and our fusion models are denoted as 

, ,M C SD  and 
,S LD . Subscripts represent different features. 

 

Attack Type 
, ,M C SR  

, ,M C SD  
,S LD  

t-DCF EER% t-DCF EER% t-DCF EER% 

A01 0.0036 0.19 0.0008 0.03 0.0000 0.00 

A02 0.0013 0.03 0.0016 0.03 0.0000 0.00 

A03 0.0023 0.11 0.0015 0.08 0.0000 0.00 

A04 0.0052 0.27 0.0015 0.08 0.0000 0.00 

A05 0.0321 1.10 0.0017 0.08 0.0011 0.03 

A06 0.0616 1.37 0.0065 0.16 0.0000 0.00 

A07 0.0038 0.15 0.0012 0.06 0.0006 0.04 

A08 0.0748 2.72 0.0177 0.63 0.0008 0.04 

A09 0.0135 0.18 0.0052 0.07 0.0000 0.00 

A10 0.0209 0.72 0.0168 0.61 0.0101 0.38 

A11 0.0145 0.53 0.0174 0.67 0.0061 0.24 

A12 0.0238 0.87 0.0218 0.80 0.0072 0.26 

A13 0.0306 1.08 0.0154 0.55 0.0060 0.24 

A14 0.0108 0.42 0.0081 0.31 0.0019 0.08 

A15 0.0208 0.77 0.0203 0.79 0.0052 0.19 

A16 0.0114 0.41 0.0026 0.11 0.0002 0.02 

A17 0.9998 31.44 1.0000 18.84 0.5791 9.65 

A18 0.8889 19.90 0.6221 10.13 0.0225 0.34 

A19 0.1658 4.11 0.0482 1.22 0.0084 0.24 

 

Table Ⅶ. Detailed comparison of t-DCF and EER scores for the three fusion models under different replay attacks for physical access (PA) scenarios. 

The residual fusion model is denoted as 
,C SR  and our fusion models are denoted as 

,C SD  and 
, ,C S LD . Subscripts represent different features. 

 

Attack Type 
,C SR  

,C SD  
, ,C S LD  

t-DCF EER% t-DCF EER% t-DCF EER% 

AA 0.3225 11.84 0.1218 4.74 0.1038 3.96 

AB 0.0675 2.32 0.0272 1.06 0.0135 0.54 

AC 0.0418 1.40 0.0065 0.29 0.0052 0.24 

BA 0.2090 8.02 0.0469 1.78 0.0360 1.45 

BB 0.0396 1.33 0.0096 0.43 0.0050 0.21 

BC 0.0226 0.84 0.0030 0.13 0.0014 0.06 

CA 0.1610 5.81 0.0468 1.74 0.0336 1.29 

CB 0.0029 0.98 0.0077 0.31 0.0034 0.12 

CC 0.0183 0.59 0.0037 1.17 0.0018 0.09 
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suitable for audio spoofing detection in the LA sub-challenge 

than the state-of-the-art alternative. 

Fig.3. provides a detailed illustration of the performance of 

our model against both known and unknown attacks (A01 to 

A19). We show the t-DCF scores for 
LG , 

CG , the single 

residual model 
SR , the single top model 

LD , the fusion model 

, ,M C SR , the fusion model , ,M C SD , and the fusion model ,S LD . 

A01 to A06 are known attacks (from the development set), 

while A07 to A19 are unknown (from the evaluation set). It can 

be observed that our fusion model ,S LD  works well against 

almost all these attacks except for A17, and that most of the 

other models perform poorly on A17 and A18. Both A17 and 

A18 are VC algorithms, where A17 is based on waveform 

filtering, and A18 is based on vocoders. 
LG  performs best 

against A17, indicating that a DNN-based method is more 

vulnerable to vocoder based video conversion attacks. We 

compare the effects of the fusion models ( , ,M C SR , , ,M C SD , ,S LD ) 

on various attacks (A01 to A09) in detail in Table Ⅴ. Our fusion 

model , ,M C SD   performs better than , ,M C SR  in most cases. Our 

proposed new fusion model ,S LD  works best when resisting all 

attacks. In particular, , ,M C SR  and , ,M C SD  perform poorly 

against A17. Our proposed new fusion model ,S LD  reduces the 

metric of t-DCF from 0.9998 to 0.5791, and the metric of EER 

from 31.44 to 9.65, compared to the fusion model , ,M C SR  

against A17. ,S LD  reduces the metric of t-DCF from 1.0000 to 

0.5791, the metric of EER from 18.84 to 9.65, compared to the 

model , ,M C SD  against A17. 

C. Results for ASVspoof 2019 PA 

Table Ⅵ presents the results for the PA task, for both the 

development and evaluation dataset. In general,  
SR , 

CD , 
SD  

and 
LD  improve the performance in terms of the t-DCT and 

EER metrics. As shown in Table Ⅵ, for the development 

dataset, the single top model 
SD  is 43% and 41% better than 

the single residual model 
SR  in terms of the t-DCF and EER 

metrics, respectively. The single top model 
SD  reduces the t-

DCF and EER of 
SR  by 47% and 45% for the evaluation 

dataset. The fusion model ,C SD  represents a 65% improvement 

compared to the fusion model ,C SR . The proposed new fusion 

model , ,C S LD  achieves a t-DCF score of 0.0341 and an EER 

score of 1.40, representing improvements of 73% and 72%, 

respectively. 

Fig.4. provides a detailed illustration of the performance of 

the models for different replay attack settings. Each type of 

attack is represented with two letters, the first of which stands 

for the distance between the recording device and the bona fide 

speaker (where ‘A’ means 10–50 cm, ‘B’ means 50–100 cm, 

and ‘C’ means >100 cm), while the second represents the 

quality of the replay device (where ‘A’ means perfect, ‘B’ 

means high, and ‘C’ means low). It can be observed that the t-

DCF metric of our proposed new fusion model , ,C S LD  is lowest 

for different replay attack settings, which implies the 

effectiveness of our model , ,C S LD . 

To further illustrate the effects of the three fusion models, 

Table Ⅶ provides detailed performance results for each model 

for different replay attack settings. A comparison can be made 

between the fusion model ,C SR , the fusion model ,C SD , and 

the proposed new fusion model , ,C S LD . It is easy to see that 

anti-spoofing becomes more difficult as the distance decreases 

and the quality of the recording device improves. In general, 

the fusion model , ,C S LD  performs best under most replay attack 

settings. 

D. Comparison with Single Residual Networks in Model 

Parameters 

We show comparisons between the single proposed 

networks and the single residual networks [21] in Table Ⅷ. 

Accepting different input features, fR  has different model 

parameters but fD  has the same parameters. Besides, fD  has 

less parameters than fR  when accepting the same input 

features, indicating that the DNN-based method with dense 

 
Fig.4. t-DCF scores of different models for different replay attack 

settings in physical access (PA) scenarios, showing detailed 

comparisons between the five single models, and the three fusion 
models. The meaning of model symbol can refer to the title of 

Table Ⅳ. 

 

Table Ⅷ. Comparisons between the single proposed models and the 
single residual models in terms of model parameters. 

 

Model SR  
MR  

CR  

Param 176130 255650 167552 

Model SD  
MD  

CD  

Param 97098 97098 97098 
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connectivity has better parameter efficiency than the DNN-

based method without this pattern. 

IV. CONCLUSION 

In this paper, we propose a novel method for anti-spoofing 

that includes feature extraction, a densely connected network, 

and fusion strategies. A dense connectivity pattern is 

introduced to strengthen the propagation of the extracted audio 

features and to give better parameter efficiency, which helps 

boost the detection accuracy. We compare the performance of 

our model, using four different feature extraction algorithms. 

In addition to comparing two baseline models provided by 

ASVspoof 2019, we also compare our proposed method with 

state-of-the-art DNN-based methods, and our method achieves 

better performance in terms of the t-DCF and EER metrics. The 

proposed CNN architecture performs well on the LA scenarios, 

which consists of VC and SS attacks, and our fusion model 

improves the t-DCF and EER metrics by 75% and 78%, 

respectively. The proposed method also performs well against 

the RA attack within the PA scenarios, and our fusion model 

improves the t-DCF and EER metrics by 73% and 72%, 

respectively. 
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