
Vein Pattern Visualisation using Conditional
Generative Adversarial Networks

Ali Keivanmarz∗, Hamid Sharifzadeh∗, Rachel Fleming†
∗ School of Computing, Unitec Institute of Technology, Auckland, New Zealand

E-mails: keivaa01@myunitec.ac.nz, hsharifzadeh@unitec.ac.nz
† Forensic R&D, Institute of Environmental Science and Research (ESR), Auckland, New Zealand

E-mail: Rachel.Fleming@esr.cri.nz

Abstract—Utilising vein pattern as a biometric attribute for
forensic identification in crime investigation has been challenging
because vein patterns are almost undetectable in standard RGB
images. Significant research efforts for uncovering vein patterns
have been recently made based on various computational tech-
niques such as artificial neural networks, optical vein disclosure,
auto-encoders, etc. While some promising results have been
achieved using these methods, comparing with the NIR reference
images, these computational techniques are still struggling to
provide reliable outcomes.

In this paper, we propose a new method that performs
vein pattern visualisation based on a conditional Generative
Adversarial Network (GAN). GANs have shown promising
results on image translation tasks in other areas. Therefore, for
the first time, a specialised conditional GAN is proposed for
translating colour RGB images to NIR images in this paper. The
performance evaluation conducted on a small dataset shows the
efficiency of our proposed method by uncovering over 80% of
vein pixels in forearms of eleven subjects.

Keywords: Vein pattern, GAN, Forensics, Image translation,
CSAM

I. INTRODUCTION

In fighting with child sexual abuse material (CSAM), which
is regarded as one of the rapidly growing crimes [1], identifica-
tion of criminal and victim is a vital factor. Child pornography
is associated with a series of other criminal offences, including
human trafficking and sexual abuse. Thus it is of paramount
importance in investigative operations of the law enforcement
agencies and police across the world. Identifying a person
based on typical colour images is possible through the face
characteristics, so there has been considerable research effort
to develop biometric feature extraction via face recognition
[2], [3], [4], [5], [6].

While typical biometric identification methods are effec-
tively used in conventional evidence images, in the CSAM
cases, these methods are not useful due to the typically covered
face of the offenders. To avoid recognition, child abusers are
often cautious not to reveal their faces in the footage.

The internet has resulted in an explosion in the illicit trade
of CSAM and due to the lack of effective investigative tools,
crimes associated with the CSAM are growing significantly
[7]. Therefore, developing reliable methods for identifying
child abusers based on partial skin images can be considered
as the most efficient way of fighting with the CSAM and
associated crimes.

In the CSAM cases, tattoos and skin traces may provide
some clues; however, tattoos are not always unique, or some
people have no tattoos, while others might have similar tattoos.
Additionally, the skin exposed in evidence images may not
have enough visible skin marks for the person identification
[8]. Therefore, alternative biometric traits and identification
methods are required to be developed for criminal identifica-
tion in these cases.

Recently, some computational methods have been intro-
duced that aim to uncover the vein patterns of subjects - as
unique to an individual as their fingerprint or DNA - in normal
digital images [9], [10], [11], [12]. To visualise vein patterns
in the body limbs, we usually require images to be captured
by a Near-Infrared (NIR) camera (as special equipment) while
in the CSAM cases, the evidence images have been captured
by a normal digital camera (i.e. not a NIR image). Thus,
through visualising vein patterns from a small portion of non-
facial skin image captured by a normal digital camera, the
ultimate aim of these computational methods are to provide an
image with similar characteristics to a NIR image. While some
promising results have been achieved, these approaches still
struggle in providing a reliable outcome with the necessary
details of vein patterns similar to what a NIR image can
provide.

In this paper, within an image translation framework, for
the first time, we propose GANs in the conditional setting to
map RGB images to NIR images. GANs have shown very
promising results on image translation tasks in other areas
[13], [14], [15], [16]; therefore, a specialised conditional GAN
is proposed for translating colour images to NIR counterparts
in this paper. While GANs based methods use a generator
model as part of the architecture, in our proposed model, a
conditional generator model is used [13], [14]. This would
be a suitable approach for the RGB-to-NIR image translation
because we can apply conditions to the generative model in
the conversion of the input to output images in corresponding
to the target images.

To briefly provide an idea of the proposed method, the block
diagram in Fig. 1 outlines the technical steps of our method. As
shown in Fig. 1, first the RGB and NIR images are globally
enhanced by contrast adjustments. After initially enhancing
both synchronised RGB and NIR images, conditional GANs
are used to generate plausible NIR images. Finally, for vali-
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Fig. 1. The technical procedure for the proposed visualisation method. RGB
and NIR images are first enhanced before being trained by the proposed
cGAN. Both the outcome of the generative model and enhanced target NIR
image are then skeletonised for the purpose of measuring the vein lengths.

dating the results of the proposed cGAN, both reference NIR
and generated NIR images are skeletonised and the length of
vein pixels is measured. Section 3 discusses further technical
details of the proposed method.

The rest of this paper is organised as follows: Section II
briefly evaluates the related literature. Section III explains the
cGAN based image transformation approach as the core of our
proposed method, and Section IV discusses skeletonisation and
vein length measurement. Section V reports the performance
evaluation and experimental findings. Finally, Section VI of-
fers conclusive remarks.

II. RELATED LITERATURE

For the purpose of criminal and victim identification in
the scenes where the faces are masked, uncovering vein
pattern from colour digital images can be considered as a
new biometric tool. As mentioned in Section I, a variety of
computational models have been developed for this purpose.
As a very early effort for extracting epidermis characteristics
in standard images, Claridge et al. [17] developed a method
based on Pigmented Skin Lesions technique that was used

to reveal melanin intensity, dermal depth, and haemoglobin,
using textured skin lesions. Their method was mainly devel-
oped for clinical applications, i.e. vein patterns or forensic
investigations were not the focus of their work.

In 2011, Tang et al. [18] presented a model using optics
and skin biophysics called OBVU. Their proposed model had a
different approach from that of Claridge et al. and was focused
on using vein structures for forensic research. The OBVU used
the Kubelka-Munk theory [19], [20] to model the formation
of skin colours. They indicated that the method was sensitive
to green channel noise, and various lighting conditions can
influence the performance of vein pattern extraction. Later, to
address some of these shortcomings, Zhang et al. [8] suggested
an uncovering vein pattern algorithm moderately based on
OBVU and introduced a new technique for colour-optimisation
and adaptive image intensity adjustment. The drawback with
Zhang’s method was poor outcomes on diverse skin properties
and also on various image illuminations [9], [21].

To overcome the issues raising from skin diversity, Shar-
ifzadeh et al. [9] proposed an uncovering method based on
a basic artificial neural network but with banks of mapping
models. More recently, Varastehpour et al. [21] developed
a deep neural network using sparse-auto-encoder to enhance
the image before the vein pattern extraction phase. In their
method, three parameters were adjusted: Sparsity-Proportion,
L2-Weight-Regularisation and Sparsity Regularisation.

By and large, all these techniques of vein extraction are
still subject to certain limitations. In addition to the limitations
in efficiently addressing skin diversity, or lighting conditions,
or image quality issues, one of the main drawbacks in these
methods might be the commonly used framework of mapping
RGB images to NIR images. These methods assume there
is an optimum pixel to pixel mapping that can efficiently
convert three channels of RGB into one channel of grey-
scale to generate a NIR image; however, given consideration
to the outcomes of these methods, this assumption might not
be the best approach. Many problems in computer vision are
modelled as mapping and converting an input image into a
corresponding output image. When using deep learning in the
image to image translation, networks learn to reduce an error
function which is an objective that rates the value of output
image. Therefore, a great deal of manual adjustments needs
to be performed to define an effective loss function despite
automatic learning stage. Additionally, the current methods are
often framed as pixel-by-pixel classification and regression in
which each resulted pixel is isolated from other pixels.

Generative Adversarial Networks (GANs) as a recent de-
velopment in deep learning algorithms can potentially address
some of the issues in current methods by learning an error
function by itself and classify the output image into positive
class if it is what we are looking for while simultaneously
training a generative model to minimise that error function
[22], [23], [24]. Since GANs are able to learn an error function
related to the synchronised pairs of input and target images,
they are able to automate this stage of the process as well
[14].
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Fig. 2. Our proposed conditional GAN training procedure: G as the generative model learns to deceive D as the discriminative model which simultaneously is
learning to distinguish between real (i.e. reference NIR image) and fake (i.e. the NIR images generated by G). This training process continues until D cannot
distinguish the real target NIR from fake G generated image (i.e. the best NIR generated image similar to the reference NIR image). Additionally, both G
and D are observing input image as the condition.

Thus, this paper proposes an entirely new approach based on
translating RGB images to NIR counterparts. Unlike current
methods that are mainly built upon RGB to NIR image
conversion using feature extraction and fusion for mapping
from colour to grayscale, in this paper an image to image
translation method based on GANs is developed and evaluated.
We also define a condition on an RGB input image and
correspondingly create a NIR output image.

As shown in Fig. 1, this method consists of a two-stage
algorithm based on synchronised RGB and NIR images: The
first stage is the translation of the enhanced RGB images in
three separate channels into the target NIR image using cGAN,
and the second stage is the skeletonisation procedure that visu-
alises an estimation of the topology of vein pixels; the outcome
of this stage is also used for the objective measurements. In
the following sections, we discuss the details of our proposed
method and provide the results of the evaluative performance
analysis.

III. PROPOSED CGAN FRAMEWORK

Transformation of a given input image to a reference image
is a controlled conversion. Such a transformation requires
special models and loss functions. The proposed cGAN ar-
chitecture here is an adjusted approach specialised for the
translation of RGB images into NIR images. For this purpose,
a cGAN based technique is developed, which generates a NIR
image, based on a provided input RGB image. The GAN
algorithm within this setting adopts the error function to adjust
the generated image to be close in content, and to look visually
plausible to the target image (i.e. NIR image).

Fig. 2 shows the training process for our proposed RGB-
NIR translation cGAN network outlining the mechanism in
which the target NIR and input RGB images are fed into the
model for the generation of the best possible NIR counterpart

from the corresponding RGB image. In the following sub-
sections, first, a brief overview of cGAN architecture as an
extension of GAN network is provided and then the technical
components of our proposed cGAN model for the purpose of
RGB to NIR translation, as shown in Fig. 2, are described.

A. cGAN Architecture

The generator models in GANs aim to learn a mapping
function between random vector noise c and the resulted image
b [25],

G : c→ b (1)

The generator models in cGANs aim to figure the mapping
from input image a and c to b [26],

G : a, c→ b (2)

G, like the generator, creates images that D, as the discrim-
inator model, cannot distinguish from the target image. At the
same time, D is being trained and continuously improved to
detect the undesirable or fake images in GANs context.

The conditional GAN’s objective is stated as:

LcGAN(G,D) = Ea, b[logD(a, b)]

+Ea, b[log(1−D(a,G(a, c))]
(3)

where LcGAN is the loss of the cGAN model, E is the
expectation, and G minimises the error while the adversarial
D attempts to maximise it, i.e. G* = arg minG maxD LcGAN
(G, D).

Previous approaches use a mixture of L2 distance with
GAN objective [27]. While the discriminator’s task remains
the same, the generator model’s job is to deceive the D in
addition to generating an image close to the target image in
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Fig. 3. Vein Skeletonisation: (a) Output of the proposed model, (b) Target
NIR image.

an L2 sense. Instead of using L2, we noticed that using L1
results in less blurry outcomes in RGB to NIR generation:

LL1(G) = Ea, b, c|b−G(a, c)| (4)

The concluded G is:

G∗ = λLL1(G)+argmin (G)max (D)LcGAN(G,D) (5)

where LL1 is the loss of L1 and λ is used to control the
combination.

Although the network is able to learn the mapping from a
to b without considering c, yet the results will be determin-
istic and do not coordinate with any distribution except the
delta function [14]. Previous cGANs addressed the issue and
introduced Gaussian noise c as an additional parameter to a
when applied to the generator [28]. In our case, we did not
find Gaussian noise c as an effective strategy and instead, we
applied dropout as noise to the layers of our generator model
during training and testing phases as was previously tested by
Isola et al. [14].

Our specialised cGAN architecture includes an accurate
specification of a discriminator model, a generative model,
and the optimisation process. In the following, we describe
each of these functioning blocks.

B. Generator Model

We design our generator architecture based on the consid-
eration that the input (RGB) and output (generated NIR) are
only different in surface look, but both are similar in the core
structure. As a result, the structure in the input RGB image is
approximately adjusted with the structure in the output image
(i.e. generated NIR image).

Previous approaches [28], [27] to similar tasks of image
translation utilised an encoder-decoder network as the gener-
ator [29]. In these models, all information move across all
the generative layers, including the bottleneck [30]. In our
case, there is a large amount of low-level information shared
between the input and output images for the RGB-to-NIR
image translations (such as the location of edges) and it would
be beneficial to move such information straight through the
network layers instead of going through the generative process.
So as an alternative solution, a U-Net model [31], [32] can
be used for the generative model which works very similar
to auto-encoder-decoder and includes down-sampling and up-
sampling to create output images with the addition of links
or skip-connections between layers of the same size in the
encoder and the decoder in order to avoid low-level processing
information especially in the bottleneck of the network.

The generative network is trained by applying both an
adversarial loss for the discriminative network and the L1
or a mean absolute pixel difference between the generated
image and the intended target image. The adversarial loss
and the L1, which is used to update the model generator, are
added together as a compound loss function. As previously
mentioned in subsection III-A, the loss of L2 has also been
considered for our model but resulted in blurred images, so
we focused on the L1.

The adversarial loss has an impact on the ability of the
generator model in the target domain to produce images that
are realistic, while the L1 loss regularises the generator model
to produce images that are a plausible conversion of the input
image. As such, a new λ, which has been set to 10 or 100, is
used to control the combination of the L1 loss in an adversary
loss in our model:

GeneratorLoss = AdversarialLoss+ λ× L1Loss (6)

C. Discriminator Model
The discriminator model uses the source domain RGB im-

age and a target domain NIR image to calculate the probability
of how realistic the generated image is.

The approach to the discriminatory model emphasises the
need for an image dataset composed of combined source and
target images during model training. Our proposed model uses
a PatchGAN [14] as opposed to the standard GAN model
which uses a deep CNN for image classification. Instead of
classifying the entire dataset, PatchGAN is used to classify
patches of data image sets. The proposed discriminator model
classifies the generated images as real or fake images consider-
ing how plausible and similar they are compared to the target
images (i.e. how similar/plausible a generated NIR image is
to a target NIR image). The discriminator model output is
a single characteristic map of real/fake estimates that can be
averaged for a single result. The RGB-to-NIR translation task
is determined to be effective with a patch size of 70x70 in our
model.

The discriminatory model is trained independently of a
standard GAN model, which minimises the negative log-like
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Fig. 4. Vein uncovering results: (a) Input RGB image, (b) cGAN generated
image, (c) Target NIR image.

identification of real and fake images, even though it is con-
ditioned on a generated image. The training of discrimination
against the generator is too fast; thus, the loss of discrimination
is halved to reduce the speed of the training process for the
discriminator.

DiscriminatorLoss = 0.5×DiscriminatorLoss (7)

D. Optimisation

To optimise the proposed model, we apply the approach
obtained from [25]: We shift between a step down on D, as
the discriminator model, then one step down on G as the
generative model. We use the Adam solver and mini-batch
SGD (Stochastic Gradient Descent) [33], which takes just one
example at a time to take a single step. Also, the learning rate
is set to 0.0002.

For the training phase, we define α as the threshold for the
discriminator loss in order to restrict the number of training
loops. We also define β as the threshold for the number of
epochs. For the purpose of these experiments, we evaluated
these thresholds and set α to 0.7 and β to 150 epochs for the
training phase. During the testing phase, we run the generator
model like the way we run the model on the training phase,
which means we do not apply dropout during the test phase.

We also apply batch normalisation using the test batch
statistics [33]. The batch size of 1 has been tested to be
effective on the image translation tasks [34]. We also use batch
size 1.

IV. SKELETONISATION

The outcome of the proposed cGAN network is passed
through an adaptive thresholding algorithm for skeletonisation

[35]. The algorithm performs thresholding over local neigh-
bourhoods, allowing for the extraction of structure over a broad
dynamic range.

Within the skeletonisation process, first, a mask is con-
structed by applying morphological operators to remove un-
necessary small regions. Then we reduce the image into
skeleton form with one-pixel width using a Medial Axis
Transform technique [36]. The skeletonised image shows the
vein location and pattern.

To find the vein lengths, we remove the tiny branches on the
image. Every remaining graphic entity in the resulting image
is transformed into a graph. We use such graph to find the
longest path through the skeleton to determine the length of
the veins. The other branches that are away from the longest
vein are removed.

In order to check the outcome of the proposed method and
skeletonisation process, we use a pair of synchronised RGB
and NIR images. As an example, Fig. 3 shows the outcome of
the proposed image translation and vein skeletonisation on a
small part of a forearm along with the corresponding reference
NIR image.

V. PERFORMANCE EVALUATION & DISCUSSION

To evaluate our proposed cGAN model for the task of
RGB-to-NIR image translation, we trained and tested our
method on the images in the NTU Forensic Image Skin dataset
[37]. As the early steps towards using cGAN for the NIR
generation, eleven subjects from the NTU dataset were used to
provide training and testing samples for the proposed method.
Synchronised pairs of NIR and RGB images were obtained
from 22 forearms of these eleven subjects (left and right hands)
and then segmented into 277 images in the size of 32x32.
Although small in size, they were able to offer a diversity of
skin tones and variety of forearms to some extent.

To balance the proportion of vein and skin pixels on each
segment of test and training images, we calculated the number
of the vein and skin pixels based on the NIR-image and then
chose the segments with more than 25% of vein pixels. 223
skin images were used for the training and 54 images were
put aside for the testing. The samples for each subject were

TABLE I
COMPARISON OF UNCOVERED VEIN LENGTHS FOR EACH SUBJECT

MEASURED IN NUMBER OF PIXELS (THE OVERALL ACCURACY SITS AT
81.02%).

Subject 01 4 1529.80 1122.53 73.38
Subject 02 5 2161.28 1891.66 87.52
Subject 03 5 1705.27 1337.94 78.46
Subject 04 5 1655.25 1889.06 85.87
Subject 05 4 1936.50 2386.60 76.76
Subject 06 6 2277.87 2059.03 90.39
Subject 07 4 1869.58 2285.45 77.76
Subject 08 5 1453.72 1097.39 75.49
Subject 09 4 1666.48 1916.73 84.98
Subject 10 6 2708.99 2028.98 74.90
Subject 11 6 2763.51 3156.96 85.76

Total 54 21728.26 21172.33 81.02

Subject No. Number of Test
Forearms Images

Overall Target
Length (Pixel)

Overall Output
Length (Pixel)

Accuracy
Precentage (%)
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Fig. 5. Box-plot representation of vein lengths estimated by the proposed cGAN model for each subject.

randomly mixed and split into training and testing sets in the
ratio of 1 to 4.

Fig. 4 shows three examples of uncovering results from the
proposed method, comparing the input RGB image, cGAN
generated image and the target NIR image. As it is evident
in this figure, cGAN generated images are very similar to the
reference NIR images in visualising vein patterns.

Table I summarises the vein lengths obtained from samples
of eleven subjects’ forearms and compares them with their
reference NIR images. As it is seen in Table I, the proposed
cGAN can efficiently generate the vein pixels close to the
target NIR image with an average accuracy of 81.02% across
all samples. With close to 90% accuracy, subjects 2 & 6
show the highest accuracy. Comparing with other subjects,
this might be because of less amount of hair on the skins of
these subjects. Also, the existence of skin marks, amount of
fat, and skin tones can be considered as the other contributing
factors to the range of different accuracies from 73% to 90%.

We can also examine the length of veins obtained per-
subject in the box-plot of Fig. 5. From the plot, we can see
that there is quite a wide range of vein lengths for subject 1 in
the reference NIR images while this is the case for subject 7 in
the generated cGAN images; however, in both subjects, mean
values and spread of vein lengths are almost similar between
the NIR and cGAN generated images. On the other side, the
short-range of vein lengths for some subjects such as 4 & 8
indicate that our vein length measurement method may well
be quite suitable for some subjects but not for all. Subject 6
that has the highest accuracy in Table I, shows a small spread
of vein lengths in testing images as well.

It should also be noted that the objective measurement of
vein lengths for comparing the cGAN generated outcome with
the target NIR images might be prone to misinterpretation
due to reasons such as: a) simplified assumptions in the
skeletonisation procedure, b) considering the length of veins
as the objective value while the pattern and topology of veins
are not evaluated.

In summary, with more than 80% overall accuracy, some
promising evaluative results have been achieved using the
proposed cGAN generated images. These early results indicate

the efficiency of this new approach for the challenging task
of uncovering vein patterns from RGB images; however, we
should be conservative in generalising these results as further
expansions and experiments with more number of subjects
should be conducted.

VI. CONCLUSION

In this paper, we proposed a new method for the visualisa-
tion of the vein patterns based on a conditional GAN. Within
a GAN framework, we developed generator and discriminator
models adjusted for the RGB to NIR translation. Our proposed
cGAN takes an RGB image as the input and condition to the
GAN model and generates a NIR image that is plausible to
the reference NIR image to the extent that the discriminator
of our model is not able to distinguish it from the reference
NIR image.

To evaluate the efficiency of our method, we skeletonised
the generated and reference NIR images and compared the
length of uncovered veins with each other. With over 80%
accuracy, the results tested on a small dataset of eleven
subjects suggested that conditional GAN can be seen as a
promising approach for the RGB-to-NIR translation tasks.
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