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Abstract—Various methods for protecting visual information
have been proposed for privacy-preserving deep neural networks
(DNNs). In contrast, methods of attack against such protection
methods have been simultaneously developed. In this paper, we
evaluate state-of-the-art visual-protection methods for privacy-
preserving DNNs in terms of visual security against ciphertext-
only attacks (COAs). We focus on the brute-force attack, feature
reconstruction attack (FR-Attack), inverse transformation attack
(ITN-Attack), and GAN-based attack (GAN-Attack), which have
been proposed to reconstruct the visual information of plain
images from visually protected images. The details of the var-
ious attacks are first summarized, and the visual security of
the protection methods is then evaluated. Experimental results
demonstrate that most of the protection methods, including pixel-
wise encryption, are not robust enough against GAN-Attack,
while a few are robust enough against it.

I. INTRODUCTION

Deep neural networks (DNNs) have greatly contributed
to solving complex problems [1]–[3], such as for computer
vision, biomedical systems, natural language processing, and
speech recognition. By utilizing a large amount of data to
extract representations of relevant features, the performance
has been greatly enhanced. Therefore, DNNs have been de-
ployed in privacy-sensitive/security-critical applications, such
as facial recognition, biometric authentication, and medical
image analysis.

Recently, with the development of cloud services, DNNs are
often carried in cloud environments. One of the advantages that
cloud environments provide is that a large amount of data can
be computed and processed by using cloud servers instead of
using local servers. The other advantage is that cloud providers
can provide various web-based software services like software
as a service (SaaS). However, since cloud providers are semi-
trusted, data privacy, such as personal information and medical
records, may be compromised in cloud computing. Therefore,
it is necessary to protect data privacy in cloud environments,
so privacy-preserving DNNs have become an urgent challenge.

Various methods for protecting visual information have been
proposed to protect the visual information of plain images
[7]–[17]. In contrast to information theory-based encryption
(like RSA and AES), images generated by protection methods
have pixel values and can be directly applied to some image
processing algorithms. Some of the methods [10], [14]–[17]
have been proposed not only to protect the visual information
of images but also for application to DNNs. In contrast, several
ciphertext-only attacks have been proposed to reconstruct
the visual information of plain images from encrypted ones
simultaneously [18]–[20].

However, the visual security of state-of-the-art protection
methods for privacy-preserving DNNs has not been exten-
sively evaluated yet. This paper aims to evaluate the visual se-
curity of such methods against ciphertext-only attacks (COAs).
In this paper, we focus on the brute-force attack, feature
reconstruction attack (FR-Attack) [19], inverse transformation
attack with pairs of plain and encrypted images (ITN-Attack
[18], and GAN-based attack (GAN-Attack) [20], which have
been proposed to reconstruct the visual information of plain
images from visually protected images.

II. RELATED WORK

A. Visual Information Protection
Various perceptual image-encryption methods have been

proposed to protect the visual information of plain images
[7]–[15]. Visually protected images generated by using an
encryption method consist of pixels, as shown in Figs. 1(b)
and 1(c). Therefore, encrypted images can be directly applied
to image processing algorithms. Some encryption methods
have been studied for applying encrypted images to traditional
machine learning algorithms, such as support vector machine
(SVM), under the use of the kernel trick [21], [22], but they
cannot be applied to DNNs [15]. There are four perceptual
encryption methods [10], [14]–[16] for privacy-preserving
DNNs.

B. Block-wise Image Encryption for DNNs
A block-wise image encryption scheme was proposed for

protecting the visual information of training and testing images
for privacy-preserving DNNs [10]. This scheme is known as
Tanaka’s scheme [10], which applies encrypted images to
DNNs by adding an adaptation network prior to the DNNs
for reducing the influence of image encryption.

As depicted in Fig. 2, 8-bit pixel values in Bx ×By blocks
are separated into upper and lower 4-bit pixel values to form
6-channel blocks, where Bx ×By = 4× 4. The intensities of
the pixel values in each block are randomly reversed by using
secret key Kinv , and pixels in each block are then shuffled by
using secret key Kshf , where Kinv and Kshf are applied to
all blocks in common. The 6-channel blocks are reformed to
3-channel blocks to generate an encrypted image.

The key space of Tanaka’s method [10], NTanaka, is given
by

NTanaka = 96! · 296. (1)

In addition to using encrypted images, Tanaka’s method uti-
lizes an adaptation network, prior to using DNNs, to reduce the
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Fig. 1: Example of encrypted images. (a) Original image
(U × V = 96 × 96). (b) Tanaka’s scheme [10]. (c) Pixel-
wise encryption [14], [15]. (d) TN-model [16] (e) TN-GAN
[17].

influence of image encryption. After the adaptation network,
any network can follow.

C. Pixel-wise Image Encryption for DNNs

A pixel-wise image encryption method was proposed for
privacy-preserving DNNs that generates an encrypted image
EPix(I) from image I [14], [15]. In this encryption method,
the following steps are carried out (See Fig. 3).

Step 1: Divide RGB color image I with U×V pixels into pixels.
Step 2: Individually apply negative-positive transformation (NP)

to each pixel of three color channels, IR, IG, and IB ,
by using a random binary integer generated by a set of
secret keys KNP = {KR,KG,KB}, where three keys,
KR, KG, and KB , are used for encrypting IR, IG, and
IB , respectively.

Step 3: Shuffle three color components of each pixel by using an
integer randomly selected from six integers generated by
secret key KCS .

Key set K = {KNP ,KCS} is used for pixel-wise image
encryption. There are two key conditions for encrypting g
training images T = {It1 , It2 , . . . , Itg} and h testing images
Q = {Iq1 , Iq2 , . . . , Iqh}.

• Same encryption key: All training and testing images are
encrypted by using only one secret key, i.e.,
Kt1 = Kt2 = . . . = Ktg = Kq1 = . . . = Kqh = K.

• Different encryption keys: Different secret keys are
independently assigned to training and testing images,
i.e., Kt1 6= Kt2 6= . . . 6= Ktg 6= Kq1 6= . . . 6= Kqh .

Kti is a key set used for encrypting training image Iti , and
Kqi is a key set for encrypting training image Iqi .

Since all clients are able to utilize independent keys for
training and testing a model, there is no need to manage the
keys.

If I with U × V pixels is divided into pixels, the number
of pixels n is given by

n = U × V. (2)

The key space of images encrypted by using pixel-wise
encryption, NPix(n), is represented by

NPix(n) = 23n · 6n. (3)

NPix(n) is equal to NTanaka when n is approximately equal
to 106.4. Therefore, pixel-wise encryption has a larger key
space than Tanaka’s method if U × V is more than 11 × 11
pixels.

D. Image Transformation Network Trained with Model

An image transformation network trained with a model (TN-
model) was proposed that generates visually protected images
for privacy-preserving DNNs [16]. In [16], the transformation
network allows us not only to generate visually protected
images but also to maintain the performance of DNNs that
using plain images has. However, a DNN model used for
training the transformation network has to be trained by
using plain images, prior to transformation network training.
Namely, visually protected images cannot be applied to model
training. An example of a visually protected image generated
by the transformation network is illustrated in Fig. 1(d).

E. Image Transformation Network Trained with GAN

An image transformation network trained with a generative
adversarial network (TN-GAN) [17] was proposed that pro-
tects the visual information of plain images for both training
and testing images. This scheme trains an unpaired image-to-
image translation using cycle-consistent adversarial networks
(CycleGAN) [23] to obtain a transformation network, which
transforms plain images to visually protected ones. An exam-
ple of a visually protected image generated by TN-GAN is
shown in Fig. 1(e).

III. VISUAL SECURITY EVALUATION

In this paper, we aim to evaluate the visual security of
privacy-preserving DNNs in terms of robustness against var-
ious attacks including state-of-the-art ciphertext-only attacks
(COAs). As previously described in Section II, a few privacy-
preserving DNNs [10], [14], [15] were confirmed to be robust
against brute-force attacks. However, a state-of-the-art COA
was proposed that reconstructs the visual information of plain
images from visually protected ones [19]. In this paper, we
focus on four COAs: brute-force attack, feature reconstruction
attack (FR-Attack) [19], GAN-based attack (GAN-Attack)
[20], and inverse transformation network attack (ITN-Attack)
[18]. The above attacks are summarized below.

A. Brute-force Attack

Block-wise encryption [10] and pixel-wise image encryption
[14], [15] carry out image transformation by using secret keys,
so robustness against brute-force attacks has to be evaluated
on the basis of key spaces. In contrast, the TN-GAN [17] and
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TN-models [16] have no secret keys, so they are robust against
brute-force attacks, although other COAs can be applied to
images encrypted by using image transformation networks.

B. Feature Reconstruction Attack

A feature reconstruction attack (FR-Attack) [19] has been
proposed that reconstructs the edge information of plain im-
ages from encrypted images. To recover edge information,
each pixel of an encrypted image is transformed by using
Algorithm 1.

Algorithm 1: Feature reconstruction attack [19]
Input : Encrypted input image Ie of size U × V ;

number of bits L; leading bit b ∈ {0, 1}.
foreach p = (u, v) ∈ Ie do

foreach C ∈ {R,G,B} do
if bpC/(2L− 1)c 6= b then

pC ← pC ⊕ (2L− 1);

C. GAN-based Attack

Figure 4 illustrates a training framework for a GAN-based
attack (GAN-Attack) [20] that consists of one generative
network and one discriminative network. Generative network
G(.) reconstructs the visual information of plain images from
encrypted images, while discriminative network D(.) distin-
guishes the difference between reconstructed and plain images.
The network architectures of D(.) and G(.) used in this paper
are illustrated in Fig. 5 and Fig. 6, respectively.
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Fig. 5: Discriminative network D(.) for GAN-based attack

To train G(.) and D(.), a set of training images T is equally
divided into two image sets, T1 and T2, namely, T1 6= T2.
Then, T1 is encrypted by using an encryption scheme (E(.)).
Eventually, E(T1) and T2 are employed for training G(.) and
D(.) (See Fig. 4). In the testing process, the reconstruction
model G(.), which is trained by E(T1), is utilized to recover
encrypted test images (E(Q)) to obtain the reconstructed test
images (Q′).

This attack can be applied to visually protected images even
when exact pairs of plain images and corresponding encrypted
ones are not prepared.

D. Inverse Transformation Network Attack

If adversaries can prepare exact pairs of plain images
and corresponding encrypted ones, an inverse transformation
network attack (ITN-Attack) can be applied to the protected
images. Figure 7 illustrates a training framework for ITN-
Attack. An inverse transformation network is trained by using
E(T ), and the training loss is then calculated from a set of
reconstructed images (T ′) and T . Note that the network for
ITN-Attack depends on the protection method. For example,
Fig. 8 depicts the architecture of ITN-Attack used for attacking
pixel-wise image encryption, which consists of three 1×1-
locally connected layers (C1, C2, and C3) each with both a
kernel size and a stride of (1,1). A locally connected layers
similarly works as a 1×1-convolution layer, but weights are
unshared.

IV. EXPERIMENTS

We employed the STL-10 dataset, which consists of 5K
training images and 8K testing images [25], and each image
has 96 × 96 pixels. Note that data augmentation and pre-
processing were not applied to training images.

Robustness against attacks was evaluated in terms of the
visibility of the reconstructed images. Moreover, we measured
the average structural similarity (SSIM) values between the
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Fig. 6: Architectures of reconstruction network G(.) for GAN-based attack

Inverse 

Transformation

Model

TE( )

Loss

Function

T'

T

Fig. 7: Training framework of ITN-Attack, where E(.) denotes
encryption algorithm.

1

1x1-Locally connected layers

In
p
u
t 

im
a
g
e

O
u
tp

u
t 

im
a
g
e

3 ch. 3 ch.8 32 3

C 2C 3CE   (I    )
RGBPix

Fig. 8: Network architecture of reconstruction model. Each
box denotes multi-channel feature map produced by each
layer. Number of channels is denoted above each box. Feature
map resolutions are U × V . Kernel size and stride of locally
connected layers are (1,1).

original and reconstructed images, where lower values mean
less visual information.

A. Feature Reconstruction Attack

Figure 9 shows images reconstructed by using FR-Attack.
For the pixel-wise method and Tanaka’s scheme, the visual
information of the plain image was recovered by FR-Attack,
where Fig.1(a) is the plain one. In contrast, images encrypted
by using the transformation networks were robust against FR-
Attack.

As shown in Table I, TN-model provided the lowest SSIM
value among the encryption schemes. Although TN-GAN
offered almost the same SSIM value as that of Tanaka’s
scheme, the visibility of images encrypted by TN-GAN were
lower than Tanaka’s scheme.

B. GAN-based Attack

1) Training Conditions: GAN-Attack was trained for 100
epochs by using the Adam optimizer [27] with a learning rate
of 0.0002, a momentum parameter of β = 0.5, and a batch
size of 64. For reconstructing images encrypted by Tanaka’s
scheme and the pixel-wise method, we employed the network
architectures in Figs. 6(a) and 6(b), respectively. U-Net [26]
was utilized as G(.) in order to reconstruct transformed images
generated by TN-model and TN-GAN.

2) Results: Examples of images reconstructed by using
GAN-Attack are shown in Fig. 10, where Fig.1(a) is the
original one. Although the visual information of the images
encrypted by Tanaka’s scheme and the pixel-wise one was re-
constructed by GAN-Attack, it was difficult to reconstruct the
visual information of the plain images from images generated
by TN-model and TN-GAN.

As shown in Table I, images generated by TN-model and
TN-GAN had higher robustness against GAN-Attack than
other methods.

C. Inverse Transformation Network Attack

1) Training Conditions: For reconstructing images en-
crypted by the pixel-wise method, the network in Fig. 8 was
trained for 70 epochs by using stochastic gradient descent
(SGD) with momentum for 70 epochs. The initial learning
rate was set to 0.1 and was lowered by a factor of 10 at 40
and 60 epochs.

The network in Fig. 6(a) and U-Net [26] were trained by
using SGD with momentum for 300 epochs to reconstruct
images encrypted by Tanaka’s scheme, TN-model, and TN-
GAN. The learning rate was initially set to 0.1 and decreased
by a factor of 10 at 150 and 225 epochs.

We used a weight decay of 0.0005, a momentum of 0.9, and
a batch size of 128. The mean squared error (MSE) between
T ′ and T was used as a loss function for all ITN-Attack
experiments.

2) Results: As demonstrated in Fig. 11, images encrypted
by using the pixel-wise method with different keys and TN-
model were robust against ITN-Attack, while images en-
crypted by the other methods were reconstructed. Therefore,
the pixel-wise method with different keys provided the lowest
SSIM value.

Although TN-GAN is not robust against ITN-Attack, ad-
versaries cannot prepare exact pairs of plain images and the
corresponding protected ones because the weights of TN-GAN
are not disclosed to the public.

D. Summary of Evaluation

Table II summarizes the properties of learnable image en-
cryption methods in terms of robustness against various
attacks, availability for model training/testing, classification
performance, and computational cost. Since TN-model and
TN-GAN employ DNNs to generate visually protected images,
they have a higher computational cost than the other perceptual
image-encryption methods. Although TN-model and TN-GAN
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(a) Tanaka’s scheme (b) Pixel-wise (Same
Key)
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Key)
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Fig. 9: Examples of images reconstructed by using FR-Attack [19]

(a) Tanaka’s scheme (b) Pixel-wise (Same
Key)

(c) Pixel-wise (Different
Key)

(d) TN-model (e) TN-GAN

Fig. 10: Examples of images reconstructed by using GAN-Attack [20]

(a) Tanaka’s scheme (b) Pixel-wise (Same
Key)

(c) Pixel-wise (Different
Key)

(d) TN-model (e) TN-GAN

Fig. 11: Examples of images reconstructed by using ITN-Attack [18]

TABLE I: Average structural similarity (SSIM) values of
images reconstructed by various attacks (N/A: not available)

Encryption
Scheme

SSIM values

FR-Attack ITN-Attack GAN-Attack
[19] [18] [20]

Pixel-wise Same 0.4646 0.1715 0.2688

[14], [15] Different 0.4628 0.0425 0.1527

Tanaka’s Scheme [10] 0.1079 0.9147 0.7152

TN-model [16] 0.0263 0.3142 0.0793

TN-GAN [17] 0.1093 0.7369 0.0956

have the same computational cost for image transformation,
the cost for TN-GAN is higher than TN-model for training
image transformation networks.

V. CONCLUSION

We compared methods for protecting visual information for
privacy-preserving DNNs in terms of robustness against vari-

ous COAs. In this paper, we focused on four attack methods:
brute-force attack, feature reconstruction attack (FR-Attack),
inverse transformation attack (ITN-Attack), and GAN-based
attack (GAN-Attack). The experimental results demonstrated
that two transformation networks, TN-model and TN-GAN,
were robust enough, although they have a larger computational
cost that the other methods. TN-model was most robust
amongst the protection methods, but it cannot be applied to
the protection of training images.
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