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Abstract—The rapid development of deep learning techniques
has created new challenges in identifying the origin of digital
images because generative adversarial networks and variational
autoencoders can create plausible digital images whose contents
are not present in natural scenes. In this paper, we consider the
origin that can be broken down into three categories: natural
photographic image (NPI), computer generated graphic (CGG),
and deep network generated image (DGI). A method is presented
for effectively identifying the origin of digital images that is
based on a convolutional neural network (CNN) and uses a local-
to-global framework to reduce training complexity. By feeding
labeled data, the CNN is trained to predict the origin of local
patches cropped from an image. The origin of the full-size image
is then determined by majority voting. Unlike previous forensic
methods, the CNN takes the raw pixels as input without the aid
of “residual map”. Experimental results revealed that not only
the high-frequency components but also the middle-frequency
ones contribute to origin identification. The proposed method
achieved up to 95.21% identification accuracy and behaved
robustly against several common post-processing operations in-
cluding JPEG compression, scaling, geometric transformation,
and contrast stretching. The quantitative results demonstrate that
the proposed method is more effective than handcrafted feature-
based methods.

I. INTRODUCTION

Nowadays, with the proliferation of powerful computer
graphics tools, such as Softimage XSI, Maya, and TerraGen, it
has become easy for non-professional technicians to artificially
create digital scenes without leaving any perceptible clues.
Figures 1 (a) and (b) show a natural photographic image
(NPI) and a computer generated graphic (CGG), respectively.
At first glance, it is not obvious that the second image was
generated by computers. In media forensics, substantial efforts
have been made to distinguish between a CGG and an NPI.
Statistical clues based on wavelet coefficients [1], histograms
[2], edge pixels [3], texture [4], entropy [5], and multi-
fractal spectrum [6] have been used to design handcrafted
features geared towards a particular classifier. Furthermore,
pixel-level inconsistencies such as JPEG compression arti-
facts [7], demosaicking clues [8], lens aberration [9], and
sensor pattern noise [10] are useful indicators for the task
of identifying origin. Recently, deep neural networks have
been the workhorse for a wide variety of computer vision
tasks, including image classification, image annotation, and

(a) NPI (b) CGG (c) DGI

Fig. 1. Example digital images with different origins.

object detection. Driven by data, CNNs have the ability to
automatically learn hierarchical representations, and thereby
achieve better generalization in an end-to-end manner. Hence,
CNN-based methods [11–13] have been quickly adopted by
the multimedia security community for distinguishing CGGs
from NPIs.

Deep neural networks, however, are like a double-edged
sword: they can be used not only for identifying origin but
also for generating photorealistic images if the network is
structured as a generative adversarial network (GAN) or vari-
ational autoencoder (VAE). Since most generative models can
be trained in an unsupervised manner, it is not prohibitively
expensive for an attacker to generate fake scenes that can
be maliciously used for illegal purposes. As evidenced by
the deep network generated image (DGI) in Fig.1 (c), it
is not trivial to identify DGIs with the naked eye. Several
countermeasures have been proposed recently. McCloskey and
Albright [14] found that the frequency of saturated and under-
exposed pixels is suppressed by the generator’s normalization
steps, which provide useful discriminative traces that enable
a DGI to be distinguished from an NPI. Marra et al. [15]
revealed that specific correlation exists in the noise residual
of a DGI, which can be viewed as evidence of the origin of
digital images. Li et al. [16] exploited the disparities in color
components and designed a 588-dimensional feature vector
based on multiple color co-occurrence matrices. In addition,
some CNN-based methods [17–20] attempt to identify DGIs
and/or localize fake regions for facial images.

According to the above survey, we conclude that digital
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Fig. 2. Flowchart of proposed method.

images are created by one of three ways: (i) being captured
with a CCD or CMOS sensor, which counts the photons
passing through a color filter array, (ii) being synthesized
using model-based rendering software, and (iii) being gen-
erated using data-driven deep learning model (e.g., GAN
and VAE). However, the existing methods based on hand-
crafted features [1–10, 14–16] can only distinguish a CGG
or DGI from an NPI. Therefore, an end-to-end method that can
automatically probe discriminative features and complete the
origin identification task is needed to ensure the information
security of digital images. To achieve this, we develop a CNN-
based method in a local-to-global framework. The experimen-
tal results demonstrate that the proposed method is better in
terms of identification accuracy and robustness compared with
the handcrafted feature-based methods [2, 14, 16].

II. PROPOSED METHOD

The identification task considered in this paper is a three-
class problem. Suppose that a training set comprises N
samples along with their labels {(x1, y1), (x2, y2), · · · ,
(xn, yn), · · · , (xN , yN )}, where n = 1, 2, · · · , N . The nota-
tion xn represents the nth to-be-identified sample while yn
corresponds to its label. Our goal is to exploit the training set
and establish a CNN-based mapping function F(·) so as to
make correct predictions for new samples.

We use a local-to-global framework to reduce training
complexity. Specifically, for an RGB color image, we crop
M local patches, each of size 224× 224× 3. After the CNN
model is trained, it is expected to predict the correct label,
denoted by ŷn, for each local patch. The origin of the full-
size image is then determined by majority voting. Figure 2
schematically illustrates the flowchart of the proposed method.
Using the local-to-global framework not only reduces training
complexity but also encourages the CNN model to learn
forensic clues rather than to recognize the image contents.

Fig. 3. Proposed CNN architecture.

A. Patch Cropping

Sampling representative data is an important prerequisite
for training a statistical learning model. Motivated by the
observation that highly textured areas usually contain clues
about factitiousness, we preferentially crop patches containing
rich edge pixels. Specifically, the edge pixels are detected by
Canny detector. The high and low threshold values are set to
50 and 100, respectively. The image is then partitioned into
overlapping patches with an appropriate stride to ensure that
the number of candidate patches exceeds 20M . The number
of edge pixels within a candidate patch is considered to be
the fitness value. From the 20M candidate patches, roulette
wheel selection, which is widely used in genetic algorithms, is
performed to choose M ones without replacement. Compared
with random cropping, the roulette-based strategy can avoid
cropping too many smooth patches.

B. Data Augmentation

As a regularization technique, data augmentation protects
well against overfitting. The training set is artificially expanded
by generating new instances from existing ones. To this end,
the patches are rotated by 90◦, 180◦, and 270◦, and horizontal
and vertical flipping are performed. A total of 6M patches
can be harvested from a full-size image by combining these
geometric transformations.

Furthermore, these newly generated patches help the model
to be more robust against rotation and flipping. The experi-
mental results presented in Section III support this claim.

C. Network Architecture

CNNs typically consist of a cascade connection of multiple
convolutional layers, pooling operations, and one or more fully
connected (FC) layers. Each convolutional layer, which can be
viewed as a group of filters, is trained to produce an appro-
priate feature representation. Each pooling operation, which
computes a summary statistic of a certain layer’s output, helps
to make the feature representation approximately invariant to
small translations. The learned hierarchical representation is
fed into the FC layer, which plays a role in making correct
predictions.

The proposed CNN architecture is shown in Fig. 3. The
input local patches are 224×224×3. The CNN model consists
of seven convolutional layers, five pooling operations and one
FC layer. Specifically, there are 64, 64, 32, 32, 64, 64, and
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128 filters for the 7 convolutional layers, respectively. The
filters are all 3 × 3 and have a unit stride. A rectified linear
unit (ReLU) is used for activation. In each convolutional layer,
batch normalization is used to mitigate the problem of internal
covariate shift, making the model significantly easier to train.
The outputs of the last five convolutional layers are further
processed by a 2 × 2 max-pooling operation with stride 2.
The final FC layer contains 2048 neural nodes followed by a
three-way softmax function.

In previous steganalysis and forensics methods [16, 17],
the input was pre-processed using fixed high-pass filters to
suppress image contents and extract the so-called “residual
map”. However, there is no evidence to suggest that the middle
(or low) frequency components make no contribution to the
forensics task. We therefore skip this pre-processing step and
make all the filters trainable in the hope of adaptively probing
useful information.

D. Training
We trained the CNN model using two scenarios. In scenario

1, the first two convolutional layers simply duplicate the
previously trained ‘conv1 1’ and ‘conv1 2’ of the VGG19
model [21], and the corresponding weights are kept fixed
during future training. In scenario 2, all layers are trained
without any constraints by directly using task-dependent data.
For convenience, we call these two scenarios ‘vgg’ and ‘ada’,
respectively.

The cross-entropy between yn and ŷn, where n =
1, 2, · · · , N , is defined as the cost function. A gradient-based
stochastic optimization method called ADAM [22] is used to
update the weights with a learning rate of 10−4, a minibatch
size of 128, and three default settings (β1 = 0.9, β2 = 0.999,
and ϵ = 10−8). To prevent the network from overfitting,
a powerful regularization technique called Dropout [23] is
applied during the training phase to the FC layer by setting the
inclusion probability to 0.2. We empirically stop the training
process after ten epochs.

E. Dataset
We used a standard dataset called Columbia Photograph-

ic Images and Photorealistic Computer Graphics (PRCG)
[24], which contains 800 CGGs collected from the Inter-
net and 800 NPIs obtained from the personal collections.
To prepare DGIs, we used a pre-trained progressive GAN
(ProGAN) [25] to generate a sufficient number of high-
quality images1. Then, we manually screened out the 800
most plausible ones and grouped them into the third set.
Unlike methods that focus on only facial images [17–20], our
proposed method aims at the origin identification. Therefore,
the images in the dataset encompass various scenes and
contents including human faces, animals, landscapes, objects,
plants, buildings, vehicles, etc., for each class (NPI, CGG,
and DGI). This enables us to train the model and thus make
it more suitable for real-world applications. We show some

1The ProGAN was trained on the LSUN dataset [26] (category-wise) and
CelebA-HQ dataset [27].

TABLE I
IDENTIFICATION ACCURACY AND PERFORMANCE COMPARISON.

samples of the dataset online https://nii-yamagishilab.github.
io/Samples-Rong/Attack-Type-detection/.

III. EVALUATION

We experimentally evaluated our proposed method: (i) to
determine its identification accuracy, (ii) to study which fre-
quency components are more useful for origin identification,
and (iii) to determine its robustness against several post-
processing operations including JPEG compression, scaling,
geometric transformation, and contrast stretching. For compar-
ative studies, we used three handcrafted feature-based methods
[2, 14, 16] as baselines.

A. Evaluation Method

In data preparation, we randomly divided the image dataset
into three subsets: training (70%), validation (10%), and test
(20%). From each training image, we cropped M = 200
local patches each of size 224× 224× 3 and then performed
geometric transformations to expand the training set. This
produced N = 2.016 × 106 training samples. The CNN
model was implemented using the TensorFlow framework. The
computing platform consists of an i7-6770K 4GHz CPU and
a NVIDIA GeForce GTX 1070 GPU with 16GB memory.

For the three baselines, we extracted the tailor-made features
and uniformly used a discriminant analysis classifier. For
the histogram-based method [2], the number of bins was
set to seven, as recommended by the authors. We simply
calculated the average accuracy over three color channels.
For the saturation-based method [14], each image was first
converted from RGB into grayscale, and then an 8-dimensional
descriptor was constructed by combining both the under- and
over-exposed pixel frequencies. For the color co-occurrence-
based method [16], the order of the co-occurrence matrix was
set to 3 under a sample-aware scenario.

B. Identification Accuracy Results

Figure 4 shows three examples of origin identifications at
the patch level. The outputs of the CNN model are indicated by
the red, green, and blue bounding boxes, which correspond to
‘NPI’, ‘DGI’ and ‘CGG’, respectively. The panel above each
resulting image shows the voting table, which contains the
number of bounding boxes by color. As we saw, the majority
voting stage has the ability to suppress the objectionable
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(a) Results for a NPI ‘DSC 1690’ (b) Results for a CGG ‘set5-object-41’ (c) Results for a DGI ‘celebahq23’

Fig. 4. Resulting examples of origin identifications at patch level and quantitative results of majority voting. First row shows results for ‘vgg’ scenario; second
row shows results for ‘ada’ scenario.

(a) First layer’s filters trained under ‘vgg’ scenario (b) First layer’s filters trained under ‘ada’ scenario

Fig. 5. Visualizing trained filters at the first convolutional layer (the third channel).

outliers, thereby improving identification performance at the
image level.

The identification accuracy results obtained using the test
set are summarized in Table I. Patch-level accuracy is defined

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1296



(a) JPEG (b) Scaling

(c) Geometric transformation (d) Contrast stretching

Fig. 6. Accuracy evolutions for testing robustness against JPEG compression, scaling, geometric transformation, and contrast stretching. Notation ‘h-flipping’
and ‘v-flipping’ mean horizontal and vertical flipping, respectively.

as the ratio of the number of correct predictions to the total
number of test patches while image-level accuracy is defined
as the ratio of the number of correct identifications to the
total number of test images. The proposed CNN-based method
identified image’s origin with 95.21% accuracy for the ‘ada’
scenario. The results in Table I show that our method has
higher accuracy scores than the three baseline methods. In
addition, the majority voting indeed boosted the identification
accuracy by 4.06% for the ‘vgg’ scenario and 2.31% for the
‘ada’ scenario.

C. Frequency Components Results

To study which frequency components contain information
about the origin forensic, we focused on the first layer’s filters,

which had been trained under the ‘vgg’ or ‘ada’ scenario. Fig-
ure 5 visualizes the 64 trained filters at the first convolutional
layer (the third channel). We found that the ‘ada’ scenario
forced the filter weights to diversify, meaning that more high-
frequency components were extracted and that more image
contents were suppressed. In contrast, the ‘vgg’ filters tended
to extract richer frequency components. This phenomenon is
also supported, in Table II, by the channel-wise variances of
the filter weights in the sense that the variances for the ‘ada’
scenario were about twice those for the ‘vgg’ scenario.

As shown by the accuracy scores in Table I, the ‘ada’
scenario outperformed the ‘vgg’ one, indicating that high-
frequency components possess more clues for identifying
the origin. We also found that several ‘ada’ filters, like the
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TABLE II
CHANNEL-WISE WEIGHT VARIANCES OF FIRST LAYER.

47th one, were devoted to middle-frequency components. This
suggests that the middle-frequency components also contribute
to the origin identification.

D. Robustness Results

Since artificially created images may be further processed
using common image processing operations for special pur-
poses, robustness against various post-processing operations
is highly desirable for a good identification system. We thus
examined the proposed method in terms of robustness against
JPEG compression, scaling, geometric transformation, and
contrast stretching. To this end, we prepared new test sets.
For testing the robustness against JPEG compression, each
test image was compressed for a large range of quality factors
from 90 to 10 with a step size of 20. For testing the robustness
against scaling, we used bicubic interpolation to resize the test
images with scaling factors varying in the range [0.9,1.7]. The
geometric transformations included rotation (90◦, 180◦, 270◦),
and horizontal/vertical flipping. For testing the robustness
against contrast stretching, we used a piecewise-linear function
that expanded the range of intensity levels so as to span
the full intensity range. Two locations of points (rmin, 0) and
(rmax, 255) control the shape of the function, where rmin and
rmax denote the minimum and maximum intensity levels in
the image, respectively. We designed a stretching parameter,
α, and manipulated rmin and rmax: r′min = (1 + α) · rmin, and
r′max = (1− α) · rmax. Note that patch cropping was triggered
again for each post-processed test image.

We conducted the robustness comparison with the three
baseline methods. The results were plotted in Fig. 6, where
‘Original’ indicates the accuracy scores listed in Table I. As
shown in Fig. 6 (c), the trained CNN model was particularly
robust against geometric transformations. This robustness is
attributed to the diversity of the training set after data augmen-
tation. Moreover, the ‘vgg’ scenario achieves a comeback win
over the ‘ada’ one when the test images are severely processed.
This is because the ‘vgg’ filters, which are trained using a
large-scale data set, have better generalization to deal with
diverse samples.

For all four post-processing operations, the accuracy curves
for the proposed method progressively dropped while those
for the histogram-based method [2] and color co-occurrence-
based method [16] dramatically deteriorated. Although the
saturation-based method [14] had the most stable curves, its
accuracy scores were lower than 60%. Except for several
extreme cases, our method outperformed the three baseline
methods even when the test images had undergone post-

processing operations. Consequently, the proposed method is
better in terms of robustness than the other methods [2, 14, 16].

IV. CONCLUSION

We have presented an effective method based on a convo-
lutional neural network for identifying the origin of digital
images. Roulette wheel selection is used to crop 200 patches
from an image while considering edge information. After
data augmentation, the CNN is trained to predict the origin
at the patch level while the origin of the full-size image
is determined by majority voting. We designed two training
scenarios, namely the ‘vgg’ and the ‘ada’. The experimental
results show that the ‘ada’ filters densely extracted high-
frequency features and achieved the highest accuracy 95.21%.
The ‘vgg’ filter, however, tended to probe various frequency
components and exhibited stronger robustness. Comparison
of the results with those of three handcrafted feature-based
methods demonstrated that the proposed method is better in
terms of identification accuracy and robustness.
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