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Abstract—We propose a novel skeletal attention module to
generate keypoint heatmaps, which exploits skeletal, as well as
overall body structure, information for human pose estimation.
We first add augmenting convolutional layers to an existing
deep neural network in order to yield skeletal heatmaps. These
skeletal heatmaps emphasize keypoint relations connected either
physically or virtually. By combining the skeletal heatmaps, we
generate body attention maps for upper-body, lower-body, and
full-body. Then, the skeletal heatmaps and the body attention
maps are employed to estimate the heatmap for each keypoint.
Finally, we perform weighted inference on the output heatmaps
for more precise estimates. Experimental results demonstrate that
the proposed algorithm enhances performance on two datasets
for human pose estimation.

I. INTRODUCTION

The objective of human pose estimation is to estimate
humans’ anatomical keypoint locations (e.g., eyes and shoul-
ders) in a given image. Human pose estimation is one of the
fundamental problems in computer vision and can provide
useful information for various applications, such as action
recognition [1], segmentation [2], tracking [3] and robotic task
learning [4].

Traditional approaches use pictorial structures [5], which
represent a human body as a set of rigid parts and paired
part connections. The pictorial structures are encoded using
tree [6] or loopy [7] models. The tree model uses a belief
propagation algorithm that provides a relatively fast and pre-
cise inference but may suffer from double counting. On the
other hand, the loopy model uses pairwise relations between
candidate locations, which may demand huge time complexity
proportional to the number of candidates. It often performs
approximations during inference to reduce the complexity,
degrading the inference precision. Although there have been
some attempts [8], [9] to overcome these shortcomings, they
are susceptible to overfitting to particular datasets. Moreover,
due to many challenging factors, such as occlusions, various
clothing, cluttered background, and scale differences between
body parts, conventional approaches do not yield reliable
performance in general.

Recent advances in deep neural networks enable computers
to learn inherent features from big data effectively. Thus, many
attempts have been made to perform human pose estimation
based on deep learning. Recent studies can be classified into
two categories: regression methods [10], [11] and heatmap
methods [12], [13]. A regression method estimates the loca-
tions of keypoints directly. Toshev and Szegedy [10] used cas-
caded CNNs to regress the spatial coordinates of body joints
directly, and Carreira et al. [11] adopted the iterative error
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Fig. 1. Given an input image in (a), the proposed algorithm generates skeletal
heatmaps, one of which is shown in (b). It also generates the upper-body
attention map in (c), lower-body attention map in (d), and full-body attention
map in (e). Finally, the heatmap for each keypoint, such as (f), is generated.
Note that the attention maps highlight keypoint locations.

feedback to regress keypoint locations. A heatmap method
generates a heatmap for each keypoint and selects the highest
value on the heatmap as the estimated location. Newell et
al. [12] proposed the stacked hourglass networks to capture
various spatial information. Wei et al. [13] proposed the con-
volutional pose machines to increase the receptive field using
multiple-stage networks. However, despite these advances,
human pose estimation is still a challenging problem.

Some previous algorithms [15], [16] attempt to use implicit
human body structure or body parts’ adjacency for multi-
person pose estimation. Cao et al. [15] proposed part affin-
ity fields to encode the location and orientation of limbs.
Their algorithm first predicts confidence maps and affinity
fields for each keypoint and then associates the keypoints
with body part candidates based on the bipartite matching.
Papandreou et al. [16] used part-induced geometric embedding
to associate instance segmentation with pose estimation. Their
algorithm searches all keypoints, regardless of which person
they belong to. Using a tree-structured graph of each person
and various range offsets predicted by convolutional neural
networks, it groups the keypoints and performs the instance
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Fig. 2. An overview of the proposed algorithm. The skeletal attention module generates skeletal heatmaps Hs, such as (a) and (b). It then combines the
skeletal heatmaps to yield the upper-body, lower-body, and full-body attention maps Hu(c), Hl(d), and Hf (e). The proposed algorithm applies these skeletal
heatmaps and body attention maps as an additional input to the final stage of the baseline network HRNet [14] to yield the heatmap for each keypoint.

segmentation [17]. Both algorithms use structural information
to identify keypoints.

In this paper, we develop a skeletal attention module to
exploit full-body attention of a human instance to detect
each keypoint effectively, as illustrated in Fig. 1. The skeletal
attention module generates two kinds of maps, called skeletal
heatmaps and body attention maps. Note that generating such
auxiliary maps has been attempted in other vision tasks,
including [18]. First, we add a skeletal attention module to
an existing convolutional network, HRNet [14], to estimate
skeletal heatmaps. Given an image in Fig. 1(a), skeletal
attention module produces skeletal heatmaps as shown in
Fig. 1(b). Then, by combining the skeletal heatmaps, three
body attention maps for upper-body, lower-body, and full-
body in Fig. 1(c), (d), and (e), respectively, are generated.
Finally, we use the skeletal heatmaps and the three body
attention maps to yield the output heatmaps for keypoints,
as shown in Fig. 1(f). Experimental results demonstrate that
the proposed algorithm outperforms conventional algorithms
on two benchmark datasets [19], [20].

This work has the following main contributions:

• We develop the novel skeletal attention module that
produces skeletal heatmaps and body attention maps to
represent adjacency information between keypoints.

• We further improve the estimation performance by esti-
mating keypoint locations from heatmaps based on the
weighting of multiple candidates.

• The proposed algorithm outperforms the baseline algo-
rithm in the COCO val2017 [19] and MPII validation [20]
benchmark datasets.

The rest of this paper is organized as follows. Section 2
describes the proposed algorithm. Section 3 discusses and
evaluates the performance of the proposed algorithm com-
paratively with conventional algorithms. Finally, Section 4
concludes this work.

II. PROPOSED ALGORITHM

We aim to train the human pose estimator f . Given an input
RGB image I with size h×w×3, f outputs a set of keypoint
heatmaps H .

f : I −→ H, H = {Hi} (1)

where Hi denotes the heatmap for the ith keypoint. To
generate the ground-truth Hi, we follow the method of [12],
[13]. We first produce the binary image, which is filled in with
all 0s except for a single 1 on the keypoint coordinate. Hi is
obtained by applying the Gaussian filter to this image.

To improve the training of the human pose estimator, we
design the skeletal attention module that produces two kinds
of maps: skeletal heatmaps and body attention maps. Fig. 2
shows an overview of the proposed human pose estimator and
examples of estimated maps. First, to extract the features from
the input image, we adopt HRNet [14] as the backbone net-
work. The skeletal attention module is attached after the third
stage of HRNet. Except for the proposed skeletal attention
module, the rest of the network is the same as [14]. The
skeletal attention module estimates skeletal heatmaps Hs using
the features from the backbone network, as shown in Fig. 2(a)
and (b). Body attention maps are produced by combining Hs.
We construct three body attention maps: upper body, lower-
body, and full-body attention maps Hu, H l, and H f , which

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1288



(a)

j

i

(b)

eyes

nose
ears

shoulders

elbows

wrists
hips

knees

ankles

Fig. 3. An example of a ground-truth skeletal heatmap connecting keypoint
i and j is shown in (a). In (b), green and yellow lines correspond to
physical skeletal heatmaps, while dashed red lines to virtual skeletal heatmaps,
connecting left-right symmetric keypoints. Also, note that the green lines and
the top three dashed lines belong to the upper body, while the others to the
lower body.

are shown in Fig. 2(c), (d), and (e), respectively. The skeletal
heatmaps and the body attention maps are combined with
backbone features through elementwise summation operation.
Finally, the last stage of the network predicts a set {Hi} of
heatmaps for keypoints from the combined features. For more
precise inference of the final keypoint coordinates, we perform
the heatmap weighting.

A. Skeletal Heatmaps

Each skeletal heatmap Hs
ij represents the locational in-

formation of the line connecting two keypoints i and j. To
generate Hs

ij , we produce a binary image where the pixels
corresponding the line connecting i and j as 1, and the
others are 0. Then, by applying a gaussian filter with standard
deviation 1 to this binary image and clipping the maximum
value to 1, we obtain Hs

ij . Fig. 3(a) shows an example of
skeletal heatmap.

Fig. 3(b) shows the links for the skeletal heatmaps. First,
green and yellow links correspond to physical bones of
upper-body and lower-body, respectively. Ten physical skeletal
heatmaps are defined in total. Second, using symmetric rela-
tion in an image similar to [21], we generate virtual links by
connecting left-right symmetric keypoints (e.g. left and right
wrists) which are denoted by red dashed lines. Six such virtual
skeletal heatmaps are adopted in total. The virtual heatmaps
help to distinguish the left and right sides more precisely. Note
that we define the skeletal heatmaps for the upper and lower
body parts only, not for the head.

B. Body Attention Maps

Body attention maps are generated by combining multiple
skeletal heatmaps. The upper-body attention map Hu and the
lower-body attention map H l are given by

Hu =
∑

(i,j)∈U

Hs
ij , H l =

∑
(i,j)∈L

Hs
ij (2)

Fig. 4. Weighted inference of a keypoint for N = 4.

where U and L denote the set of the keypoint pairs belong to
the upper-body and the lower-body. We then define the full-
body attention map H f as the sum of Hu and H l.

H f = Hu +H l. (3)

C. Skeletal Attention Module

The skeletal attention module is shown in Fig. 2. It receives
the backbone feature from the third stage of HRNet [14] as
input and outputs the skeletal heatmaps Hs. Then, Hu, H l, and
H f are generated as stated above and added elementwise to the
backbone feature of the third stage. Specifically, Hs is added
to the highest resolution feature, Hu and H l to the second-
highest one, and H f to the third-highest one. The attention
features are replicated to match the channel size between the
attention features and the backbone features. Let T denote the
number of channels on the backbone feature tensor. Then, the
skeletal heatmaps are replicated T/16 times, the half-body
attention maps are replicated T/2 times, and the full-body
attention maps are replicated T times. To match the resolution
between tensors, the width and height of Hu and H l are
halved, and H f is downsized with a factor of 1

4 .

D. Weighted Inference of Keypoints

In the conventional methods [12], [13], the location of the
keypoint is determined as the coordinates of the maximum
value in the heatmap. However, an estimator does not always
generate a heatmap with a single clear peak. For example, if
there is occlusion in a scene, the location of a heatmap peak
may not match a keypoint location. Also, if a target person
is too small, the pixel level prediction can be inaccurate. To
alleviate these problems, we use multiple coordinates with
high values on the heatmap to determine the final keypoint
coordinates. From an estimated heatmap Hi, The predicted
coordinate vector ĉi is calculated as follows.

ĉi =

N∑
n=1

wn × cin (4)

where cin denotes the coordinate vector for the nth largest
value in Hi, and wn is the weight for cin. wn is determined
by its rank n as follows.

wn =
1

n

(
N∑

h=1

1

h

)−1
, (5)
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Input size Method #Params GFLOPs mAP AP (.5) AP (.75) AP (M) AP (L) mAR

256×192

Baseline(HRNet-w32) 28.5M 7.1 76.5 93.5 83.7 73.9 80.8 79.3
Proposed(HRNet-w32) 29.3M 7.2 76.8 92.5 83.8 73.9 81.0 79.4
Baseline(HRNet-w48) 63.6M 14.6 77.1 93.6 84.7 74.1 81.9 79.9
Proposed(HRNet-w48) 65.3M 14.8 77.9 93.6 84.8 75.1 82.0 80.6

384×288

Baseline(HRNet-w32) 28.5M 16.0 77.7 93.6 84.7 74.8 82.5 80.4
Proposed(HRNet-w32) 29.3M 16.2 78.2 93.5 84.7 75.0 82.9 80.7
Baseline(HRNet-w48) 63.6M 32.9 78.1 93.6 84.9 75.3 83.1 80.9
Proposed(HRNet-w48) 65.3M 33.3 78.4 93.6 84.6 75.1 83.3 81.0

TABLE I: Performance comparison in terms of AP scores on the COCO val2017 dataset. The highest score for each input
size setting is boldfaced.

Method PCKh@0.5 PCKh@0.1
Baseline(HRNet-w32) 90.3 37.7
Proposed(HRNet-w32) 90.6 39.6
Baseline(HRNet-w48) 90.5 39.8
Proposed(HRNet-w48) 90.6 39.9

TABLE II: Performance comparison in terms of PCKh on the
MPII validation dataset. The best result is boldfaced.

where
∑N

n=1 wn = 1. We experimentally set N = 20 to
include the top 20 largest points. Fig. 4 illustrates this weighted
inference for N = 4.

III. EXPERIMENTAL RESULTS

A. Datasets

COCO [19] is a common dataset for various tasks, including
object detection, segmentation, and keypoint detection. For
keypoint detection, it provides over 200K images and 250K
person instances. The images are divided into three parts;
train2017, val2017, and test-dev2017, which include about
57K, 5K, and 20K images, respectively. We train the proposed
algorithm on the train2017 split and assess it on the val2017
split. The annotation labels in the COCO dataset consist of
up to 17 keypoints per person. To compare the performance
only for pose estimation, we compare the results using the
ground-truth bounding boxes of person instances.

The MPII dataset [20] is also commonly used for human
pose estimation, which consists of 25K images with 40K
subjects. Unlike COCO, the annotations in MPII consist of up
to 16 keypoints per person. Following the setting in [14], we
use 22K images for training and use 3K images for validation.

We use input sizes 256×192 and 384×288 for the COCO
dataset, and 256× 256 for the MPII dataset.

B. Evaluation Metrics

For the COCO dataset, we use two types of metrics: mean
average precision (mAP) and mean average recall (mAR),
based on the object keypoint similarity (OKS). Note that,
for the object detection task [22], [23], mAP and mAR are
computed by varying the intersection over union (IOU) ratio.

Method PCKh@0.5 PCKh@0.1
HRNet-w32 90.3 37.7
+ skeletal attention module 90.5 38.1
+ weighted inference 90.6 39.6

TABLE III: Ablation study on the MPII validation dataset.
The best result is boldfaced.

For the keypoint detection task, OKS plays the same role as
IOU and is defined as

OKS =

∑
i exp

(
−d2

i

2s2k2
i

)
I(vi > 0)∑

i I(vi > 0)
(6)

where I is the indicator function, and di is the Euclidean
distance between keypoint i and its ground-truth. Also, vi is
the visibility of keypoint i, s is the scale of the object, and ki
is a per-keypoint constant pre-defined in [19]. The precision
and recall are defined as

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(7)

where TP, FP, and FN denote the numbers of true positives,
false positives, and false negatives, respectively. We measure
AP scores for 10 OKS values from 0.5 to 0.95 with an interval
of 0.05 and set mAP as the mean of the 10 AP scores. AP (.5)
and AP (.75) denote the AP scores for OKS values from 0.5
and 0.75. AP (M) and AP (L) are the mAP scores for medium
and large objects.

For the MPII dataset, we use PCKh@0.5 and @0.1 [20] for
evaluation metric. They measure whether a predicted keypoint
is located within a circle around the ground-truth keypoint. The
radius of the circle is determined by multiplying the diagonal
length of the bounding box of the annotated person’s head
with a factor. Here @0.5 and @0.1 indicate the factors.

C. Training Details

We compare the proposed algorithm with the baseline
network HRNet [14]. We add the proposed skeletal attention
module to the baseline network and train it in the same way
as [14]. Specifically, we use the Adam optimizer [24] with an
initial learning rate of 10−3 and a weight decay 10−4 for both
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Fig. 5. Qualitative comparison of keypoint estimation results of HRNet-w32 (yellow lines) and the proposed algorithm (red lines) on the COCO val2017
dataset.

networks. We drop the learning rate to 10−4 and 10−5 at the
170th and 200th epochs, respectively.

We use multiple loss functions to boost the network training.
It is demonstrated in prior work [25] that exploiting multiple
loss functions improves the training results. The keypoint
heatmap loss lk computes the squared errors between ground-
truth keypoint heatmaps and predicted ones. Similarly, the
skeletal heatmap loss ls is computed between ground-truth
skeletal heatmaps and their predicted counterparts. The two
loss functions are given by

lk =
∑
i

‖Ĥi −Hi‖2, ls =
∑

(i,j)∈S

‖Ĥs
ij −Hs

ij‖2 (8)

where i and j are keypoints. Also, S is a set of keypoint index
pairs, and the elements of S correspond to the colored lines in
Fig. 3(b). Ĥi and Ĥs

ij denote the estimated heatmaps for the
ground-truth Ĥi and Ĥs

ij , respectively. We compute lk only
for visible keypoints in input images, and compute ls only if
both keypoints i and j are visible.

The total loss l for the network is defined as a weighted
sum, given by

l = lk + λls (9)

where λ controls the importance between the two losses. It is
set to 0.2 in this work. We use flipping, rotation, and scaling
for data augmentation, as done in [14].

D. Comparison Results

We compare the proposed algorithm with the state-of-
the-art algorithm, HRNet [14]. Whereas many conventional
algorithms, such as [26], use typical encoder-decoder net-
works, HRNet attempts to preserve high-resolution features
and obtain low-resolution features using additional branches.

Table I compares the results on the COCO val2017 dataset,
and Table II compares the results on the MPII validation
dataset. On both datasets, the proposed algorithm outperforms
HRNet, by adding a moderate number of parameters. Table III
shows how the proposed skeletal attention and the weighted
inference improve the performance. Note that the performance
improvement on PCKh@0.1 is large, which indicates that the
proposed algorithm makes more precise predictions.

Fig. 5 compares qualitative results. It can be seen clearly
in the green box of each image that the proposed algorithm
locates keypoints more precisely than HRNet. More specifi-
cally, the proposed algorithm provides better predictions on
occluded scenes and outmost keypoints, such as the wrist and
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ankle. The proposed algorithm distinguishes the left and right
sides accurately and represents the skeletal structure of humans
faithfully.

IV. CONCLUSIONS

We proposed the skeletal attention module to improve the
performance of human pose estimation. We designed the pose
estimation network by adding the skeletal attention module to
a backbone network. The skeletal attention module was trained
to generate skeletal heatmaps. Also, three body attention maps
were generated, by combining multiple skeletal heatmaps. The
generated skeletal heatmaps and body attention maps were
added with the features of the backbone network and then used
to estimate the heatmap of each keypoint. Finally, we used
heatmap weighting to predict the locations of keypoints more
precisely. Experimental results demonstrated that the proposed
algorithm outperforms the conventional algorithm.
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