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Abstract—In this paper, we propose a novel video captioning
algorithm including a feature encoder (FENC) and a decoder
architecture to provide more accurate and richer representation.
Our network model incorporates feature temporal attention
(FTA) to efficiently embed important events to a feature vector.
In FTA, the proposed feature is given as the weighted fusion
of the video features extracted from 3D CNN, and, therefore it
allows a decoder to know when the feature is activated. In a
decoder, similarly, a feature word attention (FWA) is used for
weighting some elements of the encoded feature vector. The FWA
determines which elements in the feature should be activated to
generate the appropriate word. The training is further facilitated
by a new loss function, reducing the variance of the frequencies
of words. It is demonstrated with experimental results that the
proposed algorithms outperforms the conventional algorithms in
VATEX that is a recent large-scale dataset for long-term video
sentence generation.

I. INTRODUCTION

Video captioning has gained significant attention from both
research communities of computer vision and natural language
processing. The task describing a video scene in a natural sen-
tence is challenging because it involves two different process
of scene analysis and sentence generation. The recent advance
in deep learning sheds some light on the link of image/video
understanding and translation. Convolutional Neural Network
(CNN) is used for extracting useful image/video features, and
the features are outputted in the form of sentences through
the Recurrent Neural Network (RNN). The deep learning
architecture is called an encoder-decoder structure [11].

Image captioning techniques have been extensively studied
[4], [5], [6], [11]. In earlier studies, researchers tried to
develop more efficient encoder-decoder structures, applied to
the captioning task. Sutskever et al. [11] proposed to use a
multi-layer long-short term memory (LSTM). As the LSTM
is more robust to an over-fitting problem than the RNN, they
could learn deeper multi-layers and generate longer sentences.
Later, a visual attention model has been used for a CNN-
based encoder because the generated sentence needs to reflect
the areas in which humans are paying more attention in an
image [4], [5], [6]. In [4], the attention model is applied to
choosing semantic conceptual proposals. In [5], an adaptive
attention encoder-decoder model is developed to automatically
determine when to depend on visual contents in a region.
In [6], the attention has been more accurate by precisely
localizing the corresponding regions in an image.

In video captioning, the encoder consider temporal features
as well as appearance features. In other words, instead of
captioning a frame independently, an encoder uses correlation
among successive frames to understand actions or temporal
dynamics better. In the beginning research, an encoder extracts
features by using average-pooling of all the video frames
stacked in a temporal order [14]. In [12], they choose few
key frames to show important remarks in a temporal feature.
Those works are valid for short video clips when similar visual
contents are repeatedly shown. However, they are difficult to
apply to frames with dynamic scene changes. To overcome
the drawbacks, Veugopalan et al. [15] proposed stacked video
encoder and decoder, consisting of two LSTM modules. In
[17], the authors showed that the 3D CNN networks which is
pretrained by video action classification tasks works for video
captioning tasks as well. Yao et al. [13] proposed an attention
model in a decoder to select an appropriate word in some
specific moment.

Video features extracted from 3D CNN [9] are widely used
for video captioning networks. However, because the feature is
encoded to contain both dynamic actions and stationary scenes,
the conventional approach cannot fully consider the temporal
dynamics in a video sequence. In other words, an encoder
needs to inform a decoder when to focus in a video sequence.
Therefore, in this paper, the proposed algorithm uses a feature
encoder (FENC) to apply temporal attention to the 3D video
feature to reflect more important moments, efficiently. In a
feature decoder, the proposed algorithm applies word attention
to let a decoder know where to focus in a feature. We also
develop a new loss function to facilitate the learning.

The paper is organized as follows. We describe the proposed
model in detail in Section II. We show experimental results in
Section III and the concluding remarks in Section IV.

II. PROPOSED ALGORITHM

A. Overview of Proposed Algorithm

We define a descriptive sentence U = [u1, . . . , uNu
] as a

sequence of word vectors. ui is a word vector to indicate an
index in a dictionary. The word-to-vector is defined in Glove
[18], widely used for natural language processing. When a
video sequence V is given, the goal is to learn a mapping
function M : V −→ U in an end-to-end manner. To this
aim, our deep learning model is built on an encoder-decoder
structure based on 3D-CNN [9] and Long Short-Term Memory
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(LSTM). The encoder transforms a video sequence into video
feature vectors [v1, . . . , vNv

], and the decoder interprets the
features to a sentence. Generally, given with a video feature vt,
ui is sequentially given by maximizing the likelihood function
: p(ui|vt, u1:i−1; θ), where θ is the network parameters. The
problem can be recursively solved with the previous word
outputs u1:i−1 and the video feature through the LSTM.

Fig. 1. Blockdiagram of the proposed network architecture.

Beside to the architectural similarity to the conventional
works, the proposed architecture uses a feature encoder
(FENC) including a feature temporal attention (FTA) module
to enhance the learning. Our belief is that the proposed feature
x that is encoded using both vt and its associated temporal
attention can help the captioning task, by letting the decoder
to know when the feature is activated. In a decoder, similarly,
a feature word attention (FWA) is used for weighting some
elements of the encoded feature vector to activate an accurate
word. The blockdiagram of the proposed encoder-decoder is
shown in Fig.1.

B. Feature Encoder with Temporal Attention

In the proposed algorithm, the FENC is built on an LSTM
module denoted by LSTMT and the corresponding attention
at each time stamp. The LSTM determines the next hidden
states hv

t+1 and the output ovt when the current video feature
vt goes through the LSTM cells, given as

ovt , h
v
t+1 = LSTMT (vt, h

v
t ), (1)

where vt ∈ RDv is sequentially fed with t.
In FTA, a weight vector aT ∈ RNv is trained to identify

more important ingredients of a video feature in temporal
domain. In the model, the attention is calculated as follows:

aT = σ(WT · oT + bT ), (2)

where WT is a projection matrix and bT is an offset as
learnable parameters in the encoder, and oT = [o1, . . . , oNv

]T

is all the outputs obtained after the end of the iteration of
LSTMT . · is the matrix multiplication.

Then, a feature vector x with the temporal attention is
computed as,

x =

Nv∑
t=1

aTt
vt, (3)

where x is given as the weighted fusion of all the coded video
feature vectors with the temporal weights.

C. Feature Decoder with Word Attention

In a decoder side, another LSTM module denoted by
LSTMU is used for convert the coded feature vector into a
sequence of a word as shown in Fig.1. In decoding, a feature
word attention (FWA) is used for emphasizing a part of the
feature vector to give a better chance to activate an appropriate
word. In Fig.1, the weight vector aUj is applied to when the
j-th word is generated. aUj

is mathematically given as,

aUj
= σ(WU · [hu

j , x] + bU ), (4)

where WU ∈ RDv×2Dv and bU ∈ RDv are the learnable
matrix and offset, respectively. In (4), [, ] is an operation to
concatenate hu

j and x. In LSTMU , the output gate ouj+1 and
the next hidden state hu

j+1 are evolved through the cells. The
operations are as follows:

ouj+1, h
u
j+1 = LSTMU ([aUj ⊙ x, uj ], h

u
j ), (5)

where ⊙ is the element-wise multiplication. In this manner,
aUj gives more weights to the j-th elements of x.

In final, an estimated word ûj+1 in the next iteration is
computed as

ûj+1 = Softmax(Wo · ouj+1), (6)

where Wo are learnable projection matrix from the domain of
the feature to the domain of the word vector.

D. Training and Loss Function

We train our network to optimize a set of learning parame-
ters θ = {W, b} to output a sentence Û as close as the ground-
truth U . For this, we define the cost function L considering
the quality of generated sentences, given as

L = λ1Lvar + λ2Lprob + λ3R(W ), (7)

where λ1,λ2 and λ3 are the parameter for training, which are
set to 0.01, 1, and 0.001, respectively.

Some conventional algorithms use beam-search [7] to de-
termine the best word by allowing for multiple candidates of
ûj in training. However, it is also shown in [8] that such the
mechanism may give a wrong result and take more time to
search the best candidate. Therefore, instead of using the beam
search, we develop a new loss function Lvar defined as:

Lvar =
1

Nu

Nu∑
j=1

(ûj − ū
j
)
2 (8)

where ūj is a mean value, and Nu is the number of words
in a sentence. As shown in (8), Lvar reduces the variance to
avoid confusion in activating the best candidate of the words.
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We also use a regularization term R(W ) as ||W ||2. The
minimization of the L2-norm reduces the number of non-
zero elements in the projection matrix, and it helps avoid
over-fitting. Lprob is a cross-entropy function defined as
E(−UlogÛ).

In training, we use Adam Optimizer with a variable learning
rate 10−3 to 10−5. We set a batch size to 256 and an epoch
to 100. We set Nv , Nu, Du, and Dv to 32, 30, 300 and 512,
respectively. We use Tensorflow and TITAN XP GPU to learn
the proposed network.

III. EXPERIMENTAL RESULTS

A. Dataset

We use a VATEX [20] that is a very recent large-scale
videos with sufficient lengths of sentences for captioning.
The average number of the words in a sentence is 15.23.
The dataset contains 25,991 training data, 3,000 validation
data, and 6,000 test data. Each video clip has 10 different
captions. We calculate each frequency of words in all the
training dataset, and mark “Unknown” tag if a word is shown
only 20 times in the whole set.

B. Performance Evaluation

We conduct experiments to show the qualitative perfor-
mance of the proposed algorithm using four diverse machine
translation metrics: BLEU [21], Meteor [22], ROUGEL [23]
and CIDEr [24]. Those metrics are widely used for comparing
the performance of video captioning algorithms. Specifically,
MS-COCO code [19] is used in the evaluation. Because there
are 10 different sequences in the dataset, we calculate an
average score of the metrics.

TABLE I
QUANTITATIVE PERFORMANCE OF THE PROPOSED ALGORITHM AS

COMPARED TO THE CONVENTIONAL RESEARCH, USING VATEX
VALIDATION SET AND VARIOUS METRICS.

model BLEU@4 METEOR ROUGEL CIDEr
SA[13] 12.17± 0.8 18.75± 0.8 32.12± 2.2 26.10± 4.7

CRF-prob[12] 11.98± 0.5 18.49± 0.3 31.18± 0.5 25.18± 1.5
CRF-max[12] 11.91± 1.3 18.28± 0.8 31.17± 1.6 27.12± 7.7

S2VT[15] 12.20± 1.6 19.68± 1.3 33.45± 2.3 37.12± 9.6
ours 15.20± 0.9 22.19± 1.2 37.93± 2.8 55.21± 8.5

ours - Lvar 15.17± 0.8 21.08± 1.3 37.21± 2.7 54.88± 8.3
ours - FTA 14.10± 1.2 20.12± 1.0 35.77± 2.8 52.79±10.5
ours - FWA 13.90± 1.0 20.08± 1.5 36.66± 2.8 53.21± 7.7

Table I shows the quantitative results. As shown, the pro-
posed algorithm denoted by “Ours” shows the best results
around 15.20, 22.19, 37.93, and 55.21 on the average in
BLEU, Meteor, ROUGEL, and CIDEr, respectively. Our result
is improved around 7.02% as compared to S2VT as the 2nd
best algorithm when averaging all the values. The results
imply that the proposed algorithm embeds richer features with
the temporal attention model. SA and CRF do not consider
temporal correlation in video features. They provide a sum
of frame-level features in encoders. As compared to SA and
CRF, our model uses FTA efficiently to give more weights
to important moment in a video. As a result, the proposed
algorithm outperforms around 10.50% over SA and CRF.

Fig. 2. The captioning results in VATEX dataset. The color bar means how
much FTA is activated. Red colors mean higher values in attention and vice
versa in blue colors. The first sentence in each video clip is generated from
the proposed algorithm, and the second sentence is generated from the same
model without FTA.

We also show qualitative results of the proposed algorithm
in Fig. 2. As shown, the proposed algorithm shows accurate
sentence as in the first line of each video clip. Some videos
have abrupt scene changes more than one event in the sequence
or unstable camera movements. For instance, the video clip
in the third row shows a person talking about cooking in
the beginning, but the scene is changed to the specimen.
Nevertheless, the proposed algorithm outputs a descriptive
sentence to appropriately explain the scenes. The words are
naturally combined with “and” or “while” in the sentences.

C. Ablation Study

In this subsection, we conduct several ablation studies. First,
we verify our proposed modules FTA, and FWA by removing
the aU in (4), aT in (3) respectively. As shown in Table I, each
result without FTA, FWA is decreased around 1.93% and 1.67.
We also visualize the activation of FTA as color bar as shown
is Fig.2. The color bar on each video frame is an indicator
of how much each video frames are activated for generating
captioning: red colors mean higher values in attention and vice
versa in blue colors. Usually, FTA is highly activated on early
video feature, and reflects intuitively temporal characteristics.
For instance, the early frames of video clip in the first row
are highly activated with caption: “a baby is crawling on the
floor”, and then little activated since the same information is
repeated. The last few frames of video clip are re-activated
with new caption:“a baby pick up a toy”. As more interesting,
sentences(second line) shown in Fig.2 without the temporal
attention aT make sense, but are not fully representative
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overall video.
We also verify the effectiveness of the new loss term

by removing Lvar in (7). The result shows that the overall
performance is slightly decreased compared to “our” base
model. As a result, we are able to prove that our Lvar has
helped to reduce the confusion rate to produce correct answer.

Fig. 3. Case study: The limitation of video captioning.

However, our algorithm does not make an appropriate
caption in some cases. As shown in Fig.3, it is difficult to
distinguish between similar color backgrounds or object, e.g.
‘sky’ and ‘water’. Additionally, our algorithm hardly outputs
accurate captions when the video contains fast motions.

IV. CONCLUSIONS

In this paper, a novel video captioning algorithm including
a feature encoder (FENC) and a decoder architecture was
proposed. The proposed algorithm provided more accurate
and richer representation in the sentence generation. Our
network model incorporated feature temporal attention (FTA)
to efficiently embed important events to a feature vector. In
a decoder, similarly, a feature word attention (FWA) was
used for weighting some elements of the encoded feature
vector. It has been demonstrated with experimental results
that the proposed algorithms provided significantly improved
performance over the conventional algorithms in VATEX [20]
dataset.
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