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Abstract—We propose a deep learning-based moiré artifacts
removal algorithm for screen-shot images using multiple domain
learning. First, we develop the pixel and discrete cosine transform
(DCT) networks to estimate clean preliminary images by exploit-
ing complementary information of the moiré artifacts in different
domains. Next, we develop a clean edge predictor to estimate a
clean edge map for the input moiré image. Then, we propose the
refinement network to further improve the quality of the pixel
and DCT outputs using the estimated edge map as the guide
information and to merge the two refined results to provide the
final result. Experimental results on a public dataset show that
the proposed algorithm outperforms conventional algorithms in
quantitative and qualitative comparison.

I. INTRODUCTION

Moiré artifacts are referred to as disruptive colorful patterns
in images captured by digital cameras. Moiré artifacts appear
when frequency aliasing between a camera’s color filter ar-
ray (CFA) and high-frequency scene content occurs [1]. In
screen-shot images, the CFA of the camera and the screen’s
subpixel layout are interposed. The captured images contain
moiré artifacts with various shapes and color variations onto
images, degrading the quality of the photographs. Thus, many
algorithms have been developed to effectively remove moiré
artifacts and enhance image quality [1]–[5], called image
demoiréing.

One approach is to employ an optical low-pass filter in the
camera that sits in front of the image sensor for moiré artifact
removal [2]. However, this approach requires special hardware
and causes over-smoothing in the results due to the low-pass
filtering. Another approach [3] uses multi-scale color gradients
to combine the color difference from multiple directions in
CFA interpolation. However, their algorithm is based on the
assumption that at least one of the color channels contains
moiré-free information, which may be violated in practice.
In [4], an optimization-based algorithm was developed based
on the observation that images with moiré patterns have
a sparsity property in the discrete cosine transform (DCT)
domain.

Recently, convolutional neural network (CNN)-based ap-
proaches [6]–[10] have achieved higher performance than
model-based algorithms through learning from large-scale
datasets. For example, Sun et al. [7] developed a multi-
scale convolutional network to remove moiré patterns, while
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Cheng et al. [8] improved on Sun et al.’s work [7] by
developing a dynamic feature encoding module to deal with
the dynamic shapes of moiré patterns by embedding the
differences between clean and moiré images. He et al. [9]
used the edge information and appearance attributes of moiré
patterns as additional information. Zheng et al. [10] modeled
moiré artifacts by learning the frequency prior of the moiré
patterns using a learnable bandpass filter. The existing al-
gorithms [7]–[10] remove a different amount of information
about moiré artifacts, since they exploit different properties
of moiré artifacts in a single domain while each domain can
remove complementary information about moiré artifacts.

In this work, we develop a novel demoiréing network that
removes moiré artifacts in multiple complementary domains,
which consists of the pixel network, DCT network, clean
edge predictor, and refinement network. First, we develop
pixel and DCT networks to remove moiré artifacts in two
complementary domains by processing moiré components in
the pixel and frequency domains, respectively. Second, we
design the clean edge predictor to estimate edge maps that are
then used as guide information to refine the complementary
outputs. Third, we develop the refinement network to refine
pixel and DCT outputs with estimated clean edge maps.
Finally, we obtain an output image by merging the two refined
results via the fusion network. Experimental results show that
the proposed algorithm provides better demoiréing results than
the conventional algorithms [6]–[8], [11].

The remainder of this paper is organized as follows: Sec-
tion II briefly reviews related work. Section III describes the
proposed demoiréing algorithm, and Section IV discusses the
experimental results. Finally, Section V concludes the paper.

II. RELATED WORKS

A. Moiré Artifact Removal

Several algorithms have recently been developed to remove
moiré artifacts in captured images. Yang et al. [4] proposed
a model-based algorithm assuming that moiré patterns are
well represented as a sparse matrix in the frequency domain.
Recently, deep learning-based algorithms have proved capable
of providing higher performance. Sun et al. [7] developed
a multi-scale network to exploit intrinsic correlations be-
tween moiré patterns and image content. Cheng et al. [8]
further improved the performance by employing adaptive
instance normalization based on a dynamic feature encoder.
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Fig. 1. Overview of the proposed demoiréing algorithm. Two initial demoiréd images are obtained by the pixel network and DCT network, and edge map is
estimated by the clean edge predictor. The initial demoiréd images are then refined using the refinement networks. Finally, a pair of refined outputs are fed
into the fusion network to yield a clean image.

He et al. [9] designed a network that exploits multiple prop-
erties of moiré patterns: frequency distribution, edge informa-
tion, and appearance. Zheng et al. [10] developed a network
by modeling moiré artifacts in the frequency domain. Note
that, conventional approaches have focused on removing moiré
artifacts in only a single domain, i.e., the pixel or frequency
domain. In this work, we remove moiré artifacts in multiple
complementary domains, and then combine their results to
obtain better restored images.

B. Frequency Domain Learning
It has recently been shown that frequency domain pro-

cessing in CNN-based image restoration approaches provides
better reconstruction performance [10]–[13]. For example,
Liu et al. [12] processed degraded images in the discrete
wavelet transform domain for various image restoration tasks,
e.g., compression artifacts removal, denoising, and super-
resolution. Zheng et al. [13] removed compression artifacts in
the DCT domain, and then extended the approach to image
demoiréing [10]. Vien et al. [11] developed a demoiréing
network in the DCT domain and combined the output with
that of the pixel domain network to improve the demoiréing
performance.

III. PROPOSED ALGORITHMS

Fig. 1 shows an overview of the proposed network that
consists of four main modules: pixel network, DCT network,
clean edge predictor, and refinement network. First, we obtain
two initial demoiréd results using the pixel and DCT networks.
Second, we estimate the clean edge map using the clean edge
predictor. Then, each refinement network takes the output of
the pixel network or DCT network and uses the estimated edge
map as guide information to refine the initial demoiréd results.
Finally, a clean image is generated by the refinement network
for fusion to a pair of refined results.

A. Pixel Network
The pixel network processes input moiré images in the pixel

value domain. Based on the recent observation that multi-
scale contextual information can effectively remove artifacts in

images [7]–[10], we adopt a multi-scale approach with three
branches corresponding to three different scales in the pixel
value domain.

Fig. 2 shows the proposed pixel network with three levels.
First, the input image is convolved with a 3 × 3 kernel with
a stride of 1 to extract the initial features. Then, the feature
maps are downsampled from the higher-level to the coarser
ones through convolution with a 2×2 kernel. At each branch,
we develop a multiple receptive field block (MRFB) to exploit
the properties of moiré patterns better with a larger receptive
field and adopt a tone mapping block (TMB) [10] to increase
the feature maps’ intensities. At the end of each coarse branch,
we upsample the features using a single convolutional layer
with pixel shuffle [14], and then concatenate them with the
input features at the finer scale. Finally, we apply convolution
to obtain a final output. The MRFB and TMB are described
in detail below.
Multiple receptive field block: It has recently been shown
that exploring moiré patterns with a larger receptive field is
effective for moiré artifact removal [9], [10]. Based on this
observation, we develop MRFB with three branches corre-
sponding to three different sizes of receptive field. Fig. 3 shows
the structure of the proposed MRFB. To enlarge the receptive
field of each branch, we employ dilated convolution [15],
where the kernel size is determined by the dilation rate r. In
this work, we use three different dilation rates r = {1, 2, 3}
for each branch. In addition, we employ a residual dense
block (RDB) [16], [17] to make full use of the hierarchical
features extracted from the input image. As shown in Fig. 3,
each branch of the MRFB is composed of three parts: feature
extraction, RDBs, and features fusion. In particular, we use a
single convolutional layer (Conv) to extract the features. These
features are fed into the RDBs to extract hierarchical features,
and the output features of all RDBs are then fused. Finally,
all features from three branches are summed, and a global
residual connection is added for stability.
Tone mapping block: The moiré image generation model
decreases pixel intensities [18], and we assume that the in-
tensity differences can be modeled as a linear transformation.
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Fig. 2. Overview of the pixel network. The pixel network consists of three branches, each of which removes moiré artifacts associated with specific frequency
bands using MRFB and TMB.
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Fig. 3. MRFB consists of three branches with different dilation rates r =
{1, 2, 3}. Each branch is a stack of RDBs with local connections and a global
residual connection.
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Fig. 4. Structure of TMB to estimate the global parameter α.

Thus, to compensate for the intensity reduction by learning
global differences, we employ the TMB [10] in this work as
shown in Fig. 4. Specifically, the TMB includes global and
local branches. In the global branch, given the input feature
map FMRFB obtained from the MRFB, we first extract global
features via a 3 × 3 convolutional layer with a stride of 1
and a global average pooling. Then, we estimate a global
transformation parameter α through two fully connected (FC)

layers and another FC layer without an activation function.
The local branch extracts the local feature map Flocal using
two 3× 3 convolutional layers. Then, the output of the TMB
FTMB is obtained by

FTMB = α× Flocal. (1)

B. DCT Network

According to the observation in [9], whereas textures and
moiré patterns in an image are hard to distinguish, but the dis-
tributions of their transformation coefficients in the frequency
domain have different characteristics. Thus, it is necessary
to explore the properties of moiré patterns in the frequency
domain as a complement to the pixel value domain. Therefore,
in this work, we employ the frequency network developed
in [11] to process the DCT coefficients.

C. Clean Edge Predictor

Moiré artifacts have distinct shapes such as curves and
stripes. Thus, removing the structure of moiré patterns may
erase the texture details in an image. In this work, we first
estimate clean edge maps and then use them as guide infor-
mation to enhance the outputs of the pixel and DCT networks.
Fig. 5 shows the proposed clean edge map predictor. First, we
extract the initial edge maps using the Sobel operator and
concatenate them with the inputs. The clean edge predictor is
designed based on U-Net [19] through a multi-scale structure
and non-local block [20]. At each branch, the non-local block
is employed between the encoder and decoder of the U-Net
to capture the semantic edges.

D. Refinement Network

Since the pixel and DCT networks process moiré images
in different domains, they provide results with different re-
constructed information that can be used as complementary
candidates to produce a final clean image. However, since the
results from the pixel and DCT networks retain moiré patterns
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Fig. 5. Overview of the clean edge predictor. Each branch predicts a clean edge map at a specific scale via U-Net [19] and non-local blocks [20].
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Fig. 6. Architecture of the refinement network.

in highly textured regions, we develop a refinement network
to enhance the pixel and DCT outputs with the estimated
clean edge map as guide information to better preserve the
texture information in the image. Fig. 6 shows the details
of the proposed refinement network. Note that the refinement
network is also used as the fusion network, as shown in Fig. 1,
to obtain a final clean image by merging the two refined
results.

E. Training

We have four networks in the proposed algorithm: the pixel
network, DCT network, clean edge predictor, and refinement
network. We experimentally found that training the networks
separately is more effective than end-to-end training in terms
of training time and memory usage. Thus, we first train
the pixel network, DCT network, and clean edge predictor
independently, and then train the refinement networks with the
trained networks. We train these networks using the AdamW
optimizer [21] with β1 = 0.9 and β2 = 0.999. The learning
rate is initially set to 10−3 and reduced to one-tenth at every
50 epochs. First, we trained with 128× 128 patches that were
randomly cropped from the images, with the batch size of
16. Then, we trained the networks with 256 × 256 and then
512 × 512 patches for fine-tuning. For the fine-tuning, the
learning rate was set to 10−5, and the batch sizes were set to
8 and 2 for 256× 256 and 512× 512 patches, respectively.

We compute the pixel loss Lp for the pixel network and
refinement network as the sum of the L1 loss and the advanced
Sobel loss (ASL) [10], given by

Lp(Î , Igt) = ‖Î − Igt‖1 + λ

4∑
i=1

‖Si(Î)− Si(Igt)‖1, (2)

where Î and Igt are the output and ground-truth images,
respectively, and λ denotes a trade-off parameter between the
L1 loss and ASL. In addition, Si(·) denotes the edge map
obtained by the ith filter in the Sobel filtering among the
horizontal, vertical, and two diagonal filters.

For the DCT network, we define the DCT loss LDCT as
the L1 norm between demoiréd and ground-truth images in
the DCT domain as

LDCT(Î , Igt) = ‖T (Î)− T (Igt)‖1, (3)

where T (·) denotes the DCT operator.
To train the clean edge predictor, we use the L1 norm

between the estimated edge map Ê and the ground-truth Egt,
given by

Le(Ê, Egt) = ‖Ê − Egt‖1. (4)

We perform data augmentation to increase the size of the
training data. Specifically, we use geometric transformations
of 90◦, −90◦, and 180◦ rotations and horizontal and vertical
flipping, thus producing seven additional augmented versions
of each image.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm
both qualitatively and quantitatively on LCDMoire dataset [5].
The LCDMoire dataset contains 10,200 synthetic moiré and
clean image pairs with 10,000 training pairs, 100 validation
pairs, and 100 testing images. Since the ground-truth images
of the testing set are not released, we use the validation set
for the experiments. Note that the validation set is not used
in training. We compare the demoiréing performance of the
proposed algorithm with those of CAS-CNN [6], DMCNN [7],
and DDCNN [11].

Fig. 7 compares the demoiréing results and their detailed
parts on the validation set of LCDMoire. The conventional
algorithms fail to remove complex moiré patterns. For exam-
ple, the black stains in Figs. 7(c)–(e) are retained in the green
regions. In addition, CAS-CNN and DMCNN in Figs. 7(e)
and (d), respectively, cannot faithfully reconstruct the original
colors inside the yellow and green rectangles in the top row.
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Fig. 7. Demoiréing results for the validation set (top and third rows) and enlarged regions for the red squares (second and fourth rows): (a) Moiré image,
(b) ground-truth, and outputs of (c) CAS-CNN [6], (d) DMCNN [7], (e) DDCNN [11], and (f) the proposed algorithm.

TABLE I
QUANTITATIVE COMPARISON OF CAS-CNN [6], DMCNN [7],

DDCNN [11], AND THE PROPOSED ALGORITHM.

CAS-CNN [6] DMCNN [7] DDCNN [11] Proposed

PSNR 36.18 35.47 38.04 41.97
SSIM 0.983 0.973 0.978 0.988

In Fig. 7(e), DDCNN provides better color reconstruction but
fails to effectively remove moiré artifacts. However, the pro-
posed algorithm outperforms all these conventional algorithms
and reconstructs the color information more faithfully. This is
because the proposed algorithm benefits from exploiting dif-
ferent properties of moiré images in multiple complementary
domains.

Next, in addition to subjective evaluation, we compare the
results of the proposed algorithm with those of conventional al-
gorithms objectively using PSNR and the structural similarity
index (SSIM) [22]. Table I shows the average PSNR and SSIM
results over all images in the validation set of LCDMoire.
The proposed algorithm outperforms all the conventional al-
gorithms. Specifically, the proposed algorithm provides a 5.79,

6.50, and 3.93 dB higher PSNR score than DMCNN, CAS-
CNN, and DDCNN, respectively. The proposed algorithm also
provides the best demoiréing performance in terms of SSIM.
This confirms that the proposed algorithm can remove moiré
artifacts in images effectively using multiple complementary
domain learning and clean edge prediction.

V. CONCLUSIONS

We proposed a deep learning-based moiré artifacts removal
algorithm for screen-shot images using multiple domain learn-
ing, which consists of the pixel network, DCT network, clean
edge predictor, and refinement network. In the pixel and DCT
networks, we estimated clean preliminary images by exploiting
different characteristics of the moiré artifacts in the pixel and
frequency domains, respectively. In the clean edge predictor,
we estimated clean edge map for the input moiré image.
Finally, the refinement network further improved the quality
of the pixel and DCT outputs with an estimated clean edge
map as the guide information, and then merged the two refined
results to provide the final result. Experiments results on the
LCDMoire dataset demonstrated that the proposed algorithm
outperforms conventional demoiréing algorithms.
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