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Abstract—Despite of many efforts for handling various holes,
it has been not sufficiently resolved and the instability and
normalization issues exists due to the presence of the invalid
pixels. We proposed the weighted convolution that balances
the valid and invalid pixels throughout the networks to help
the network efficiently cope with various hole shapes. In our
convolution layer, the mask is utilized to store the validity of the
features by using the real-valued mask. A weighted scheme for the
normalization layers is also proposed to adaptively operate along
with the weighted convolution. By balancing upon the invalid
pixels caused by the holes and zero-paddings, the network can
be trained more robust to the hole shapes. The experimental
results verified that our method achieved improvements over the
state-of-the-art inpainting methods.

Index Terms—Image inpainting, hole completion, hole filling,
weighted mask.

I. INTRODUCTION

Image inpainting (or image completion) is a task of filling
in missing regions with alternative contents. It enables to
generate contents naturally on occluded regions and allows
to remove undesired objects. It can be used in many applica-
tions [1]–[5] such as image-based reconstruction [6], garment
prediction [7], photo editing [8], facial editing [9], and super-
resolution [10], [11]. The traditional approaches for the image
inpainting are diffusion-based or patch-based ones with low-
level features [3], [12]–[14]. Although these approaches work
well in capturing high-frequency textures such as background
regions, they do not predict high-level texture semantics and
not to fill the hole if the similar region surrounded by similar
context is unavailable. Recently, deep neural network based in-
painting approaches [15]–[18] are introduced where high-level
semantics and low-level details are learned into a convolutional
encoder-decoder network in an end-to-end manner.

However, as the convolution networks employ filters on
images with holes that are commonly filled with the mean
values of the images or random values, these approaches
inevitably suffer from normalization issues. In other words,
the network applies the convolutional filters by treating the
valid and invalid (containing the hole) regions equivalently,
leading to color inconsistencies, the lack of texture in the
hole regions, or distinct edge responses surrounding the hole,
especially when the holes have irregular shapes.

Partial Convolution [19] has been proposed to efficiently
handle the holes. It filters only for the valid pixels and fills
the holes by linearly scaling the value partially measured for
the valid one(s). In the partial convolution, however, invalid
pixels progressively disappear through deep layers by setting
the mask to ones regardless of how many pixels are covered
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Fig. 1: The Comparison between partial convolution (up) and
weighted convolution (down).

by the filter range in the previous layer. It causes ambiguity
during training and leads to visual artifacts such as blurriness
and color discrepancy, as reported in [19].

The inpainting network that utilizes the dynamic mask [20]
is recently proposed where the mask, as well as feature, is
learned from the input feature (pixels) of the previous layer,
and the output feature pixel-wisely filtered by the mask is
given to the next layer. It enables each convolution layer to
learn soft masks that can select feature maps according to
backgrounds, masks, and sketches. Nevertheless, it still used
the input image with the hole regions remained and increased
the value discrepancy between the channels by attaching the
mask as an additional channel of the input image. Although
the soft mask approach can help the network to train with a
user-guidance, it does not sufficiently resolve the instability
and normalization issues originate from the invalid pixels.

The deep learning-based image inpainting network has been
composed of consecutive combinations of convolution and
activation layers. Based on the fact that it is a series of
processes for generating (filtering) and masking (activating) of
feature, we proposed the weighted convolution that balances
the valid and invalid pixels throughout the networks to help the
network efficiently cope with various hole shapes. During the
convolution with the image of the hole regions, the invalid
pixels not only come from the hole regions in the sliding
window but the zero paddings in the sliding window. The
partial convolution efficiently complements the insufficient
data from other valid pixels in the sliding window.

However, the partial convolution does not take account of
the number of valid pixels. It treats the features equivalently in
the following layers regardless of the validity of the features.
On the baseline of the partial convolution, the real-valued
mask is utilized to balance the features by the validity. The
degree of the validity is updated into the mask in the weighted
convolution, as described in Fig. 1. The real-valued mask
enables the features to be filtered relatively in the sliding
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windows by complements invalid pixels caused by the holes
and paddings. As features measured from valid pixels are more
preferred, the convolution operator itself involves the spatially
discounted reward, which showed effective for improving the
visual quality.

We also introduce a weighted scheme for the normalization
layers to adaptively operate along with the weighted con-
volution. As addressed in [19], it is difficult to apply the
previous normalization techniques such as batch normalization
generally in the inpainting networks due to the presence of
holes. On this account, in [19], the means and variances of
the batch normalization layers in the encoder were obtained
at the coarse-tuning stage and then frozen at the fine-tuning
stage. In [17], [20], the normalizations were not used for both
the encoder and the decoder. By balancing the features by
regarding the degree of the invalidity due to the holes and the
paddings, the weighted convolution layer and the weighted
normalization method help to make the network agnostic to
the various hole shapes.

The main contributions are summarized as follows:
• We introduce weighted convolution to balance invalidity

due to both the hole regions on an image and zero-
paddings in the convolution layers, enabling to operate
the network robust to various hole shapes;

• We propose a weighted normalization method to operate
along with the weighted convolution, efficiently resolving
the inconsistency due to the presence of the holes;

• Our weighted convolution method achieves the significant
improvements on the base of the partial convolution as
well as the state-of-the-art inpainting methods.

II. APPROACH

A. Partial Convolution

We briefly summarize partial convolution recently proposed
in [19] first and explain the ambiguity due to the mask
propagation. Let W and b are the convolution filter and the
corresponding bias. For given pixels Xs and the corresponding
binary mask Ms in a sliding window of the partial convolution
operation at every location, the output feature located at (y,
x) is computed as:

Iy,x =

{
WT

(
X� sum(1)

sum(Ms)

)
, if sum (Ms) > 0

0, otherwise
(1)

where � denotes element-wise multiplication and 1 is a tensor
of the same shape as Ms and has all the values of ones. The
mask is updated to be valid if at least a valid input value is
covered by the convolution as:

my,x =

{
1 if sum (Ms) > 0

0, otherwise.
(2)

The rule of the mask update in (2) and the normalization in
(1) make only one valid pixel is treated as the same amount
as a filter size of the convolution layer. In other words, when
W , H , and C denote width, height, and channel of the filter,
a pixel value can be used to estimate the feature on behalf
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Fig. 2: An example for the comparison between the partial
convolution [19] and the weighted convolution. From the
signal with the half of pixels missing, the average of the signal
is measured by consecutively applying the averaging filter of
kernel size 2.

of W × H × C pixel values maximally. As the partial con-
volution layers handle infeasible and feasible features caused
by the hole regions equivalently throughout the layers of the
convolutional network, the results are much affected by the
size and shape of the input masks (holes) during training the
network, leading to visual artifacts, long convergence times,
and high error rates.

B. Weighted Convolution

We build upon the concept of the partial convolution, where
only parts of the pixels (and parts of the convolution filter
weights) are used to estimate features due to the holes in the
image and the zero-paddings. To enable the network to operate
regardless of the shape and size of the holes, we used the real-
valued mask to contain the feasibility of the corresponding
feature. In the weighted convolution, the update mask value
located at (y, x) is defined as the ratio of the mask used in
the convolution operation:

my,x =
sum (Ms)

sum (1)
. (3)

The mask update operators help the mask to have the ratio
of the valid pixels over the pixels used for the convolution
operators passed through.

For the weighted convolution operation, the mathematically
same formulation is used in (1), except the real-valued mask
is employed. The weighted convolution inherits the major
strength of the partial convolution that it substitutes the values
of invalid pixels from the hole for the valid pixels. Thus,
the features scaled to equivalent-degree of the validity by the
convolution operation are used for following normalization and
activation layers.

A significant advantage that the real-valued mask updated
by the operation in (3) is that it enables the convolution
operation to measure ‘relatively’ to the degree of the validity,
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i.e., the magnitudes of the mask values in the sliding window.
For example, when the values of the mask are distributed,
the feature is calculated by weighted-averaging the pixels by
the mask values for each sliding and then scaled (normalized)
to the kernel dimension. It gives a higher weight to the
feature measured from more valid pixels. By contrast, when
all the values of the mask have the same feasibility, i.e., their
values are the same, the weighted convolution operation in (1)
works the same as a general convolution regardless of their
magnitudes. Although the convolution operation is performed
in a relatively weighted way for each sliding, the feasibility of
the feature is recorded in the mask update step and, therefore,
relativity between all the features obtained from the operation
is also preserved in the following layers.

The basic assumption of the weighted convolution comes
from the distribution of either the valid pixels or the invalid
pixels has the similar to the distribution of the whole pixels.
Figure 2 shows an example for the comparison between the
partial convolution and the weighted convolution operations.
For visualization, the binary mask is colored on a white for
the hole and on a black for the valid pixel, and the real-
valued mask is colored on gray-scales between white and black
meaning values between one and zero correspondingly in the
figure. Assume that a masked signal in Fig. 2b where 4 of 8
pixels are removed from an original signal in Fig. 2a. Figures
2c and 2d describes the procedures of averaging the pixels by
filtering neighboring pixels non-overlappingly using the partial
and weighted convolution operations, respectively. The partial
convolution completely replaces invalid pixels by the mean of
the valid pixels in the sliding window (marked on the blue
square in the figure), and the replaced values are used as the
values of the invalid pixels in the following layers. In contrast,
the weighted convolution substitutes the invalid pixels by the
mean of the valid pixels to measure the feature for the current
layer and only the used portions of the valid pixels are passed
to the next layer through the mask. As a consequence, it can
be seen that the weighted convolution produces the same value
to the average of the valid pixels on the masked signal.

C. Weighted Normalization Layer

To efficiently normalize the feature values measured from
the image containing the holes, we used weighted normal-
ization layers, where the mean and variance of the features
are employed weighted by the mask. As the mask values
quantify the degree of the validity for the corresponding
feature, we made much of the features from the available
pixels. The weighted normalization approach can be applied
in normalization methods that utilize the mean and variance of
the input features such as batch [21], layer [22], instance [23],
and group [24] normalization techniques. As the weighted
convolution utilizes the mask relatively in the sliding window,
the normalization layer complements the weighted convolution
layer by balancing the features among the channels. When
denoting X as the feature to be normalized and M as the
corresponding mask, the weighted mean and variance can be

defined by following the statistical theory in [25], [26] as:

E (X) =
E (X�M)

E (M)
, (4)

Var (X) =
E
(
X2
)
− E (M) E (X)

E (M)− E(M�M)
E(M)

(5)

where the scope and dimension of the mean E (·) and variation
Var (·) depend on the normalization techniques to be applied.
We simplify the equation of the variance in (5) as

Var (X) '
E
(
(X− µ)2 �M

)
E (M)

(6)

= E
(
X2
)
− (E (X))

2 (7)

where E
(
X2
)
= E((X�X)�M)

E(M) . The latter term of the denom-
inator in (5) is for deducting the sampled probability and the
deduction term of the weighted variation is variously defined
according the theories [25], [27]. In our test, the simplified
form increases the stability to the dynamic holes as well as
decreases the complexity. In our experimental section, the
performance verification of the weighted normalization was
conducted over the batch normalization layers.

III. EXPERIMENTAL RESULTS

Training Data We employed three different public datasets
for training, verifying, and testing: CelabA [28], Places2 [29],
and ImageNet classification [30] datasets. For the Place2
and ImageNet datasets, the official division for the train,
verification, test sets were used. For the CelebA dataset whose
division was not given, we divided partitions by 7:1.5:1.5 for
the train, verification, test of the model, respectively.
Training and Testing Procedures Ours and all the mod-
els for the comparisons are trained with Tensorflow r1.14,
CUDNNv7.3, and CUDA10.0. We used Adam [31] for the
optimization. We used a learning rate of 0.0005 for the initial
training and decreased gradually to 0.00001. We randomly
cropped the images to be 256 x 256 without scaling to feed
the networks except for the CelebA dataset. For the CelebA
dataset, the images were scaled to 256 x 313 at first and
randomly cropped as same to the other datasets.
Methods We compared our method with the partial convolu-
tion [19] as the baseline and the method in the most recently
proposed work [20]. We used L1 error, L2 error, SSIM [32],
PSNR, and TV loss [10] to measure numerically the quality the
results followed the previous works. We used the center mask
and the randomly generated free-form mask used in [20] for
the training and the test. For the optimization, we used Adam
[31] with β1 = 0.9, β2 = 0.999, and ε = 10−8. The model
was trained using a NVIDIA 2080 Ti (11GB) with a batch
size of 25. For batch normalization [21], we used ε = 10−8

with decay= 0.999. For the networks of WConv and PConv,
we used the loss functions and hyperparameters reported in
[19].

For our network, we used the U-Net network architectures
and the losses in [19] and we changed only the convolution
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TABLE I: Results of Measurements on Test Images of ImageNet and CelebA Datasets.

ImageNet Dataset CelebA Dataset

Center mask Free-form mask Center mask Free-form mask

WConv PConv DF1 DF2 WConv PConv DF1 DF2 WConv PConv DF1 DF2 WConv PConv DF1 DF2

L1 7.755 10.464 13.371 10.432 7.006 7.304 13.290 7.640 7.648 8.706 10.560 9.837 5.643 6.272 8.566 7.448

L2 2.494 2.690 4.461 2.557 1.572 1.639 4.072 1.721 1.801 2.079 3.236 2.866 1.176 1.306 2.330 1.872

TV loss 2.400 2.534 7.645 2.652 3.502 3.910 9.035 3.752 2.330 2.010 5.633 5.214 3.061 2.782 5.695 5.237

SSIM 0.854 0.844 0.823 0.845 0.909 0.904 0.864 0.902 0.885 0.874 0.857 0.860 0.929 0.923 0.906 0.912

PSNR 20.731 17.411 15.304 16.119 20.731 20.347 15.279 21.119 20.705 19.063 17.754 18.463 23.344 22.126 19.564 20.872

(a) GT (b) Rect M. (c) PConv (d) DF1 (e) DF2 (f) Ours (g) Free. M. (h) PConv (i) DF1 (j) DF2 (k) Ours

Fig. 3: Qualitative comparisons on the Places2 dataset. Best viewed in zoom-in.

layers to the weighted convolution for fair comparisons. Be-
sides, the measurements of the other state-of-the-art methods
[17], [20] were also performed for the same datasets. We
denote the networks with weighted and partial layers as WConv
and PConv, respectively. Also, we denote the networks in [17]
and [20] as DF1 and DF2, respectively. For the DF1 and DF2,
we used the official implementations without modification and
model hyper-pameters provided by the authors. 1

Results We measured L1, L2, TV loss, and PSNR on the hole
regions whereas SSIM was measured using the composited
image whose hole pixels set to the output image from the
network while the non-hole pixels set to ground-truth.

Table I summarizes the performance measurements on test
images of ImageNet and CelebA datasets and some results on
Place2 dataset are visualized in Fig. 3. All the models were
trained with randomly generated free-form masks. We used a
128 x 128 rectangle mask for the center masks. For the free-
form masks, we randomly generated the masks corresponding
for each test image, and then we used the same mask for
all the methods. Although the numerical methods are not
sufficient to evaluate image inpainting results perceptually, it
has been shown that they can be the criterion to measure

1The official implementation of the partial convolution has not been
available yet. Thus, for the partial and our networks, we employed our
implementation of the same framework.

the performance especially when the measurements show
significant differences in many works [15]–[17], [19], [20].
Building upon the framework of the partial convolution, We
did not used the discriminator in our work. As seen in the
results of DF1 and DF2, the discriminator made artifacts
for unseen images in our test. When using perceptual term
rather than the discriminator, the network tended to make
a blur image rather than the artifacts. Thus, we followed
the framework of the partial convolution without GAN. The
weighted convolution can be extended to the general networks
as it handles the paddings as well as the hole regions similar
to the partial convolution.

IV. CONCLUSION

We proposed a weighted convolution to efficiently handle
the invalidity caused by the hole regions. Built on the baseline
of the partial convolution, we used the mask to store the
validity of the features by using the real-valued mask. By
balancing upon the invalid pixels caused by the holes and
zero-paddings, the network can be trained more robust to
the hole shapes. By introducing a weighted scheme for the
normalization layers that operate along with the weighted
convolution layer, the efficiently resolving the inconsistency
due to the presence of the holes. Quantitative and qualitative
comparisons over several datasets demonstrated the robustness
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of our method in image inpainting.
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