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Abstract—In this paper, we propose a rapid and high-accuracy
Gaussian noise removal method by applying the learning linear
filter used in RAISR for super-resolution. Our algorithm is
a rapid local method, yet produces comparable results to the
accuracy of the non-local method known for its high accuracy.
The novelty of this paper is that the same processing as super-
resolution is incorporated into denoising. The conventional local
processing includes smoothing processing, and has a problem
that high-frequency components of an original signal are lost
while reducing the noise. In order to solve the problem, this
method incorporates a super-resolution method that compensates
for high-frequency components as post-processing. The super-
resolution method utilizes a process that applies a learning linear
filter according to the feature of patches in RAISR. Because the
proposed method consists of local precessing, its operation is rapid
compared to non local processing like BM3D.

Index Terms—denoising, gaussian noise, joint bilateral filter,
super-resolution, RAISR

I. INTRODUCTION

Image denoising is recovering an image given the noisy
observations gathered by a digital camera sensor. There are
various types of noise, such as impulse noise and Poisson
noise. Gaussian noise is caused by the temperature change
of the image sensor during taking digital image, and many
studies have been made. Gaussian noise is statistical noise
having a probability density function equal to that of the normal
distribution. The goal of image denoising method is to recover
a clean image from a noisy observation,

yi = xi + ni (1)

where yi is the observed signal, xi is original signal and
ni is gaussian noise. One common assumption is that ni

is additive white Gaussian noise (AWGN) with zero means
and variance σ2. In recent years, some patch-based methods
have been studied for the Gaussian noise removal problem [8].
Patch-based methods are classified into three main types: deep
learning-based methods, local methods, and non-local methods.
Deep learning-based methods such as DnCNN [8] have enabled
high-accuracy restoration. On the other hand, the drawbacks of
the deep learning-based methods are that it requires a sufficient
dataset for learning, and that learning and inference time are
too long. Local and non-local methods are the best in this
problem. The local method estimates an pixel by processing

only the patch corresponding to the pixel to be generated, and is
typically a bilateral filter [7] or Wiener filter. Local method is a
fast processing, but tends to lose the high frequency component
of the original signal. On the other hand, non-local method
[1]–[3] estimates the pixels by extracting the target patch and
its similar patches from the search range and processing them.
There are NL-means filter [1], Block matching and 3D filtering
(BM3D) [2], etc. Since the non-local method can use similar
patches, the accuracy is overwhelmingly higher than the local
method. However, it takes a long time to search for similar
patches, and it takes longer to run.

To obtain high quality denoised image by local process-
ing, we focus on a joint bilateral filter [4]. It calculates the
coefficients using another reference image. Since the quality
depends on the reference image, we have to obtain a reliable
pre-estimate image from only an input noisy image. In a low
calculation cost, we adopt a Hard-Threshold operation. But,
the process causes the lost of the high frequency component of
the original signal. To solve the problem, we propose a local
method with a learning filter in RAISR [6]. Super-resolution
predicts high-resolution components from low-resolution im-
ages with exemplars or self-exemplars. RAISR is a highly
accurate and fast processing method using a learning linear
filter based on Local Gradient Statistics. We propose a novel
image denoising method with a learning linear filter in RAISR
for enhancing a joint bilateral filter and obtaining a cleaner
denoised image as a post-processing. The proposed method has
the same accuracy as the non-local method like BM3D and the
runtime is much faster than it.

The remainder of the paper is organized as follows: we
will describe RAISR regarding the description of the proposed
method in Section 2, we compare the accuracy and processing
time with other local methods and non-local methods, and
compare them with the resulting images, and discuss the exper-
imental results and considerations in Section 3. The conclusions
are drawn in Section 4.

II. PROPOSED METHOD

The proposed method incorporates RAISR to solve the
problem of loss of the high frequency of the original signal,
which is a problem of the conventional local method. Therefore,
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Fig. 1: Overview of the proposed method

the algorithm of RAISR [6] is first briefly described, and then
the specific algorithm of the proposed method is described.

A. RAISR

RAISR is famous as a rapid and high-accuracy method
in super-resolution field. This section shows the process of
generating HR pixels from LR patches by a learning filter,
which restores the high frequency of the original signal. First,
a patch of size 11 × 11 is extracted from the low-resolution
image, and the hash is calculated on a patch of 9 × 9 at its
center.

1) Hash calculation: Hash calculation is done by digitizing
texture information of an input patch using principal component
analysis (PCA). The horizontal and vertical gradients, gx and
gy are calculated for the k-th pixel located at k1,...,kn in the√
n×

√
n surroundings of each pixel. The computation of n×2

gradient matrix is expressed by

Gk =

gxk1
gyk1

...
...

gxkn
gykn

 . (2)

Next, we calculate the covariance matrix of GT
kWkGk and

solve the eigenvalue problem. Then, Wk is a diagonal weight-
ing matrix constructed using a separable normalized Gaussian
kernel. The three parameters are represented as a texture model
by utilizing two eigenvectors(ϕk

1 , ϕk
2) and two eigenvalues(λk

1 ,
λk
2).

λk = λk
1 , (3)

θk = arctan

(
ϕk
1,y

ϕk
1,x

)
, (4)

µk =

√
λk
1 −

√
λk
2√

λk
1 +

√
λk
2

. (5)

where the largest eigenvalue λk is the direction strength, µk is
the direction coherence, θk is the gradient’s angle. These are
quantized at quantization levels Qs, Qθ, and Qµ, respectively,
to get the final hash parameter with the following formula.

λ =

⌈
λk

Qs

⌉
, (6)

θ =

⌈
θk
Qθ

⌉
, (7)

µ =

⌈
µk

Qµ

⌉
, (8)

λ is quantized to 3 classes, θ is 24 classes, and µ is quantized
to 3 classes. Finally, the input patches are classified into 216
class.

2) Filter learning: The learning filter is learned for each
hash class divided by the hash table. We aim to learn a filter
h that minimizes the Euclidean distance between the low-
resolution images yi ∈ RM×N and the desired training images
xi from the training database images with i = {1, . . . , L}.

h = min
h

L∑
i=1

∥Aih− bi∥22 (9)

where h ∈ Rd2

denotes the 2D filter in vector-notation and Ai

is a matrix, composed of patches of size d× d, extracted from
the image yi and bi is a vector, composed of pixels from xi.
As a result, it is necessary to prepare 216 learning filters.

B. Proposed method

An overview of the proposed method is shown in Fig.1.
The proposed method consists of two components: an noise
reduction phase and a reconstruction phase. In the first step, the
algorithm is mainly composed of three parts: Hard-Threshold
processing, RAISR and joint bilateral filtering [4]. To obtain
high quality images without block matching, we utilize joint
bilateral filtering referring the pre-estimated image G1 trans-
formed from a image after Hard-Threshold processing to the
sharp image by a learning filter. In the second step, we get
the objective image by another learning filter. This process can
recover high frequency components of primary removal image
obtained in the first step.

Fig. 2: First step of the proposed method

1) Noise reduction phase:
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a) Hard-Threshold process: First, noise of an input image
is removed by Hard-Threshold processing. To reduce noise
with preserving image details, we pay attention to the hard
threshold operation in the frequency domain. This process
removes noise with a low calculation cost but loses the high
frequency components. The smoothed image is calculated as
follows.

B = T ′(F (TAT ′, λthr))T (10)

Tpq =


1√
M

p = 0, 0 ≤ q ≤ M − 1√
2

M
cos

π(2q + 1)p

2M
1 ≤ p ≤ M − 1,

0 ≤ q ≤ M − 1
(11)

F (λ, λthr) =

{
λ λthr < |λ|
0 otherwise

(12)

where T is M × M 1D-DCT transform matrix, and A is
an input image, and B is an image after Hard-Threshold
processing, and λthr is a threshold. This processing eliminates
the more noise in the image but high frequency information in
the image is lost.

b) RAISR: Since it is preferable to keep the details in
the guide image, the lost high frequency components are
recovered by RAISR processing. The RAISR processing shown
in Chapter II-A is performed on the image after the Hard-
Threshold processing using 216 learning filters to obtain an
image G1. In this training, the input image is an image after
Hard-Threshold processing, and the objective image is Ground
Truth. This inference generates the pre-estimated image G1 by
recovering the lost high-frequency components of the image
after Hard-Threshold processing

c) Joint bilateral filter: In [5], The joint bilateral filter
obtains reliable coefficients by utilizing reference noiseless
image. The target pixel xi is calculated by joint bilateral filter
with weights for the distance difference Gs and the luminance
difference Gr as follows.

xi =

∑
j Gs(u(i− j))Gr(zi − zj)yj∑
j Gs(u(i− j))Gr(zi − zj)

(13)

where u is the Euclidean distance and y is the input patch and
z is the guide image and position i is the center in the target
patch. The joint bilateral filter differs from the bilateral filter
in that a guide image is required for the luminance difference
term. A guide image is synthesized as

Z = M ⊙G1 + (1−M)⊙G2 (14)

where G2 is obtained by applying a Gaussian filter to G1 and
⊙ denotes the element-wise product. M is binary matrix whose
component is mi = 1 in the edge regions and mi = 0 in the
smooth regions, which is obtained by applying a Sobel filter
to the G1 image. This is because hard threshold processing
cannot remove noise components in low frequency and the pre-
estimated image G1 may still have some low frequency noise
components.

2) Reconstruction phase: In the second step, we utilize an
another learning filter for the feature vector which is consists
of the vectorized patches in the image G1 after the first RAISR
and the vectorized patches in the primary removal image X̂ .
This recovers the high frequency components of the image. The
feature vector suppresses the degradation of reconstruction by
the low-frequency noise on the image X̂ after joint bilateral
processing. The hash in RAISR is calculated by X̂ , which has
a more accurate image structure. By this method, the edge of
primary removal image lost by first stage are reconstructed.

(a) Ground Truth (b) Noisy σn = 30 (c) WNNM [3]
(PSNR=31.38[dB])

(d) DnCNN [8]
(PSNR=31.62[dB])

(e) BM3D [2]
(PSNR=31.17[dB])

(f) proposed
(PSNR=31.12[dB])

Fig. 3: The comparison of the Lena image and σn = 30

(a) Ground Truth (b) Noisy σn = 50 (c) WNNM [3]
(PSNR=26.44[dB])

(d) DnCNN [8]
(PSNR=26.91[dB])

(e) BM3D [2]
(PSNR=25.22[dB])

(f) proposed
(PSNR=25.81[dB])

Fig. 4: The comparison of the Butterfly image and σn = 50

III. EXPERIMENTAL RESULTS

We utilized 12 test images that are widely used for evaluation
of Gaussian denoising methods and the learning filter trained
191 images including Yang et al’s Set91 [10] and General100
[9]. As the parameter setting, the patch size of the RAISR filter
is set to 11 × 11, λthr = 1.08 × σn × 10−2 for both the first
step and the second step. We used bilateral filter [7], NLM [1],
and BM3D [2] as the comparison methods, and compared the
PSNR at the noise levels σn = 10, 30, and 50, which indicate
the standard deviation of the normal distribution of Gaussian
noise. These experiments are run on a Quad-Core Intel Xeon
E5 3.7 GHz using MATLAB code.

Fig.3 shows it can be said that the degree of texture and edge
restoration is high. Also, there is no significant difference in
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TABLE I: THE COMPARISON OF PSNR[DB] IN DIFFERENT METHODS ON 12 WIDELY USED TESTING IMAGES

method σn Peppers C.man Montage Couple Butterfly Boat Lena Man Airpl. Starfish Parrot House Average

10 33.34 32.58 34.40 32.29 32.36 32.48 33.77 32.83 32.39 32.15 32.39 33.68 32.89
bilateral [7] 30 25.99 25.59 27.29 26.64 25.40 26.89 28.45 27.38 25.76 25.86 25.83 28.07 26.70

50 24.40 23.09 23.45 24.62 22.66 24.73 26.20 25.29 23.49 23.64 22.99 25.75 24.28
10 33.18 32.54 35.30 32.33 32.63 32.25 34.43 32.51 32.40 31.70 32.31 34.94 33.04

NLM [1] 30 27.35 27.23 28.77 26.27 26.98 27.01 29.21 27.18 26.32 31.70 32.31 34.93 27.37
50 24.35 24.20 25.57 24.02 23.42 24.57 26.62 24.98 23.60 22.72 24.66 26.08 24.56
10 34.40 33.93 37.13 33.86 33.35 33.83 35.90 33.77 34.49 33.07 33.56 36.66 34.41

BM3D [2] 30 29.01 28.47 30.92 28.74 27.95 28.92 31.17 28.70 27.61 27.40 28.03 32.09 29.09
50 26.44 25.94 27.29 26.39 25.22 26.64 28.93 26.67 25.17 24.81 25.75 29.70 26.58
10 34.97 28.94 37.92 34.13 34.94 34.05 36.05 34.18 33.98 34.03 33.79 36.88 34.90

WNNM [3] 30 29.51 28.80 31.47 28.94 28.98 29.16 31.38 28.96 28.14 28.01 28.73 32.60 29.46
50 27.00 26.37 28.04 26.63 26.44 26.87 29.22 26.89 25.58 25.19 26.04 30.30 24.68
10 35.07 34.60 37.67 34.29 35.22 34.05 36.15 34.39 34.17 34.32 34.10 36.51 35.06

DnCNN [8] 30 29.84 29.27 31.97 29.21 29.48 29.32 31.62 29.25 28.44 28.31 28.73 32.36 29.80
50 27.24 27.11 28.97 26.93 26.91 27.16 29.37 27.19 26.00 25.63 26.59 30.15 27.44
10 34.53 33.82 36.84 33.78 33.90 33.66 35.78 33.82 33.53 33.28 33.50 36.07 34.38

proposed 30 29.16 28.35 30.49 28.57 28.32 28.79 31.12 28.74 27.64 27.36 28.02 31.68 29.02
50 26.66 26.05 27.46 26.30 25.68 26.64 28.90 26.68 25.33 24.80 25.83 29.37 26.65

appearance compared to BM3D, WNNM, DnCNN. In addition,
the proposed method looks better in Fig.4 than bilateral filters
and NLMs, and can significantly reduce noise in smooth areas
compared to BM3D

Table I shows PSNR in all test images according to each
noise level of 12 test images. These results show our method
obtains much better quality images than bilateral filtering and
NLM. Compared to BM3D, our method has almost same result
in test images in σn = 10., 30. Furthermore, our method shows
better results in σn = 50. Also, compared to the learning
method, the results show our method can be comparable in
many images under each noise level.

Finally, Table II shows a comparison to other methods in
processing time. The processing time is much faster than
BM3D and other learning methods. The reason is that while
the proposed method is a local method that processes only
the target patch, BM3D needs a large cost in the process of
searching for a similar patch to the target patch. And the
proposed method don’t need self-examplars as WNNM, a huge
parameters as DnCNN. Therefore, in addition to the rapid local
processing, the proposed method can achieve the comparable
result as the non-local processing in terms of accuracy.

TABLE II: THE COMPARISON OF COMPUTATIONAL
TIME[SEC] AND AVERAGE PSNR[DB] IN TEST IMAGES
UNDER σN = 50

method 256× 256 512× 512

bilateral 0.20 0.94
NL-means 0.06 0.22

BM3D 3.79 13.67
WNNM 176.49 631.71
DnCNN 1.64 7.38

proposed 0.87 2.11

IV. CONCLUTION

In this paper, we apply a learning linear filter used in
RAISR, a super-resolution field, as noise removal method. The
proposed method consists of two main steps. The first step is
a part that mainly performs joint bilateral filtering and reduces
noise. The second step is a super-resolution part for restoring
high-frequency components lost in the first step. With these
improvements, the proposed method achieved the comparable
results as BM3D and the learning methods, a faster processing
speed than these methods.
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