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Abstract—In this paper, we focus on “part-in-whole” type 3D
partial shape retrieval, where we propose a new partial shape
representation based on the idea of connected Faces accompanied
with the features extracted from PointNet, given 3D shapes data
as a solid model with Boundary Representation (BREP). The
idea of connected Faces is inspired by the analogy with N-gram
in Natural Language Processing.

We conducted experiments with an ABC 3D dataset to com-
pare several candidates of partial shape features, and to confirm
that connected Faces approach has an advantage over traditional
partial shape representations. Specifically, we compared the
connected Faces approach of PointNet features with SNH (Surface
Normal Histogram) as well as PFH (Point Feature Histogram),
and found that connected Faces with PointNet outperformed
other approaches in terms of several evaluation measures.

I. INTRODUCTION

In recent years, 3D models have been used in various fields
such as manufacturing, medical care, architecture, education,
and entertainment. Accordingly, the number of 3D models
is increasing, and a method to search with a high accuracy
is required. In the manufacturing industry represented by
automotive parts manufacturers, it is expected to shorten the
manufacturing process by searching the past processing results
from the database. In typical 3D CAD systems, 3D data have
been usually created and saved by “solid models” includ-
ing Constructive Solid Geometry (CSG) [3] and Boundary
Representation (BREP) [11]. They are then tessellated into a
collection of triangular (or polygonal) meshes for a variety of
processes such as Finite Element Method in CAE (Computer
Aided Engineering) [25] and real-time rendering in MAR
(Mixed and Augmented Reality) [12].

In this paper, we assume that 3D shapes are represented by
“Boundary Representation (BREP)”, keeping the topological
structures, without reducing them to a collection of triangular
meshes.

Our proposed method extracts a partial shape model from
the 3D model target database prior to the search request. With
respect to the query for the search request, we also create a
collection of partial shape models for the query at the time
of the search, and perform the search as a shape matching
problem of the partial shapes between the query and the target.

It should be noted that there are two types of 3D partial
shape retrieval: “whole-to-whole” and “part-in-whole” types.
The detail on these two types will be elaborated on and

surveyed in the next section. Here, we emphasize that our
research is classified as the “part-in-whole” type.

In the next section, we elaborate on two types of 3D partial
shape retrieval and survey the previous work. In Section III,
we describe the overall flow of our proposed system, and
then we list some candidates for partial shape representations
together with our proposed method based on connected Faces
in analogy with N-gram in Natural Language Processing.
In Section IV, we describe our experiments focusing on
comparisons of several aspects including normalization and
partial shape representations with or without connected Faces.

II. RELATED WORK

As we introduced in the previous section, 3D partial shape
retrieval can be roughly classified into two types: “part-
in-whole” and “whole-to-whole” retrieval types. Since our
proposed method is a “part-in-whole” methods, here we sum-
marize related work on 3D partial shape retrieval that falls into
“part-in-whole” type.

Liu et al [18] surveyed research on 3D partial shape retrieval
and classified the research into two types as shown in Fig. 2.
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Fig. 2. [Illustration of two types of 3D partial shape retrieval. (a) part-in-
whole retrieval(b) whole-to-whole retrieval by partial similarity. The task of
(a) is to match and search a tire to a car in a database, while the task of (b) is
to match and search a woman-like shape to a mermaid in the database. This
figure is cited from [18]

“Part-in-whole” type 3D partial shape retrieval has been
studied by many researchers including Furuya et al. who
proposed Randomized Sub-Volumes Partitioning (RSVP) [7],
and Tran et al. who employed a composite approach with local
and global features to partial 3D shape retrieval [22]. These
approaches are examples that assume a partial shape as input
is explicitly given by users.

On the other hand, there are approaches that take advantage
of the information of 3D shape hierarchy and/or 3D segmented
data. Bai et al [2] falls into the 3D shape hierarchy approach
to partial shape retrieval, assuming that 3D shapes are given
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Fig. 1. Flow of Partial Shape Retrieval in Our System

by BREP. They prepare a “library” to register partial shape for
design reuse. Given query and the target database, they con-
struct reusable sub-part hierarchy so that the search problem
is reduced to a shape matching problem between then query
and sub-part. Theologou et al’s approach falls into segment-
based approach to partial shape retrieval [28], where each
segment needs to have a “label”. Lupinetti et al [19] surveyed
CAD assembly model retrieval from both global similarity and
partial similarity perspectives.

Onodera et al [5] proposed a graph-based approach to 3D
partial shape retrieval, assuming that the data is represented
by BREP. The node in their graph corresponds to Face, and
the arc corresponds to Edge in BREP. Their method first
computes all the geometric parameters such as surface areas
and perimeters for the query and the target data. Subsequently,
for all combinations of query faces and the target data faces,
they compute the similarities. Depending on the similarities,
they remove Faces from the graph. From this process, their
method decomposes the original graph into a collection of
separate connected graphs. Then, they compute topological
similarities between separate connected graphs. Unfortunately,
as the 3D shape models become complex, the number of
connected graphs grow, so that even with an initially moderate
number of 3D shape models, the combination of topological
matching becomes huge, Thus, the computational time of their
partial shape retrieval becomes intractable.

Kobayashi et al [16] used SHREC 2015 Range Scans [9]
and SHREC 2016 Partial [22] datasets, and conducted evalu-
ation experiments of partial shape retrieval. Since we employ
their feature as one of the candidates for partial shape def-
inition, the detail of their methods will be described in the
next Section. Here we mention that Koyatashi et al’s method

is based on the observation that output of 3D scanners such
as KINECT [1] only covers the visible part of the 3D shape
object from the scanner. They define a partial 3D shape as the
collection of visible surface meshes.

Recently, deep neural network approach to 3D partial shape
retrieval gains attention. In our previous approach using 3D
CNN to partial shape retrieval [13], we trained 3D CNN with
local features defined per voxel, and applied our method to
the SHREC16 Partial dataset [22]. However, the input to the
partial shape retrieval in our previous approach has only had
limited success for 3D objects that have been scanned like
antique earthware where no connected Face information was
available. Furuya et al [8] introduced ‘“Part-Whole Relation
Embedding network” (PWRE-net). Their method is attractive
in the sense that they achieved high search performance with
general 3D model datasets such as P-ModelNet, P-SH11NR,
ShapeNet Core55, and ObjectScans. Unfortunately, no 3D
CAD dataset was tested with their method. Moreover, there
is no explicit decomposition of a query at run time.

III. PROPOSED METHOD

Figure 1 illustrates the overall flow of our 3D partial shape
retrieval system. In this section, we will describe each step
in the flow diagram. Section III-A describes the extraction of
partial shapes, Section III-B focuses on 3D point cloud gen-
eration, Section III-C describes normalization, Section III-D
focuses on our features for partial shapes. and Section III-E
discusses feature matching.

A. Partial Shape Extraction

Since we assume that 3D shapes are represented by Bound-
ary Representation (BREP), it is natural to define partial
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shapes by Faces in BREP of a 3D shape. Figure 3 demon- o
strates an example of Faces in real 3D shape data. In addition
to the extraction of an individual Face, we define connected

Faces, in analogy with N-gram in Natural Language Process-
ing, based on the adjacency relationship of Faces in BREP. For I

| @ _

example, we can define two connected Faces by extracting a

group of Faces connected to each other by their shared Edges.

In general, we can define N connected Faces by extracting a Partial shape

group of Faces that can be traversed from a given Face to extraction

adjacent Faces N times with shared Edges. The advantage of

this approach to partial shape definition includes robustness

against geometric information such as surface orientation,

spatial position, and size. CN =1 CN=2
In our approach, we assume that if two Faces have a shared

Edge, they are supposed to be adjacent to each other. We then

define the connected number as the number of contiguous

Faces, here denoted by Qn, a parameter to a partial shape B. 3D Point Cloud Generation

to be extracted from a given 3D shape model. Examples of

Cn = 2 and Cn = 3 are shown in Figure 4. It should be noted In the last stage of 3D partial shape extraction, we have 3D

that the partial shape extraction is applied to both the target (triangular) meshes converted from connected Faces. Then,

models in the database and the query model. Sample extracted ~We perform point cloud generation based on Osada et al’s

partial shapes are depicted in Figure 5. After partial shapes method [21]. Assume that the number of points is represented

are extracted, we apply tessellation to the partial shapes, by Hosada- Given three vertices of an arbitrary triangle as
converting them into 3D meshes. aband c. Then, we generate a random point p on the triangle

as below:

p=(1—+/r)a+ri(l —ra)b+/rirec,

where 71 and 7y represent random variables ranging from
0.0 to 1.0. For each point p, we associate the normal vector
defined as the normalized perpendicular vector to the 3D
triangle. The random points generated with ordinary pseudo
random number generator have an inherent bias. There are
several options to remedy the bias. For example, we could use
quasi-random number generators such as Sobol sequences [15]
in high dimensional space. Here we employ Farthest Point
Sampling (FPS) [4]. In FPS, a point cloud made of Hogada

Fig. 5. Cn =1 and C'n = 2 examples of partially extracted shapes from
a 3D shape model on the left.

points is gone through sampling to Hrps points. Figure 6
demonstrates the application of FPS.

Fig. 3. An example of Faces in BREP of a 3D shape object, where a different
color corresponds to a different Face.

N =2 “ Point cloud generated by Osada et al’s method Point cloud sampled by FPS
Fig. 6. FPS application example for a point cloud generated by Osada et
al’s method
CN =3
m m C. Normalization
In “part-in-whole” type 3D partial shape retrieval, it is
essential to find 3D shape objects having locally high similar-
ity within the target 3D database, regardless of the position,

orientation, and size of a given query. Since our proposed
features elaborated on in the next section include properties
influenced by the position, orientation, and the size, we apply

Fig. 4. Examples of Cn = 2 and Cn = 3. Faces can be flat or curved.
Adjacent Faces have a shared Edge.
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normalization before feature matching. For this purpose, we
first translate the centroid g to the origin.

1 Hrps
_ (1)
g = | S
Hyps ;

where p(*) is the coordinate of i-th point. Then, we apply
PointSVD and NormalSVD for pose normalization [27]. Under
the current circumstances, the point cloud position matrix P
is represented by the following formula:

Y —g. PP g, piiers) g,
P=|pM—g, p—g, pirs) — g,
PN —g. pP—g. prEes) g

On the other hand, the point cloud surface normal matrix N
is represented by the following formula:

ngvl) nfvz) ngvHFPS)
N = nz(/l) ng(f) néHFPS)
ngl) ng) ngHFPS)

In Point SVD, point cloud position matrix P is decomposed
with singular value decomposition as below:

P=UsWT,

where U is a 3 x 3 orthonormal matrix, ¥ is a diagonal 3 x 3
matrix having singular values, and WT is a 3x Hppg orthonor-
mal matrix. To obtain rotation matrix R, we normalized each
singular vector of U, which we denote U , then take a transpose
of the normalized left singular matrix as follows:

R=0UT

In a nutshell, the normalized point cloud matrix and surface
normal matrix are represented by the following equations:

P'=U"P=RP
N'=UYN =RN

Finally, we divide every transformed point by the largest
distance from the new origin for scale normalization.

D. Extracted Features

In this section, we focus on the features extracted from
3D partial shapes. We define three different features; (1)
Surface Normal Histograms (SNH)(one of our earlier pro-
posed features of partial 3D shapes suitable for 3D digital
scanners [16]), (2) Point Feature Histograms (PFH) [26], and
(3) PointNet Features extracted from intermediate layer of
PointNet [24].

1) Surface Normal Histogram (SNH): In the first feature
SNH which is our previous approach, we first compute the
surface normal at each point. Subsequently, we set up a “grid”
covering each partial 3D shape as illustrated in Figure 7.

7-10 December 2020, Auckland, New Zealand

Fig. 7. A “grid” covering a 3D shape in SNH feature extraction

For each grid, we project surface normal of each point in
the grid on three planes as illustrated in Figure 8. Then, for
the collection of all the surface normals, we compute the dis-
tribution of xy, yz, and zx projected planes, thereby obtaining
each histogram, and finally concatenate three histograms to
generate SNH as depicted in Figure 9.

Fig. 8.  Surface normal of each point in the grid is projected onto three
perpendicular planes

0 = Lt &
=

Al &

0 90 180 270 360

Fig. 9. Surface Normal Histogram (SNH) generation from three projected
distributions of surface normals in a grid

Kobayashi et al’s SNH features are targeted for 3D shape
objects for general categories, and are suitable for the objects
with rounded surfaces varying surface normals. SNH features
are susceptible to the “grid” definition. For instance, if X, Yy,
and z axis definitions are slightly altered, the resulting SNH
may differ significantly. This is especially a problem if the 3D
shape objects have numerousf flat surfaces similar to typical
3D mechanical CAD models, where some of them are slanted
with respect to the three projected faces (i.e. XY-, YZ-, ZX-
planes). In order to alleviate the above problem, we have
added 45 degree rotations around x and y axes after pose
normalization.
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Fig. 10. PointNet architecture [24]

2) Point Feature Histogram (PFH): The second feature
we adopt here as one of the partial shape features is PFH
(Point Feature Histogram) [26]. The PFH is extracted from
the angular relationship between the point position vector and
the surface normal vector. First, we extract a pair of two points
ps and p;. These points have the associated surface normal
vectors n, and n;. We define the following uvw coordinate
system as:

u = ng
Pt — Ps
v = -
||pt _psH2
W = uxyv

By taking advantage of the uvw coordinate system, we com-
pute the following three angular features based on normal
vectors ng and n;:

= V-1
u- Pt — Ps
d
6 = arctan(w-ng,u-ng)
Here, d = |p: — psl|l2- The above angular features are

computed for each pair of points and their normals. By
repeating the computation of the angular features for all the
pairs, we generate a histogram.

3) PointNet Feature: The third features are extracted from
the intermediate layer of PointNet. PointNet is a deep learning
architecture having point cloud as its input [24]. The archi-
tecture of PointNet is shown in Figure 10. As a 3D data
representation, point cloud based methods need to produce
the output invariant under the sequence of generated points.
PointNet has achieved this invariance by its max pooling
before obtaining “global feature” as shown in Figure 10. In
this paper, we extract the features from the intermediate layer,
by employing pre-trained PointNet with ModelNet40 [29].

The intermediate layer where we extract features is one layer
before the last (output) layer.

E. Feature Matching

Let a set of features extracted from a given query be denoted
by Q = {q1,92,...,qr}, and a set of features extracted from
a target database be denoted by T = {t1,to,...,ta }, where
L is the number of partial shapes extracted from a query, and
M is the number of partial shapes extracted from the target
database. Then, we define the similarity s(Q,T') between @
and 7' as follows:

1
S(Q.T) =7 > maxq-t
qeQ

We compute all the combinations of partial shapes between
the query and the target database, and sort in descending
order to generate ranked search results. In the above equation,
we need to search the largest cosine similarity t € T for
q € Q. Usually, this process is computationally expensive.
We alleviate this expensive computation by Fast Library for
Approximate Nearest Neighbors (FLANN) [20], as one of
approximate nearest neighbor search methods. It is noted that
FLANN is known to automatically select optimized parameters
using either Randomized kd-tree or Hierarchical k-means tree.

IV. EXPERIMENTS

In this section we describe experimental results using fea-
tures described in the previous section. Section IV-A describes
the dataset, Section IV-B refers to methods for comparison,
Section IV-C describes the evaluation measures, and Sec-
tion IV-D describes experimental results.

A. Dataset

The dataset we have used in 3D partial shape dataset is a
subset of ABC dataset [17]. ABC dataset provides a variety of
3D data representation including Parasolid [6] and STEP [23],
which allow BREP (or Boundary Representation).
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where rel(x) denotes the number of relevant data in the
top x ranked results for a query. Recall is expressed by the
following:

_ rel(Krecan)
Recall = ——=Feeais,

where C' denotes the number of relevant data in the target
database, and Kgecan = 10. In our experiments, C' = 1.
NDCG is a measure of ranking quality as to how early the
Fig. 11. Sample 3D shapes in our target 3D database from ABC dataset relevant data is found. The earlier the relevant data is searched,
the better. It is expressed by the following equation:

. _ G(1) (i=1)
| DCG() = { DCG(i—1) + G(i) (otherwise)

‘ ' log, (i)
\ DCG(K
NDCGOKnnee = g
1+ tem
5 where 4 denotes the ranking in the search result, G(:) is a gain

returning 1 when the ¢-th search result is relevant; otherwise
Fig. 12. Sample query objects returning 0, and Knpcg represents the number of target 3D
models. In our experiments, Knpcg = 9, 960.

D. Experimental Results

In our experiments, we have adopted a STEP format of ABC Table I demonstrates the results of the significance of pose
dataset, where we have extracted 9,960 3D shape models for  normalization. As the table shows, NormalSVD turns out to
our target database as exemplified in Figure 11. For the query  pe better in search result. We conjecture that the ABC dataset
dataset, we have extracted 4 to 10 connected Faces, i.e.,Cn = we used has 3D shapes with flatter planar surfaces, whereas
4 to C'n = 10 from BREP data (or STEP) of the subset. As a  when applying PointSVD to planes, there is a tendency that
result, the number of 3D partial shapes of the query turns outto  face normals randomly flip.
be 44,278 (as illustrated in Figure 12). Since our partial shape

retrieval is a “part-in-whole” type, for each connected Face, TABLE I

“ ” I3 ” COMPARISON OF POSE NORMALIZATION
we need to have “part” as a query and “whole” as the searched
objects. Preparing the relevant dataset for each query is highly NN Recall@10 NDCG@9960
difficult. In our experiments, we set up only the “part” as SNH + PointSVD (Cn = 2) 0.55 0.76 0.69
relevant if it is extracted from the original “whole” objects for SNH + NormalSVD (Cn =2) | 0.70 0.92 0.83

automatic evaluation. Since the above setting allows only one
answer to each query, the search performance is proportional In the next experiment, we focus on the number of con-
to how early we can find the “whole” object in the search nected Faces. Due to the computational time, we only con-
ranking. Of course the search performance depends on what ducted experiments with Cn =1 and Cn = 2, keeping SNH
features we use and what kind of connected Faces we adopt, as the features of partial 3D shapes, fixed with NormalSVD
which are revealed in this section. from the previous experiment. Table II demonstrates the result.
As we anticipated, Cn = 2 has better search performance
than Cn = 1. Even though experiments with Cn = 3 are not
As methods for comparison, we have selected Kobayashi feasible in terms of computational time, We list the number of
et al’s method (i.e. a method with SNH features) for partial partial shape models with Cn = 1, Cn = 2, and Cn = 3 in
shape retrieval [16]. For Kobayashi et al’s method, we set the Table III. From this table, unless we develop some innovative
number of partial shape models extracted from target database methods, it may be easily understood that experiments with
to 18, considering computational time. The parameters for Cn = 3 are not feasible under the current circumstances.
SNH includes the number of grids (4 x 4 x 4) and the number TABLE II
of bins (for each projected plane) to be 8. Thus, the feature COMPARISON WITH RESPECT TO THE NUMBER OF connected Faces
dimension of SNH is 1,536 (=4 x 4 x 4 x 8 x 3).

B. Methods for Comparison

NN  Recall@l0  NDCG@9960
C. Evalua[ion Measure SNH + NormalSVD (CTL =1 0.50 0.72 0.66
SNH + NormalSVD (Cn =2) | 0.70 0.92 0.83

For evaluation measure, we have adopted Nearest Neighbor
(NN) (or P@1), Recall, Normalized Discounted Cumulative

Gain (NDCG).NN is We then conflucted experiments in terms of .features de-
scribed in Section III-D. The result is shown in Table IV.
Nearest Neighbor(NN) = rel(1), Among three different features, PointNet features resulted in
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TABLE III
THE NUMBER OF PARTIAL SHAPE MODELS EXTRACTED

the number of query partial shape models L the number of target partial shape models M

Maximum  Minimum  Average Median | Maximum  Minimum  Average  Median
Cn=1 10 4 6.82 5.00 43974 1 233.37 41.00
Cn = 36 7 16.58 9.00 143330 1 750.46 134.00
Cn = 124 9 34.72 29.00 65974770 1 37983.57  535.00

the best performance. We conjecture that PointNet is robust
against the noise in pose normalization for sampled points.
PointNet incorporates a construct called 7-Net inspired by
spatial transformer network [14], which is a network that
applies Affine transformation to input point clouds.

TABLE IV
COMPARISON BETWEEN FEATURES
NN  Recall@l0 NDCG@9960
SNH without connected Faces 0.07 0.17 0.21
SNH + NormalSVD (Cn = 2) 0.70 0.92 0.83
PFH (Cn = 2) 0.66 0.92 0.81
PointNet + NormalSVD (Cn = 2) | 0.76 0.96 0.87

After the above experiments, we fix PointNet as feature
extraction, Cn = 2 and NormalSVD as pose normalization.
With this in mind, we demonstrate a successful “part-in-
whole” partial retrieval example, and compare the result with
a simple SNH method without connected Faces as shown in
Figure 13.

PointNet+NormalSVD (CN=2)

v

SNH without connected Faces

Fig. 13.  Successful “part-in-whole” search example

E. Partial Feature Dimensions Adopted by Our System

In our experiments, we compare partial shape features taken
by the three different features representations discussed so far.
Table V summarizes our experimental settings in terms of
partial feature dimension. Apparently, PFH’s approach requires
only 125 dimension, while PointNet requires 256 dimension,
and SNH requires 1,536 dimension for representing each
partial shape. Obviously when 3D partial shapes are kept in
3D database, SNH not only consumes memory, but the 3D
partial shape search needs most time-consuming similarity

computation, regardless of applying FLANN as approximate
nearest neighbor described in Feature Matching section.

TABLE V
COMPARISON OF FEATURE DIMENSIONS
‘ SNH PFH  PointNet
partial feature dimension | 1,536 125 256

E System for “Part-in-Whole” 3D Shape Retrieval

Based on the previous experiments, we have constructed
an interactive “part-in-whole” type of 3D partial shape search
system, where PointNet features are adopted, and NormalSVD
is chosen as pose normalization. Sample system outlooks are
shown in Figures 14 and 15. The system is programmed
in Python with Flask [10] as a Web application. For the
interactive selection of a group of Faces, the color of chosen
Faces is turned into “Red” so that users can easily tell what
parts are selected as the query. It should be noted that the
query can be any number of connected Faces, while the target
partial shapes are limited to C'n = 2. Partially similar shapes
are displayed on the right as the top nine most similar search
results. Each 3D shape model in the search result window,
as well as the query window, can be independently Affine
transformed (i.e. rotated, scaled, and translated) to see if there
is any part in the object similar to the red portion of the query
3D object.

»
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Fig. 14.  An outlook of our 3D partial shape retrieval system. The red part
was interactively selected by user.
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Fig. 15.

Another sample scene of our 3D partial shape retrieval system.

V. CONCLUSION

In this paper, as one of ‘the ‘part-in-whole” type 3D partial
shape retrieval, we propose a new partial shape representation
based on the idea of connected Faces accompanied with the
features extracted from PointNet, assuming that 3D shapes are
given by BREP. The idea of connected Faces is inspired by
the analogy with N-gram in Natural Language Processing.
We compared connected Faces approach of PointNet features
with SNH (Surface Normal Histogram) as well as PFH (Point
Feature Histogram), and found that connected Faces with
PointNet outperformed other approaches in terms of NN
(Nearest Neighbor), Recall@10, and NDCG@9960, where
9,960 data points were used from the ABC dataset. We also
conducted a comparison between PointSVD and NormalSVD
as pose normalization, and found that NormalSVD performs
better when flatter surfaces are ubiquitous as in 3D mechanical
CAD data such as ABC dataset. Finally, we demonstrate our
system incorporating the connected Faces where users can
interactively select partial shapes as a query with arbitrary
number of connected Faces and undergo the “part-in-whole”
type partial shape retrieval.

For future work, we will investigate how to cope with “part-
in-whole” partial shape retrieval with three or more connected
Faces in a target 3D shape database. Furthermore, we will test
our system with another dataset other than the ABC dataset.
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