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Abstract—Saliency detection for 3D visual data has been
actively studied, but relatively little effort has been made to detect
both of the geometric and photometric saliency for large-scale
colored 3D point clouds (LSC3DPCs). We propose a random walk
based multiscale saliency detection algorithm for LSC3DPCs
acquired by terrestrial light detection and ranging devices.
We employ Fast Point Feature Histogram descriptor and Lab
colors to estimate the geometric and photometric features of
points, respectively. We partition an input LSC3DPC model into
supervoxel clusters at three different scales of octree. Then we
build a fully-connected graph of clusters at each scale such that
an edge connecting two clusters with more dissimilar features to
each other is assigned a higher weight. We perform random walk
simulation on the graphs at multiple scales to yield multiscale
saliency maps, respectively, which are then averaged together to
generate a final saliency map. Experimental results show that
the proposed method estimates the global and local saliency of
LSC3DPCs more faithfully compared with the existing method.

I. INTRODUCTION

Human Visual System (HVS) can easily recognize the
visual contents from images by focusing on visually prominent
regions selectively. Saliency detection is a technique that
automatically detects visually important or meaningful regions
of input images, and it has been applied to many applications
of image processing and computer vision such as recognition
[1], retrieval [2], and segmentation [3]. In recent years, 3D
geometric saliency detection, which extracts geometrically
distinct regions from 3D visual data, has been also studied
for various types of 3D visual data including RGB-D images
[4]–[9], polygonal meshes [10]–[14] and point clouds [15]–
[19].

In particular, light detection and ranging (LiDAR) based
terrestrial scanning devices can capture 3D real-world environ-
mental scenes, providing highly detailed large-scale 3D point
clouds with color information, as shown in Figure 1. Such
large-scale colored 3D point clouds (LSC3DPCs) can facilitate
various immersive visual applications, for example, 3D envi-
ronmental map generation for autonomous vehicles and 3D
contents generation for virtual reality and mixed reality. Note
that a typical LSC3DPC model captures 360◦ environmental
scene and is usually composed of several millions of points.
Therefore, automatic detection of visually salient regions from
a LSC3DPC model is critical to alleviate the computational
complexity for geometric processing of LSC3DPC data. At-
tempt has been made for automatic saliency detection of large-
scale 3D point clouds [17], [19]. However, they considered 3D

Fig. 1: Large-scale colored 3D point cloud.

geometric features only without color information, or did not
consider global characteristics of 3D model. In this paper, we
introduce a novel saliency detection method for LSC3DPCs
which exploits geometry and color features together to capture
both of the local and global characteristics. We first employ a
supervoxel hierarchy where each cluster contains points with
similar normal directions and colors. We compute the global
features for each cluster by averaging the local geometry
and color features of the points in the cluster. At each scale
of supervoxel clusters, we construct a fully-connected graph
where we obtain saliency distribution of clusters by performing
random walk (RW) simulation on the graph. Then we obtain
a final saliency map by averaging the multiscale saliency
maps. Experimental results show that the proposed algorithm
detects global and local saliency of LSC3DPCs more faithfully
compared with the existing method [19].

The rest of the paper is organized as follows: Section II re-
views the related work of saliency detection for 3D visual data.
Section III explains the proposed algorithm and Section IV
represents the experimental results. Section V concludes the
paper.

II. RELATED WORK

Saliency detection for RGB-D images: Lang et al. [4]
estimated a depth image from a pair of stereoscopic images,
and obtained a human fixation map on the depth image. They
computed depth prior from the fixation map which is then used
to improve the performance of existing saliency maps of 2D
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images. Ju et al. [6] partitioned a color image into superpixels
using SLIC [20], and estimated the saliency at each superpixel
as the sum of anisotropic center-surround difference of depth
values between a superpixel and its neighboring superpixels.
They obtained a final saliency map by refining the coarse
scale saliency map using depth prior and Gaussian prior. Peng
et al. [7] first obtained a patch-wise low-level saliency map
using center-surround difference in terms of depth and color
features. Then they generated spanning trees at several highly
salient patches, where mid-level saliency are estimated as the
occupation frequency of spanning trees. A final saliency map
is given by fusing the low and mid-level saliency maps with
Gaussian prior.

Saliency detection for 3D meshes: Lee et al. [10] first
proposed a saliency detection method for 3D meshes, which
estimates the saliency at each vertex by computing the differ-
ence of curvature compared to neighboring vertices. Moreover,
multiscale saliency maps are also obtained by changing the
scope of neighboring vertices. Leifman et al. [12] employed
a spin image as a descriptor of each vertex, and computed a
vertex distinctness using the geodesic feature distance from
a vertex to its neighbors. The highly distinct vertices are
regarded as focus points and the saliency values of the
other vertices are additionally weighted according to their
geodesic feature distances to the closest focus points. Song
et al. [13] applied spectral processing to saliency detection
for 3D meshes. They computed mesh spectrum and estimated
the saliency as the spectral deviation from locally averaged
spectrum, and generated a final saliency map by combining
the saliency maps at different scales. Jeong and Sim [14]
adopted 3D semi-regular meshes to compute mesh saliency.
They computed angular deviation of normal vectors between
neighboring faces and constructed a fully connected graph at
each scale of semi-regular mesh. A final saliency distribution
is obtained by taking the maximum among the normalized
stationary distributions of random walks on the graphs at
multiple scales.

Saliency detection for 3D point clouds: Kim et al. [15]
first clustered an input 3D point cloud using information-
theoretic clustering [21], and evaluated cluster-wise volume
after compression (VAC) values. They also projected the
clusters to the corresponding 2D image and computed three
different cluster-wise color features. Then they obtained a final
saliency distribution by combining cluster-wise VAC values
and color features together. Akman and Jonker [16] detected
saliency on 3D point clouds obtained by using time-of-flight
camera. They computed irregularities of surface normals at
each point in multiple scales which are then averaged together
to compute saliency. Shtrom et al. [17] computed geometric
saliency of large-scale 3D point clouds using a geometric fea-
ture descriptor of Fast Point Feature Histogram (FPFH) [22].
They computed low level and high level saliency maps based
on the dissimilarity of the feature descriptors derived from
different sets of neighboring points, and generated a final
saliency map by taking their weighted summation. Leroy et
al. [18] constructed supervoxel clusters at two different scales

Fig. 2: Relative angular variation associated with pi and pj
with respect to a local coordinate asystem.

of a 3D point cloud model, and then computed saliency at each
scale using color rarity in six different color spaces. The final
saliency map is obtained by applying Gaussian filtering to their
weighted summation. Yun and Sim [19] computed saliency
on LSC3DPCs. They constructed a supervoxel hierarchy and
computed the geometric and color features for each supervoxel
cluster using FPFH [22] and Lab color space, respectively.
They computed a saliency map at each scale using the local
contrast between neighboring clusters, and obtained a final
saliency map by averaging the saliency maps at multiple
scales.

III. PROPOSED METHOD

In general, the previous methods of saliency detection for
3D point clouds employed geometric features [16], [17] or
color features [18] only. Yun and Sim [19] employed both
of the geometric and color features together to estimate the
saliency distribution of LSC3DPCs, however they considered
local feature contrast mainly without considering global char-
acteristics of 3D scenes.

Random walk (RW) is a stochastic modeling of random
movement on a graph, which has been widely used for saliency
detection of images [23], videos [24], and 3D meshes [14]. In
this work, we devise a RW-based saliency detection method for
LSC3DPCs. We compute local geometric and color features
at each point using FPFH and Lab color representation,
respectively. We build a hierarchy of multiscale supervoxel
clusters using the octree structure, and we construct a fully-
connected graph at each scale where a graph node corresponds
to a supervoxel cluster and the edge weight is defined as
the difference of geometric and color features between the
connected clusters. We compute a cluster-wise saliency map at
each scale through RW simulation on the associated graph, and
then estimate a final saliency map by averaging the saliency
maps obtained at three different scales.

A. Feature computation

We also adopt FPFH [22] to extract local geometric features,
which is a 33-dimensional vector describing the angular dif-
ference of normal vectors associated with neighboring points.
Let Ωi be the set of neighboring points of a given point pi
located within the distance of dleaf from pi. To obtain FPFH,
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(a) (b)

Fig. 3: Comparison of saliency distributions (a) with the center
prior assumption and (b) without the center prior assumption,
respectively.

three different angular variations of (α, θ, φ) associated with a
pair of pi and its neighbor pj are described based on the local
coordinate system as shown in Figure 2. Then a simplified
point feature histogram SPFH(pi) is defined at pi as the
histogram of (α, θ, φ) computed over all the points belonging
to Ωi. Finally, FPFH hi at point pi is computed as

hi = SPFH(pi) +
1

|Ωi|
∑

pk∈Ωi

SPFH(pk)

|ψ(pi)− ψ(pk)|
, (1)

where ψ(p) is the position of the point p. We use Boulch et
al. [25]’s method for normal vector estimation which detects
corner regions of 3D model using the randomized Hough
transform and computes the normal vectors of points around
corner regions more precisely. We also normalize each feature
vector such that the sum of the elements in each vector
becomes 1.

We use the Lab color representation as local color features,
which reflects the perception characteristics of the HVS faith-
fully.

B. Supervoxel clustering

A single LSC3DPC model is usually composed of several
millions of points, and hence point-wise saliency computation
often fails to capture global saliency of 3D scene while
yielding huge computational complexity. We partition an input
LS3DPC model into local supervoxels and estimate saliency
at each supervoxel cluster. We first construct an octree [26]
associated with an input LS3DPC model. In order to adaptively
divide an LSC3DPC model into octree nodes according to the
geometry of a captured target scene, we set the side length of
the leaf node, dleaf, to 8cm for indoor scenes and to 2.5% of the
height of the tallest structure, e.g., building, for outdoor scenes,
respectively. Then we select the three consecutive levels of the
octree, where the side lengths of nodes are 2, 4, and 8 times
larger than that of the leaf node. At each selected scale, we
perform the supervoxel clustering [27].

C. Graph Construction

At each scale, we construct the fully-connected graph
G(N , E) where each node ni ∈ N corresponds to each
supervoxel cluster ci, and each edge eij ∈ E connects two

nodes ni and nj . We define the features at each supervoxel
cluster as the average FPFH and the average color of all the
points within the cluster. We determine the weight wij for
each edge eij in G(N , E) such that wij becomes large when
ni is highly distinct from nj based on the center-surround
contrast. Specifically, we estimate the geometry dissimilarity
δgeo(ci, cj) between two clusters ci and cj by computing
the dissimilarity of the corresponding FPFHs using histogram
intersection kernel [28].

δgeo(ci, cj) = 1−
33∑
k=1

min{Hi(k),Hj(k)} (2)

where Hi and Hj are the FPFHs defined at ci and cj ,
respectively, and H(k) denotes the k-th element of H. Note
that δgeo(ci, cj) has a high value when two histograms are
dissimilar to each other. We also define the color dissimilarity
δcol(ci, cj) between ci and cj as

δcol(ci, cj) = ‖Ii − Ij‖ (3)

where Ii and Ij are the Lab colors of ci and cj , respectively.
Considering both of the geometry and color dissimilarities,

we design an edge weight as

wij = 1− exp

(
−ρ

δgeo(ci, cj)

β · δgeo, max
− (1− ρ)

δcol(ci, cj)

β · δcol, max

)
(4)

where δgeo, max and δcol, max denote the maximum values of
δgeo(ci, cj) and δcol(ci, cj), respectively. We empirically set
β = 0.11 and ρ = 0.5. Note that, as did in [14], the edge
weight wij does not consider the Euclidean distance between
two clusters ci and cj , since the center-prior assumption that
has been widely used in many graph-based saliency detection
techniques for 2D images [29], [30] does not hold for 3D
models. Figure 3 compares the saliency maps of ‘Korean
house’ model obtained with and without the center-prior
concept, respectively. We see that the saliency map with the
center-prior assumption in Figure 3(a) highlights non-salient
floor regions as salient. On the contrary, the resulting saliency
distribution in Figure 3(b) shows that the proposed weight de-
sign without center prior assumption captures visually salient
regions faithfully.

D. Saliency detection

In RW simulation, we regard a graph node is more salient
where a random walker visits the node more frequently.
Therefore, we design a transition matrix P of the Markov
chain such that each (j, i)th element P(j, i) is given by

P(j, i) =
wji∑
j wji

. (5)

Note that P(j, i) represents the transition probability that the
random walker moves from ni to nj , and thus the sum of all
outgoing probabilities from a certain node becomes 1. G is a
fully-connected graph, and thus P is irreducible, which results
in a unique steady-state distribution π satisfying

π = Pπ. (6)
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(a) (b)

Fig. 4: Pre-processing of false point removal. (a) The raw ‘Library’ model with noisy falsely detected points which was used
in the existing method [19]. (b) The pre-processed ‘Library’ model by removing false points which was used in this paper.
The bounding boxes are shown in red.

In addition, since the transition matrix P is derived from an
undirected graph G, π satisfies a detailed balance with P and
we get a closed-form solution for π(i), the i-th element of
π [31] given by

π(i) =

∑
j wji∑

j

∑
k wjk

. (7)

Then the normalized π(i) is served as a saliency value si for
the cluster ci.

si =
π(i)− πmin

πmax − πmin
(8)

where πmax and πmin denote the maximum and the minimum
values of π(i)’s, respectively. We obtain three saliency distri-
butions of supervoxel clusters at three scales, respectively, and
estimate the final saliency map by taking the average saliency
value of the three saliency maps.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed saliency
detection method on six LSC3DPC models acquired by using
a 3D terrestrial LiDAR scanner. We also provide the resulting
saliency distributions of the proposed method compared with
that of the existing method [19].

A. Data acquisition

We generate six LSC3DPC models captured by a 3D
terrestrial LiDAR scanner, RIEGL VZ-400 [32], with angular
resolutions from 0.06◦ to 0.08◦. In general, raw point clouds
acquired by LiDAR usually contain lots of noisy outlier points.
Figure 4 (a) shows the raw data of ‘Library’ model which
was used in the previous method [19]. We see that falsely
generated noisy points are distributed in empty space along
the radial directions from the location of scanner, which cause
an inefficient and unbalanced bounding box to include the

raw LSC3DPC model as depicted in red. The false points
distributed over unnecessarily large space are also regarded
as true points in saliency detection, and therefore we often get
unreliable saliency distributions. To alleviate this drawback,
we remove such noisy outlier points from the raw point clouds
as shown in Figure 4(b), and use the pre-processed LSC3DPC
models as our experimental dataset in this work. We see that
the resulting bounding box in Figure 4(b) effectively includes
valid points, which means that the size of the bounding box
can be served as a good reference to figure out the effective
range of captured target 3D scene.

B. Multiscale saliency estimation

Figure 5 shows the saliency maps estimated at three dif-
ferent scales. The saliency maps at coarse scales capture
relatively large local areas of salient objects such as the black
carrier in ‘Room,’ the red wall and the book-return machine in
‘Library,’ the dark floors in ‘Parking lot,’, and the whole area
of the door in ‘Korean house.’ In contrary, the saliency maps
obtained at fine scales detect locally detailed features, e.g., the
door lock of the door in ‘Room,’ the speaker in ‘Library,’ and
the roof in ‘Korean house.’ The final saliency maps shown in
the last column are obtained by averaging the three hierarchical
saliency maps obtained at different scales, where we see that
both of the global saliency and the local details in LSC3DPCs
are detected faithfully.

C. Comparison with existing method

We compare the performance of the proposed method with
that of Yun and Sim’s method [19] which is the only saliency
detection method for LSC3DPCs using geometry and color
features together. Note that, as we explained in Section IV-A,
we regenerate the test dataset of LSC3DPCs by removing false
points from the LSC3DPC dataset used in [19]. Therefore,
when using the same parameters reported in the paper [19],
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(a) (b) (c) (d) (e)

Fig. 5: Multiscale saliency distributions obtained by the proposed method. (a) Input LSC3DPC models. (b) Coarse-scale saliency
maps. (c) Medium-scale saliency maps. (d) Fine-scale saliency maps. (e) Final saliency maps. From top to bottom, ‘Room,’
‘Classroom,’ ‘Library,’ ‘Parking lot,’ ‘Korean house,’ and ‘Dormitory.’

the resulting saliency maps may exhibit undesirable results
which are different from the results in their paper. For fair
comparison, we changed several parameters of the existing
method [19] to make the resulting saliency maps look similar
or better to that shown in their paper.

Figures 6 and 7 compare the resulting saliency maps of
the proposed method and [19]. We see that [19] assigns
relatively high saliency values to lots of non-salient regions
such as the chairs in ‘Classroom,’ the floors in ‘Korean
house,’ and the forests in ‘Parking lot’ and ‘Dormitory.’ In
particular, [19] often fails to capture the relative importance of

salient scene structures yielding similar geometric features to
the neighbors but different color features from the neighbors,
for example, the red wall in ‘Library’ and the white boards
in ‘Classroom.’ Moreover, [19] exhibits limited performance
to highlight globally salient structures completely such as the
people in ‘Room’ and ‘Classroom,’ the red wall and the stair
in ‘Library,’ the roof in ‘Korean house,’ and the buildings in
‘Dormitory.’ On the other hand, the proposed method faithfully
detects the globally salient regions, e.g., the people in ‘Room,’
‘Classroom,’ and ‘Parkinglot’, the cars and the white storage
tanks in ‘Parking lot,’ the red wall in ‘Library,’ the houses in
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(a) (b) (c)

(d) (e) (f)

Fig. 6: Comparison of resulting saliency maps obtained by using Yun and Sim’s method [19] and the proposed method, visualized
in bird-eye view. Input LSC3DPC models (top), the saliency maps obtained by using Yun and Sim’s method (middle), and the
saliency maps obtained by using the proposed method (bottom). (a) ‘Room,’ (b) ‘Classroom,’ (c) ‘Library,’ (d) ‘Parking lot,’
(e) ‘Korean house,’ and (f) ‘Dormitory.’
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(a) (b)

(c) (d)

(e) (f)

Fig. 7: Detailed comparison of saliency distributions. Input LSC3DPC models (top), the saliency maps obtained by using Yun
and Sim’s method [19] (middle), and the saliency maps obtained by using the proposed method (bottom). (a) ‘Room,’ (b)
‘Classroom,’ (c) ‘Library,’ (d) ‘Parking lot,’ (e) ‘Korean house,’ and (f) ‘Dormitory.’
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‘Korean house,’ and the buildings in ‘Dormitory,’ as well as
the local details such as the projector and the boundaries of the
white boards in ‘Room’ and ‘Classroom,’ and the roof patterns
and the pillars of the house in ‘Korean house.’ In addition, the
proposed method provides more smooth and natural saliency
distributions, since we evaluate the cluster-wise saliency values
using RW simulation where the representative features of a
cluster are computed as the average features of all the points
in the cluster.

V. CONCLUSIONS

In this paper, we proposed a RW-based multiscale saliency
detection algorithm for LSC3DPCs. We first clustered an input
point cloud at three different scales, and extracted geometric
features of FPFH and Lab color features for each cluster. We
constructed a fully-connected graph of clusters at each scale,
respectively, where the edge weights are defined by evaluating
the dissimilarities of geometry and color features between the
clusters. We performed RW simulation on the graphs at three
different scales, respectively, which are then averaged together
to yield a final saliency distribution. Experimental results
demonstrated that the proposed method successfully detects
globally salient scene structures as well as locally detailed
geometric and photometric features in LSC3DPCs. Our future
work includes the generation of ground truth saliency for
LSC3DPCs based on the perception characteristic of HVS.
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