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Abstract—Mammography is the general way for breast cancer 

screening worldwide. However, the amount of Negative breast 

cases is always more than that of Positive ones. It results in 

radiologists spend much time on the Negative mammograms in 

the earlier period of screening. This paper introduces a method 

to assess the risk of breast lesions by two-category BI-RADS. 

Meanwhile, this method finds out the Positive cases before the 

Negative ones. First, the detection module finds breast lesions 

and generates confidence scores to quantify the severity of 

malignant lesions. Subsequently, the analytics module performs 

a two-category BI-RADS classifier and then predicts the priority 

of the mammogram pre-screening based on the multi-decision 

framework. The experiment results demonstrate that the 

proposed method achieves higher accuracy of 76% than the 

compared approaches in two-category BI-RADS classification, 

and advances the mammogram pre-screening by the 15% 

number of breast cases at least. 

I. INTRODUCTION 

Breast cancer is one of the leading illnesses causing 

women's death worldwide. According to the reports [1], the 

patient's five-year survival rates in Stage-0 and Stage-1 are 

approximate to 100% after diagnosing breast cancer. In Stage-

4, the five-year survival rate decreases to 22%. In Taiwan, the 

government offers 0.86 million women for mammogram 

screening every year. It is helpful to find suspicious abnormal 

breast tissues and then diagnose breast cancer early. However, 

breast cancer screening rate over 45-year-old women in 2017 

was only 39.8% in Taiwan [2], it was much lower than 70% 

in the United States [3], 74% in the United Kingdom [4], and 

83.1% in Republic of Korea [5]. 

The general breast imaging is mammography that acquires 

breast image using a low dose X-ray. Subsequently, approved 

radiologists screen mammograms and then find suspicious 

abnormalities, e.g., mass, calcifications, architectural 

distortion, asymmetry. However, some factors, such as plenty 

of mammograms, personal skills, and physical fatigue, result 

in miss-recognition in screening. Moreover, mammogram 

screening is a time-consuming task. For solving the problems, 

computer-aided detection (CADe) system was developed for 

assisting radiologists in mammogram screening. Recently, 

researchers developed breast lesion detections based on 

convolutional neural network (CNN), e.g., ResNet, DenseNet, 

MobileNet, VGG. In [6], Agarwal et al. proposed a method 

using pre-trained deep learning for mass detection. In [7], Xi 

et al. used VGG and ResNet for detecting mass and 

calcifications. For distinguishing malignant tissues from 

benign ones, Dhunge et al. [8] presented a ResNet-based 

method, and Gardezi et al. [9] developed a VGG-based 

method. 

American College of Radiology (ACR) designed a quality 

assurance tool, Breast Imaging-Reporting and Data System 

(BI-RADS), which standardizes reporting for assessing the 

risk of developing breast cancer by seven categories [10]. 

This system is available for mammography, ultrasound, and 

magnetic resonance imaging (MRI). In general, radiologists 

assess the BI-RADS of a breast case over multiple 

mammograms with various view positions and literalities. The 

final decision-making depends on the highest-risk breast 

lesion. Therefore, BI-RADS assessment is a challenging task, 

and it highly relays on radiologist's medical professional skills 

and experience. 

Deep learning was applied to lesion detection and BI-

RADS assessment. In [11], Domingues et al. presented a 

method for classifying BI-RADS of breast cancer using a 

deep classifier where introduced data augmentation and multi-

scale enhancement for performance improvement. In [12], 

Shen et al. proposed an end-to-end training approach in the 

deep learning algorithm. They assign images with BI-RADS 1 

and 2 as the negative and images with BI-RADS 4, 5, and 6 as 

the positive. Another BI-RADS assessment depends on text 

analytics. Castro et al. [13] developed a natural language 

processing system to extract BI-RADS from radiology reports, 

and similar work was addressed in [14] by Banerjee et al. 

In this paper, we propose a method for improving the 

performance of mammogram screening, and this method 

consists of the detection module and the analytics module. 

First, the detection module performs to breast cases for 

finding mass and calcifications, which is realized based on 

CNN-based classifications, such as DenseNet-121 [15] and 

MobileNet-V2 [16]. The breast case contains four 

mammograms with two view positions in the left and the right 

breast. Those view positions are the Mediolateral-Oblique 

(MLO) and the Cranio-Caudal (CC) views. The proposed 

detection acquires Class Activation Map (CAM) of an 

examined mammogram, and then a threshold discriminator 

applies to the CAM to detect breast lesions. 
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For the analytics module, we implement two tasks: (1) two-

category BI-RADS classification, and (2) priority prediction 

for mammogram pre-screening. Acquire confidence scores of 

detected lesions, the proposed method analyzes those scores 

on a multi-decision framework (MDF) and then determines 

two-category BI-RADS of a breast case.  For two-category 

BI-RADS, we assign the initial BI-RADS 1 and 2 to the 

Category-0 (named Negative), and the initial BI-RADS 0, 3, 4, 

and 5 to the Category-1 (named Positive), which is similar to 

[12]. Generally speaking, Negative cases are always more 

than Positive ones. It results in radiologists spent much time 

on the Negative mammograms in the earlier period of 

screening. Therefore, the second task is to predict the priority 

of mammogram screening as well as to find out the Positive 

cases. The priority prediction analyzes confidence scores of 

high-risk lesions prediction based on MDF; then, it adjusts the 

sequence of breast cases according to the sorting of 

confidence scores. The rest of this paper is organized as 

follows: the multi-decision framework and the proposed 

method are introduced in Section II and Section III, 

respectively. The experiment results are revealed in Section 

IV, and the conclusion will be drawn in Section V. 

II. MULTI-DECISION FRAMEWORK 

The general decision-making approach uses a single 

classifier, such as Support Vector Machine (SVM). It leads to 

classification performance depends on a single classifier’s 

ability. In this paper, we develop a decision-making method 

based on a multi-decision framework (MDF), and it applies to 

two-category BI-RADS classification and priority prediction 

for mammogram pre-screening. MDF simulates consensus 

decision-making so that we regard the output of MDF as the 

consensus result. Fig.1 is the MDF that consists of multiple 

decision operators at every stage except for the final one, 

where Dl
i denotes the ith decision operator at the lth stage. 

The inputs of the current decision operator are the outputs of 

the previous decision operators or the initial data. For 

example, the inputting data of D3
1 carries the initial data and 

the results of D1
7 and D2

1. Furthermore, the types of decision 

operators include a classifier, a regressor, and a voting system. 

In this paper, our method implements regressions in the 

decision operators at the first L-1 stages. Those regressions 

include Support Vector Regression (SVR), Gaussian Process 

Regression (GPR), and ensemble bagging (BAG). 

III. THE PROPOSED METHOD 

Detection module and analytics module are two phases 

formed the proposed method. In the detection module, 

detecting breast lesions on mammograms utilizes the existing 

CNN-based approaches. Subsequently, the analytics module 

executes two tasks: implementation of two-category BI-

RADS classification and priority prediction for mammogram 

pre-screening. The following sections will introduce the 

details of those modules. 

A. Detection Module 

In this study, we focus on two kinds of breast lesions, 

namely mass and calcifications. The proposed detection 

module is realized based on classification. Fig.2(a) illustrates 

the general architecture of a CNN-based classifier with two 

categories. During the training process, inputting data is 

annotated as either Category-0 or Category-1 and is 

augmented by mirroring, rotating, scaling, and shifting. 

TABLE I lists the data types for those two categories. For the 

mass classifier, Category-0 and Category-1 represent non-

mass and mass, respectively. Non-mass include normal tissue 

and calcifications. For the calcifications classifier, Category-0 

and Category-1 represent non-malignant calcifications and 

malignant calcifications, respectively. Similarly, non-

malignant calcifications include normal tissue, mass, and 

benign calcifications. 

Subsequently, a lesion detector is the modification of the 

trained classifier by removing global averaging pooling, fully 

connected layer, and Softmax layer. Fig.2(b) displays the 

architecture of the CNN-based lesion detector. The detector 

computes Class Activation Map (CAM) of an examined 

mammogram, such as the two examples in Fig.3. Analyze a 

mammogram with its CAM, lesions are at the red area that 

consists of pixels with high CAM values. Therefore, the 

proposed method executes a thresholding operation on the 

CAM for detecting lesions. The threshold τ is estimated by, 
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Fig.1. Multi-decision Framework 

TABLE I. Types of data for two categories 

Category Mass Calcification 
Two-Category 

BI-RADS 

0 
Non-

mass 

Non-malignant 

Calcification 

Negative 

(BI-RADS 1 & 2) 

1 Mass 
Malignant 

Calcification 
Positive 

(BI-RADS 0, 3, 4 & 5) 
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where Sj denotes as a set of CAM values with Category-j, and 

j={0, 1}. The denotations Sj(i) and Nj are, respectively, the ith 

CAM value and the size of Sj. Finally, our detector retains the 

pixels whose CAM values are higher than τ, and further 

groups those pixels as lesions. 

The architectures of the mass detector and the first 

calcifications detector refer to DenseNet-121. Furthermore, 

our method implements the second calcifications detector 

using MobileNet-V2. Let ΩD and ΩM be the detected areas of 

calcifications by the first and the second detectors. An 

ensemble operation intersects ΩD and ΩM to generate the final 

detection result ΩF, that is ΩF=ΩD∩ΩM. As ΩD does not 

overlap ΩM, both of them are eliminated. The subjective of 

the ensemble operation is to filter out false-positive lesions as 

well as to improve detector performance. 

B. Analytics Module: Confidence Score Acquiring 

After lesion detection, we establish an analytics module to 

implement two tasks, including two-category BI-RADS 

classification, priority prediction for breast pre-screening. 

First, training a primary classifier based on DenseNet-121, 

Fig.2(a) illustrates the architecture of this classifier. As a 

lesion is BI-RADS 1 or 2, it is assigned to the Category-0 

called Negative case. On the contrary, as a lesion is BI-RADS 

0, 3, 4, or 5, it is assigned to the Category-1 called Positive 

case.  

During the training process, inputting data, a set of 

224224-sized lesions, is annotated by either Category-0 or 

Category-1 in advance. Then, image augmentation applies to 

the lesions by mirroring, rotating, scaling, and shifting. After 

training the model, we acquire a BI-RADS inferentor that is 

the modification of the primary classifier by removing 

Softmax layer. Fig.2(c) displays the architecture of this 

inferentor. During the inference process, the inferentor 

generates a confidence score representing the severity level of 

an examined lesion. In this work, our method establishes two 

BI-RADS inferentors of mass and calcifications. 

C. Analytics Module: Two-category BI-RADS 

Classification 

In general, radiologist screens four mammograms of a 

breast case at two view positions in left and right breasts. 

Those view positions are the craniocaudal (CC) view and the 

mediolateral oblique (MLO) view. Then, they determine the 

BI-RADS of the breast case. In this work, our method 

performs the lesion detector on mammograms in advance. 

Subsequently, the BI-RADS inferences apply to the detected 

lesions and generate confidence scores. Finally, find the 

maximum confidence scores of lesions over four 

mammograms of a breast case, xmass and xcalc are denoted as 

the maximum confidence scores of the mass and the 

calcifications, respectively. Here, we aim to establish a two-

category BI-RADS classification by analyzing xmass and xcalc. 

First, xmass and xcalc are combined to form a vector xcomb, and 

then there are three types of data. Fig.4 illustrates the block 

diagram of the proposed two-category BI-RADS 

classification based on MDF. In the first stage of MDF, the 

decision operator consists of a regressor and a thresholding 

discriminator. A voting system applies to the outputs of three 

thresholding discriminators and generates a final category in 

the final stage of MDF. 

During regressor training, the target of a regressor is the 

initial two-category BI-RADS. The function of the regressor 

is to generate a prediction score yi, where 0≤yi≤1 and i{mass, 

calc, comb}. During BI-RADS inferencing, thresholding 

discriminator applies to a prediction score yi and then 

generates a predicted two-category BI-RADS ki, which is 

defined as, 
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where the threshold τi is estimated by, 
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where tpt and fpt denote the true positive rate and the false 

positive rate. Those values are computed according to the 

prediction scores under the threshold t, which are defined as 

follows, 

 
(a) 

 
(b) 

 
(c) 

Fig.2. Architectures of (a) CNN-based classification, (b) CNN-
based detection, and (c) CNN-based BI-RADS inference 

  
(a) 

  
(b) 

Fig.3. Examined mammograms and CAMs for (a) mass 

detection, and (b) calcification detection 
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where N is the total number of prediction scores lager than t. 

The denotation K is the initial two-category BI-RADS, and 

K={0,1}. Thus, the decision operator is analogous to a 

classifier. In the final stage, the voting system makes a 

consensus, and the final category k̂  is determined according 

to, 
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In both (3) and (8), the 1-value and the 0-value are, 

respectively, the Category-0 and the Category-1 of two-

category BI-RADS. Those categories are defined in the 

primary classifier addressed in Section III.B. 

D. Analytics Module: Priority Prediction for Mammogram 

Pre-screening 

The other task is to predict the priority of a breast case for 

mammogram pre-screening. In general, the amount of 

Negative breast cases is more than that of Positive ones. It 

results in radiologists spent much time on Negative breast 

cases in the earlier period of screening. For assisting 

radiologists to improve the performance of screening, the 

proposed priority prediction finds out Positive cases before 

Negative ones. Fig.5 illustrates the block diagram of a priority 

prediction based on MDF. 

Three types of data, i.e., xmass, xcalc, and xcomb, enter three 

decision operators. Each decision operator is the combination 

of three micro-operators in the first stage of MDF. The micro-

operator further consists of a regressor and a sorting operation. 

Those three regressions in the decision operator are SVR, 

BAG, and GPR. During regressor training, the target of a 

regressor is the initial two-category BI-RADS. The regressor 

generates a prediction score yj
i, where i{mass, calc, comb} 

and j{SVR, BAG, GPR}. The index sj
i is derived by sorting 

yj
i in descending order. Therefore, a decision operator outputs 

three indices, and there are nine indices generated in the first 

stages, i.e., SVR

masss , BAG

masss , GPR

masss , SVR

calcs , BAG

calcs , GPR

calcs , SVR

combs , BAG

combs , GPR

combs . 

In the final stage of MDF, the decision operator selects the 

median index smed among those nine indices. The final index 

sfinal is acquired by sorting smed of all breast cases in ascending 

order, and it determines the priority of mammogram pre-

screening. 

IV. THE EXPERIMENT RESULTS 

In this work, we emphasized on two tasks, i.e., two-

category BI-RADS classification, and priority prediction for 

mammogram pre-screening. There were 531 breast cases 

acquired from the cooperated hospital. Every breast case 

included four mammograms at two view positions in the left 

and the right breasts. The details of the experiments and the 

results are described in the following. 

A. Two-category BI-RADS Classification 

In the first experiment, the proposed method compared 

with the existing approaches in the two-category BI-RADS 

classification. First, the lesion detectors introduced in Section 

 

Fig.4. Block diagram of two-category BI-RADS classification 
based on MDF 

 

Fig.5. Block diagram of priority prediction for breast pre-

screening based on MDF 
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III.A performed to the mammograms for finding mass and 

calcifications. Subsequently, our BI-RADS inferentor 

estimated the maximum confidence scores of the detected 

mass and calcifications. A portion of 531 breast cases was 

utilized for regressors training (named training data), and the 

rest cases were the testing data. Let R be the data rate of the 

total number of the training data to that of the testing data. For 

each R, we implemented 500 epochs and selected various 

number of breast cases for training the regressor/classifier in 

the two-category BI-RADS classification, where R={0.11, 

0.25, 0.33, 0.43, 0.5, 0.67, 1, 1.5, 2, 2.33, 4}. Finally, the 

performance was computed by averaging the accuracies of the 

500 epochs, and the accuracy was computed by, 

 



M

j

jj Kk
M

accuracy
1

,
1             (9) 

 


 


otherwise   ,0

 if   ,1
,

jj

jj

Kk
Kk          (10) 

where kj and Kj represent the predicted two-category BI-

RADS and the ground truth of the jth case, and M is the 

number of the testing cases. The proposed two-category BI-

RADS classification utilized SVR in the MDF. Furthermore, 

our method compared to the five existing approaches, 

including four learning-based approaches and a thresholding 

one. Those learning-based approaches were SVM, naïve 

Bayes, random forest, and BAG, which were executed via a 

single classifier. The thresholding approach determined the 

two-category BI-RADS according to, 
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or   if   ,1 calccalcmassmassTH
 xx
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where τmass and τcalc are, respectively, the estimated thresholds 

for xmass and xcalc. Fig.6 illustrates the average accuracies of 

two-category BI-RADS classification against various data 

rates by six methods. It shows that our method achieves the 

highest accuracy over the six methods do, and the best 

accuracy is 76%. Therefore, the experiment demonstrates that 

MDF better than a single classifier. 

B. Priority Prediction for Mammogram Pre-screening 

In the second experiment, we focused on the priority 

prediction of pre-screening by two methods and three states. 

The ideal state implies that all Positive cases are found before 

Negative ones. On the contrary, finding all Negative breast 

cases in advance is the worst state. The initial state is to 

analyze the initial sequence of breast cases without using any 

process. The proposed method compares to the max-sorting 

approach that sorts the breast cases in descending order 

according to the maximum score xmass and xcalc. Similarly, the 

data rate R controls the numbers of training data and testing 

data over the 531 breast cases. For each R, we implemented 

500 epochs and selected various breast cases for training the 

regressor in the priority prediction, where R={0.11, 0.25, 0.33, 

0.43, 0.5, 0.67, 1, 1.5, 2, 2.33, 4}. 

Under the condition of finding a p% number of Positive 

cases, we record the total number of pre-screening cases Mi of 

using the ith method, where 0<p<100, and i{ideal, worst, 

initial, max-sort, ours}. Then, the reducing rate ri of the ith 

method is computed by, 

 

Fig.6. Average accuracies of two-category BI-RADS 

classification against various data rates by six methods 

 

Fig.7. Performance evaluation for priority prediction by two 
methods and three states against various R under the condition of 

p=75 

 

Fig.8. Normalized cumulative curves for finding Positive breast 
cases by two methods and three states under the condition of 

R=1 
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where M is the total number of testing cases, and Minitial 

represents the total number of pre-screening breast cases in 

the initial state. Fig.7 shows the reducing rates for priority 

prediction against various data rates under the condition of 

p=75. Fig.8 illustrates the normalized cumulative curves for 

finding Positive cases by two methods and three states under 

the condition of R=1. Therefore, there were 265 testing cases 

included 138 Positive cases and 127 Negative ones. TABLE 

II lists the average reducing rates of priority prediction against 

various p. The experiment result demonstrates that our 

method achieved better performance than the worst state, the 

initial state, and the max-sort did. Ours reduced 16%~22% 

number of pre-screening breast cases compared to the initial 

state. The problem of the max-sort approach is that two 

confidence scores (namely xmass and xcalc) are not standardized. 

It results in the sorting process refers to one of the confidence 

scores and neglects the other. The proposed method generates 

the consensus by fusing multiple decisions, and it prevents the 

problem of the max-sort approach depend on one of the 

confidence scores. Fig.9 displays the visualization of priority 

prediction for two methods and three states, where the red and 

the green bars represent Positive and Negative cases, 

respectively. The number at the bottom of the figures is the 

index of mammogram pre-screening. While an approach finds 

Positive cases before Negative ones, it leads to most red bars 

appear at the left portion of the figure, such as the ideal state. 

The experiment result demonstrates our method improves the 

performance of mammogram pre-screening better than the 

initial state. 

V. CONCLUSION 

For assisting radiologists in mammogram screening, this 

paper introduces a method based on a multi-decision 

framework to classify the risk of breast lesions into two 

categories based on BI-RADS. Meanwhile, the proposed 

method finds out the Positive breast cases before the Negative 

ones; therefore, it predicts the priority of mammogram pre-

screening. The experiment results demonstrate that our 

method achieves the highest accuracy of 76% over six 

methods in two-category BI-RADS classification. 

Furthermore, the proposed priority prediction advances the 

mammogram pre-screening by reducing 16%~22% number of 

breast cases. 
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