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Abstract— Discriminative correlation filter (CF) based visual 
trackers achieves outstanding performance with the hand-
crafted feature in visual tracking. In this work, based on the 
discriminative correlation filter, we propose a new Spatial-
Temporal regularized correlation filters with advanced state 
estimation (CFASE) to achieve more significant tracking 
performance. First, we propose a new method to estimate 
correlation filters more precisely using prediction from the 
previous two filters, considering the drift during the tracking 
process. Second, we train two correlation filters models to obtain 
scale estimation and object location, respectively. The separated 
two correlation filter models help to reduce the adverse effects of 
scale changes on object location. Third, our tracker introduces 
average peak-to-correlation energy (APCE) to evaluate the 
accuracy of scale estimation and object location. Experimentally, 
the proposed tracker (CFASE) achieves outstanding and real-
time performance for the challenging benchmark sequence 
(OTB2013, OTB2015, and TC128). 

I. INTRODUCTION 

Visual tracking is one of the fundamental topics in 
computer vision. When the information on an arbitrary object 
from the first frame is given, the temporally changing object 
in the remaining image sequences is automatically detected. 
Visual tracking has been applied to UAV, self-driving, human-
computer interaction, and video surveillance by the right of 
outstanding performance. It remains enormous challenges 
such as deformations, fast motions, occlusions, background 
clutter, and scale variations, and so on.  

Correlation filter (CF) is one of the most successful 
frameworks in visual tracking. Trackers based on correlation 
filtering have significant speed and achieve outperformance in 
tracking. Henriques et al. proposed a kernelized correlation 
filter tracker (KCF) [2] becomes one of the best tracking 
baselines with state-of-the-art performance. KCF utilizes a 
cyclic sliding window operation to obtain a large number of 
samples, which improves the robustness of tracking filters. 
This method cleverly uses fast Fourier transform (FFT) to 
convert correlation operations in the spatial domain to dot 
product in the frequency domain, which greatly reduces the 
calculation burden. In order to improve the accuracy of 

 

 
           CFASE (Ours)             STRCF 
Fig. 1 Qualitative evaluation of CFASE and STRCF on the 

Girl2(upper) and Soccer (lower) videos sequence with occlusion and 
background clutter, respectively. CFASE obtains outperformance than 

STRCF on occlusion and background.  
 

trackers based on correlation filtering, M. Danelljan proposed 
discriminative scale-space tracker (DSST) [3] and Yang Li 
proposed a scale pool technique [8] to solve scale variation, 
respectively. In order to take full advantage of the information 
of objects, conventional handcraft features (HOG and CN) are 
introduced to keep the robustness of model [21, 22].  

There are still serious limitations for trackers based on 
correlation filters that obtain outperformance in visual 
tracking. As discussed above, trackers based on correlation 
filtering use a cyclic sliding window operation to obtain a set 
of training samples, so the training and detection samples 
have periodicity in the frequency domain; this periodic 
assumption produces boundary effects. Since the object 
search area of trackers based on correlation filtering is 
constrained, expansion of the search area makes no sense at 
all, resulting in a limited performance in tracking. Moreover, 
the boundary effects also reduce the distinguishability of the 
model. M. Danelljan proposed Spatially Regularized 
Discriminative Correlation Filters (SRDCF) [26] to solve the 
boundary effects. SRDCF introduces penalize correlation 
filter coefficients in learning and uses the iterative Gauss-
Seidel method to the optimal formulation. However, the 
optimization strategy increases the burden of calculation, 
undermining the real-time performance of the trackers based 
on correlation filtering. Based on SRDCF, Feng Li proposed 
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Spatial-Temporal regularized correlation filters (STRCF) [4]. 
This method incorporates both spatial and temporal 
regularization into the correlation filtering framework to 
improve the robustness of the appearance model. Moreover, 
this method applies the alternating direction method of 
multipliers (ADMM) to the optimal formulation, achieving 
real-time performance in tracking. 

In this paper, we proposed a real-time outperformance 
tracker based on STRCF. The contributions of our method are 
as follows.  

First, we achieve a more precise estimation of the 
correlation filter by considering the temporal continuous 
change of correlation filters. While STRCF utilizes only one 
latest filter for the temporal regularization, our method 
predicts the current filter from two latest filers and applies the 
temporal regularization to the predicted one. Accordingly, our 
method can achieve a more precise estimation of the current 
filter. Moreover, the calculation additionally required for this 
improvement is sufficiently small. Thus, our new method is 
fast enough for real-time object tracking. 

Second, to reduce the adverse effects of scale variation on 
object location, we distinguish the process of scale estimation 
from object location and train the two correlation filtering 
models, respectively. Considering the calculation efficiency, 
the correlation filtering model of scale estimation only uses 
the HOG feature. At the same time, we introduce average 
peak-to-correlation energy (APCE) [28] to estimate the 
accuracy of the object scale.  

Finally, we develop the experiments on three challenging 
datasets: OTB-2013 [7] with 51 videos, OTB-2015 [15] with 
100 videos, and TC128 [1] with 128 videos. our method 
achieves obvious improvements compared to STRCF in some 
tracking attributes. As shown in Fig. 1, we can see our method 
achieves better performance for attributes as occlusion and 
background clutter. Furthermore, our method obtains 
outstanding performance compared to all the state-of-the-art 
trackers. 

II. RELATED WORK 

  Recently, discriminative correlation filters (DCF) make 
rapid progress in visual tracking. Some trackers based on 
discriminative correlation filters achieve great tracking results 
on different benchmarks. For example, KCF [2] obtains 
success on both speed and accuracy in tracking. Based on 
KCF, some state-of-the-art trackers appear. Although the 
advantages of CF trackers are circular samples and fast 
calculations, the disadvantage is also caused by circular 
samples. This brings boundary effects. CF trackers only use a 
limited search region, too large a search region will increase 
the negative impact of background information. 
  Hamed Kiani Galoogahi proposed learning background-
aware correlation filters (BACF) [6] to solve the unwanted 

boundary effects. BACF extracts an image search region to 
obtain more samples. To reduce the impact of negative 
samples, BACF only focuses on the circulant samples in the 
center area, the size of which is equivalent to the search field 
of the original CF trackers. In this way, BACF not only 
expands the search domain but also uses real samples while 
ensuring the circulant structure of samples. Unfortunately, due 
to the enforcement of a spatial constraint, BACF cannot 
efficiently solve correlation filter as KCF and must be solved 
in the spatial domain with the alternating direction method of 
multipliers (ADMM). However, BACF can still achieve real-
time and sharply increase the performance of CF trackers in 
object tracking. Despite the unwanted boundary effects, the 
discriminative correlation filters trackers compare favorably 
with deep learning trackers in the performance of tracking.  
  SRDCF was also proposed to solve the boundary effects 
like BACF. The difference between BACF and SRDCF is that 
SRDCF introduces a spatial regularization weight function to 
penalize the magnitude of the correlation filter coefficients 𝑤 
in learning. The value of the weight depends on the spatial 
locations. The closer to the center, the lower the coefficient, 
and the closer to the surrounding, the higher the coefficient. 
𝑤  reduces the negative influence of boundary effects. 
Therefore, discriminative correlation filters can be learned in 
larger image regions. The formulation of SRDCF as following.  
 
												𝑚𝑖𝑛𝒇 ∑ (∑ 𝑥*+,

+-. ∗ 𝑓+ − 𝑦*(
3 + ∑ (𝑤 ∙ 𝑓+(3	,

+-.
6
*-.      (1) 

 
Here, ∗  denotes circular convolution, ∙  denotes the 

Hadamard product. 𝑥*  denotes the samples with size of 
N×M, where each sample consists of 𝐷 feature maps. 𝑦* is 
the desired Gaussian-shaped label. 𝑤  is the spatial 
regularization weight, 𝑓 is the correlation filter. Although 
the boundary effects are solved, SRDCF uses the iterative 
Gauss-Seidel method to minimize Equation (1). This method 
reduces the efficiency of calculation, and the real-time nature 
of the trackers is sacrificed.  

III.  OUR APPROACH  

 Review STRCF 
  STRCF adopts the same methods as SRDCF to solve the 
boundary effects. Compared to SRDCF, STRCF considers 
both spatial and temporal regularization into the correlation 
filtering framework. STRCF is expressed as follow, 
 
											𝑚𝑖𝑛𝒇

.
3
‖∑ 𝑥:+,

+-. ∗ 𝑓+ − 𝑦‖3 + .
3
∑ ‖𝑤 ∙ 𝑓+‖3 + ;

3
‖𝑓 − 𝑓:<.‖3	,

+-.   (2) 
 

Here 	𝜇  is a regularization parameter, 𝑤  is the spatial 
regularization weight, 𝑓:<.  denotes the correlation filter 
obtained in the previous frame.  
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STRCF can get a perfect correlation filter model 𝑓 by 
minimizing Equation (2). Temporal regularization was used to 
prevent the corruption of the correlation filter model in each 
frame because the obtained filters are close to the previous 
one. STRCF develops the alternating direction method of 
multipliers (ADMM) to efficiently optimized formulation in 
which each sub-problem has the closed-form solution. 
Therefore, STRCF achieves real-time outperformance in 
tracking. 

 Consideration of Temporal State Change of Objects  
  STRCF solves the boundary effects with spatial-temporal 
regularization. As discussed in Equation (2), STRCF 
introduces temporal regularization into SRDCF and obtains 
the optimum correlation filter by minimizing this formula. 
Temporal regularization makes sure that the obtained 𝑓 is as 
similar as possible to the filter in the (t-1)-th frame, to prevent 
the corruption of the correlation filter, and it can also play a 
good role against occlusion. However, since STRCF only 
considers the correlation filter in the previous one frame, it 
cannot consider the continuous state change of the object. A 
new method is proposed here to predict the current filter from 
the previous two filters ft-1 and ft-2, and apply the 
regularization to the predicted filter so that the current filter 
can be close to the predicted filter. The predicted filter 		𝑓∗ is 
obtained as the following Equation (3) using a positive small 
value 𝛼.  

 
       				𝑓∗ = 𝑓:<. + 𝛼(𝑓:<. − 𝑓:<3)                 (3) 
 
Comparing to the temporal regularization of STRCF, the 
previous filter 𝑓:<. is replaced with the predicted filter		𝑓∗ in 
order to reflect the trends in change of the correlation filters 
from 𝑓:<3  to 𝑓:<. . This method can consider the state 
change of the object more effectively by replacing 𝑓:<. with 
𝑓∗. The new STRCF is expressed as follows. 
 
												𝑚𝑖𝑛𝒇

.
3
‖∑ 𝑥:+,

+-. ∗ 𝑓+ − 𝑦‖3 + .
3
∑ ‖𝑤 ∙ 𝑓+‖3 + ;

3
‖𝑓 − 𝑓∗‖3	,

+-.    (4) 
 
  The optimization process of STRCF is not changed. The 
robustness of temporal regularization is improved without 
increasing the burden of calculation. 

 New Scale Estimation 
Scale change is also one of the factors of the temporal state 

change of objects, and accurate scale estimation is required to 
avoid the influence of the scale change and get high tracking 
performance. STRCF adopts the same scale estimation (Scale 
Pool) as SAMF [8] in which the object is detected by the 
translation correlation filter on the multi-scale image regions, 
and the translation position and best scale with the largest 
response are obtained. Thus, the scale pool technology can 
detect the change of object location and scale variation.  

However, the largest response does not always correspond 
to the correct object location because of the state change 
around the object. To estimate the scale more precisely, a new 
method for scale estimation is proposed here. 

In the new method, the scale estimation filter is trained by 
HOG feature, and the object location filter is trained with 
hand-craft (HOG+CN) features. During the process of scale 
estimation, the best scale of the object is obtained as 𝑆CDE , 
and the object position as 𝑃𝑜𝑠CDE . This best scale is used to 
object location filter to obtain the object position as 
𝑃𝑜𝑠CDEIJK. Through different features, we can get two object 
positions. Under normal conditions, these two positions 
should be similar. While obtaining the best object position, 
we can use the distance 𝐷𝑖𝑠𝑡 between the two positions to 
judge the reliability of the scale.  

 
        		𝐷𝑖𝑠𝑡 = M(𝑃𝑜𝑠CDE − 𝑃𝑜𝑠CDEIJK)3        (5) 
 
To accurately estimate the scale, we also consider the 

change of the response map. In the method of discriminating 
the abnormality in object tracking, the average peak-to-
correlation energy (APCE) shows the fluctuation of response 
map and reflects the reliability of tracking to a certain extent; 
the larger the value of APCE is, the more reliable the tracking 
is. APCE is defined as 
 

       		𝐴𝑃𝐶𝐸 = ‖QRST<QRUV‖W

XYZ[(∑ (QU,]<QRUV)WU,] )
     (6) 

 
where 𝑹𝒎𝒂𝒙 , 𝑹𝒎𝒊𝒏 , and 𝑹𝒊,𝒋  denote the maximum, 

minimum, and the i-row j-column elements of response map.  
When 𝐷𝑖𝑠𝑡  is great and APCE is small, 𝑆CDE  is 

considered to be not reliable. Thus, the scale estimation 
method proposed here adopts the scale in the previous frame, 
if 𝐷𝑖𝑠𝑡 is greater than a threshold (𝐷𝑖𝑠𝑡 > 20) and APCE is 
less than a threshold (APCE < 0.3). 

IV. EXPERIMENTS  

  All the experiments are conducted on the Matlab R2020a 
platform, and a PC machine with an Intel (R) Core (TM) i7-
9700F CPU (3.00GHZ), 16GB memory. In the proposed 
method, the size of the search region is set to 5 times the size 
of the object. HOG features are used for scale estimation and 
HOG and CN are used for object location. The regularization 
parameter 𝜇 is set to 15 and 13 for location filter and scale 
estimation filter, respectively. In Equation (3), 𝛼 is set to 0.5 
and 0.2 for the location filter and scale estimation filter, 
respectively.   
  We offer comprehensive assessments to evaluate the 
performance of the proposed CFASE on OTB-2013, OTB-
2015 and Temple color 128 benchmark database. We also 
evaluate the effect of introducing the filter prediction in 
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Fig.2 Evaluation of different trackers with eight attributes on OTB-2015. 

 
temporal regularization as described in 3.2 and the advanced 
scale estimation as in 3.3 respectively on OTB-2013. To make 
orientation analysis about CFASE, we select eight attributes 
from OTB-2015 benchmark, to analyze the reliability of our 
method. 

 OTB-2013 and OTB-2015 

 
Fig.3 Success plot on OTB-2013 and OTB-2015, respectively. 

 
Table 1. Success and speed of top-5 trackers on the OTB-2015. The best two 
results are shown in red and blue fonts, respectively.  

     SRDCF   Staple    CFHA   STRCF   CFASE 
Success   0.597    0.579     0.571    0.654     0.681 
FPS      10.4     105.5     115.1    33.4      31.1 

   
  OTB-2013 and OTB-2015 contains 51, 100 video 
sequences, respectively. OTB benchmark database is 
annotated with 11 attributes to evaluate the performance of 
trackers, such as deformation (DEF), fast motion (FM), 
background clutters (BC), illumination variation (IV), motion 
blur (MB), scale variation (SV), in-plane rotation (IPR), low 
resolution (LR), occlusion (OCC), out of plane rotation 
(OPR), out of view (OV). Based on OTB benchmark, we 
compare our proposed tracker with nine state-of-the-art 
trackers (CSK [5], SRDCF [26], CFHA [29], Staple [25], 
SAMF [8], STRCF [9], DSST [3], KCFAMSR [17] and KCF 
[2]) by AUC (Area under the curve of success rate plots). As 
shown in Fig. 3, our method obtains a success score of 70.6% 
and 68.1% based on OTB-2013, OTB-2015, respectively. 
Compare to the baseline STRCF, our method achieves the 
improvement of 2.8% and 2.7% on OTB, respectively. As 
shown in Table 1, we show the success and speed of top-5 

trackers on the OTB-2015. CFASE achieves the best 
performance in calculation speed 31.1 fps compared with the 
rest of state-of-the-art trackers.   
  We show the evaluation of different trackers with eight 
attributes on OTB-2015 in Fig.2. Our method CFASE obtains 
better performance than other trackers in these attributes. 
Especially in challenge attributes such as background clutter, 
deformation, out of view and occlusion, our method obtains a 
gain of 3.7%, 3.4%, 3.7%, and 4.1% better than the second-
best tracker STRCF. This is mainly because we consider the 
predicted filter in temporal regularization and new scale 
estimation in STRCF. Since our method estimates the scale 
change more precisely, we can see that CFASE obtains an 
improvement of 2.9% over STRCF in attribute as scale 
variation. The results of the experiment demonstrate that the 
proposed method is more stable and efficient than STRCF. 
 

 
 

Fig.4 Success plots of STRCF, STRCF with Consideration of Temporal State 
Change of Objects ( STRCFctsco ), and Scale estimation filter 

( STRCFscale ) on OTB-2013. 
 

  Fig. 4 shows the effect of introducing the filter prediction 
and the advanced scale estimation respectively on OTB-2013. 
Both of them get a gain of 1.2% over STRCF. Especially, the 
burden of calculation does not increase in introducing filter 
prediction.  

 Temple color 128 
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Temple color 128 (TC128) contains a large set of 128 color 
sequences. Most modern trackers use color information, while 
OTB benchmarks have some grayscale images. It is not 
enough for some state-of-the-art trackers with color features 
to evaluate their performance on OTB, so we also conducted 
experiment of evaluation on Temple color 128 benchmark 
with CFASE, STRCF [9], MEEM [22], Struck [15], ASLA 
[11], VTD [19], CN2 [13], DFT [10], CSK [5], KCF [2].  
  In addition to the success scores, we use the precision 
scores. As shown in Fig. 5, our method obtains the 
outperformance both in precision plot and success plot on 
TC128.  
  Compared to STRCF, CFASE obtains a gain of 2.1% and 
2.9% in precision scores and success scores, respectively. 
Here the precision score indicates the ratio of the frames in 
which the distance between estimated locations and the 
ground-truth positions are within 20 pixels. 
 

 
 

Fig.5 Precision plot and Success plot on TC128. 

V. CONCLUSION 

  In this work, we propose a novel Spatial-Temporal 
regularized correlation filters with advanced state estimation 
(CFASE) based on CF to obtain excellent tracking 
performance. In this method, filter prediction is newly-
introduced into temporal regularization to consider 
continuous temporal change of objects, and advanced scale 
estimation is introduced to estimate the scale more precisely. 
In the advanced scale estimation, two correlation filter models 
are trained respectively to obtain scale estimation and object 
location. We also introduce APCE to estimate the accuracy of 
scale and position from scale estimation filter and location 
filter, respectively. By experiments, we demonstrate CFASE 
gets more robust performance than STRCF and achieves 
outstanding and real-time performance for the challenging 
benchmark sequences. How to adjust the parameters utilized 
in CFASE appropriately for the video type is for further 
research.  
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