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Abstract—This paper presents a still image coding method
using deep learning-based image completion. Deep learning-based
image completion can restore skipped areas of images in high
quality. When we introduce image completion to image coding,
it is possible to reduce the coded-bit amount compared with
normative codec-based methods by replacing complex areas,
such as textures, with simple signal values at the encoder
and completing them at the decoder. However, there is no
method for automatically detecting the skipped areas at the
encoder because we cannot evaluate the quality of completion by
objectively comparing the signal difference between the original
and completed images. To resolve this issue, we propose an image
quality estimation model without referencing original images.
Our key idea is to obtain the model by adversarial training with
a completion network assuming that original images have higher
quality than the completed ones. We also propose a detection
algorithm for skipped areas. Our algorithm detects skipped
areas by giving priority to complex areas where a large coded-
bit amount is required for the normative codec-based method
to increase coding efficiency. The proposed method reduced
the coded-bit amount by 25% compared with an HEVC-based
method while maintaining the subjective quality for particular
images.

I. INTRODUCTION

Normative video coding standards have been established by
predicting and transforming images. They predict images from
original input images by utilizing the redundancy that occurs in
the spatial and temporal directions. The informational amount
is then reduced by sending only residual images transformed
from the pixel domain to the frequency domain. This archi-
tecture is adopted in H.265/HEVC [1] and will be used in
the next-generation standard VVC [2]. For still images, the
file format to encode using HEVC is also defined and widely
used as HEIF [3].

Methods based on normative coding do not perform well
when they are applied to images that include complex textures,
such as trees and water surfaces. When images including such
textures are encoded, prediction efficiency becomes lower than
that obtained when encoding simple images. As a result, the
informational amount for residual images increases and the
image quality degrades since encoding is performed within
the target bitrate.

One method to address this problem is generating images at
a decoder to maintain subjective image quality. The decoder
counterpart (i.e., the encoder) edits original images to reduce
the informational amount they contain. This is done especially
for complex areas or areas where there is no need to reproduce
by exact pixel value, such as texture regions. For example,

texture synthesis-based methods [4–7] use texture synthesis at
the decoder to reduce the coded-bit amount while maintain-
ing subjective quality at the texture region. Similarly, seam
carving-based methods [8, 9] use seam carving at the encoder
and reconstructed seams at the decoder utilizing interpolation.
Although both methods can reduce the coded-bit amount, their
available areas are limited to uniform textures or simple areas,
respectively.

To generate varied areas, deep learning-based image com-
pletion [10–14] has been investigated recently. For example,
Pathak et al. [10] proposed an image completion method that
utilizes a convolutional neural network (CNN) by applying
the generative adversarial network (GAN) framework [15].
Iizuka et al. [11] improved the quality of completed images
by using two discriminators that only focus on local or global
components.

Deep learning-based image completion enables high-quality
output for various images. By replacing complex areas of the
input images with particular easy-to-encode signal values at
the encoder and completing them at the decoder, it is possible
to reduce the coded-bit amount while maintaining subjec-
tive quality compared with normative codec-based methods.
However, there are areas where completion does not perform
well, including large areas. Therefore, we need to evaluate the
quality of the completed images, but the quality cannot be
evaluated using the signal difference between the original and
completed images, as used in the encoder of normative codec-
based methods, because completed images significantly differ
from their original images. Because of this issue, a method
for detecting the skipped areas to be completed for efficient
encoding has not yet been established.

In this paper, we propose a still image encoding method with
an image-coding framework for executing image completion
at the decoder. Our method automatically detects skipped
areas and optimizes the bitrate and subjective quality of the
completed image by using two techniques. First, to overcome
the issue of quality evaluation, we introduce a scoring model
called the image quality estimation (IQE) model. Our idea
is to train the IQE model by adversarial training with a
completion network assuming that original images have higher
quality than the completed ones. Second, to reduce the coded-
bit amount efficiently, we apply a detection algorithm for
skipped areas. Our algorithm detects skipped areas focusing
on complex areas that are defined by coded-bit amount when
encoding with the HEVC-based method. Our experimental
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Fig. 1. Image-coding framework with image completion.

results demonstrate that the proposed method reduces the
coded-bit amount by 25% compared with using an HEVC-
based method while maintaining the same perceptual quality
for particular images.

In Section 2 of this paper, we briefly explain GAN-based
image completion. In Section 3, we describe the proposed
method. In Section 4, we present the details of the simulation
evaluation and results. We conclude in Section 5 with a brief
summary.

II. GAN-BASED IMAGE COMPLETION

In this section, we briefly go over GAN-based image com-
pletion. Image completion is effective in restoring the skipped
areas of images, and recently, deep learning approaches [10–
14] based on the GAN framework [15] have provided high-
quality completed images. In these approaches, a CNN is
trained for completion (completion network). The input of the
completion network is an image with skipped areas (missing
image) and the output is the completed image. Binary masks
that indicate skipped areas to combine the missing and com-
pleted images are also used.

When these approaches train a completion network, they
use another CNN that discriminates the original and com-
pleted images (discriminator). Suppose that completion net-
work C(x,M) processes completion from the original image
x and mask M , which indicates skipped areas. Discriminator
D(x) estimates the probability that input image x is original.
In this scenario, the objective of adversarial training is to solve
the following min-max optimization problem:

min
C

max
D

E [αL(x,M) + log(1.0−D(x))

+ logD(C(x,M))] .
(1)

Here, L(x,M) is the mean squared error (MSE) of completed
image C(x,M) and original image x represented as

L(x,M) = ∥C(x,M)− x∥2, (2)

and α is a parameter that balances the MSE and adversarial
loss for the completion network. By training a completion
network and discriminator alternately while varying x and M ,
the completion network generates natural completed images
that the discriminator cannot distinguish.

Input
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CTU
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Fig. 2. Image quality estimation model.

III. PROPOSED METHOD

A. Image-Coding Framework with Image Completion

We first describe the image-coding framework of the pro-
posed method, which applies image completion. An overview
is shown in Fig. 1. At the encoder, skipped areas to be
completed at the decoder are first detected (the detection
algorithm is detailed in the next section). Then, a missing
image is generated by alternating the pixel values of skipped
areas with easy-to-encode values such as the average values of
each area. An encoder of HEVC encodes the missing image
and sends it as a bit stream. The positions of skipped areas
are also sent as side information. At the decoder, the missing
image is decoded and skipped areas are completed. We assume
that image completion is done with a CNN using a GAN-based
training technique (such as [11]).

B. Detection Algorithm for Skipped Areas

Our encoding method detects skipped areas in the image by
optimizing the coded-bit amount and subjective quality while
focusing on hard-to-encode areas for HEVC. Skipped areas are
detected on the basis of HEVC coding units (CUs) to ensure
that missing images are efficiently encoded by HEVC.

In the detection algorithm, the original input image is first
encoded using an HEVC encoder. In this first encoding, the
structure of the CU partition, the coded-bit amount for each
CU, and the encoded image are stored. Then, the evaluating
order of CUs is determined by descending order of the coded-
bit amount for each CU. Giving priority to CUs with a large
coded-bit amount allows the proposed method to preferentially
complete hard-to-encode areas for HEVC.

By setting the target CU according to the determined order,
evaluating whether the target CU is skipped is conducted
repeatedly. During this evaluation, the quality score Q(p) of
the partial image p that includes the CU to be rated and the
surrounding encoded image is measured using the IQE model
(described in the next section). The target CU is determined as
a skipped area when the following requirements are satisfied:

• Reasonability to skip the target CU: We evaluate
reasonability to skip the target CU by considering the
quality score and the coded-bit amount. Let ptComp be a
partial image including the target CU that was skipped
and completed using the completion network, and pt be
a partial image including the target CU without skipping.
Also, let R be the reduced number of bits for the target
CU when the target CU is skipped. The first requirement
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(a) Test 1: −24.6%

(b) Test 2: −27.6%

(c) Test 3: −23.3%

Fig. 3. Result images with reduced coded-bit amount. Left: decoded images with base-HEVC method. Center: completed images with proposed method. Right:
missing images with proposed method.

TABLE I
COMPARISON OF CODED-BIT AMOUNT, OBJECTIVE SCORES, AND MOS.

Test 1 Test 2 Test 3

Coded
Bits

PSNR MS-
SSIM

MOS Coded
Bits

PSNR MS-
SSIM

MOS Coded
Bits

PSNR MS-
SSIM

MOS

Base-HEVC 941,520 30.48 0.97 3.60 259,016 33.98 0.96 2.60 599,944 31.15 0.97 3.33
Comparison-HEVC 666,424 30.11 0.95 3.00 192,864 33.41 0.95 2.33 433,208 30.64 0.95 3.00

Proposed 710,318 29.78 0.76 3.47 187,536 33.33 0.91 2.60 459,866 30.44 0.86 3.07

to determine the target CU as a skipped area is to satisfy
the following inequality:

Q(ptComp) + λR > Q(pt), (3)

where λ is based on the compression rate and set in
advance.

• No significant decrease of completion quality on sur-
rounding skipped areas: If the target CU is determined
as a skipped area, the quality score of its surrounding
CUs that are already determined to be a skipped area
may decrease. Therefore, we re-evaluate whether each
surrounding CU’s quality score is decreased. Let psComp

be a partial image including the surrounding CU that was
skipped and completed together with the target CU. Also,
let ps be a partial image including the surrounding CU
that was skipped and completed by itself. The second
requirement to determine the target CU as a skipped area
is to satisfy the following inequality for all surrounding

CUs belonging to the skipped area:

Q(psComp) > µQ(ps), (4)

where µ is a parameter that defines an acceptable score
decrease.

C. Image Quality Estimation Model

When we measure image quality with the proposed method,
it is not appropriate to use a pixel-based difference, such as the
MSE, due to drastic image changes caused by completion. The
encoding method therefore measures image quality by using
a trained IQE model without referencing original images.

Figure 2 shows such a model developed on the basis of a
CNN. The input is a partial image p that includes one CU to
be rated in the central coding tree unit (CTU) and surrounding
image. In the same way as for the discriminator Iizuka et al.
reported [11], the input is separated into global and local parts.
The IQE model outputs the estimated quality score Q(p).
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The IQE model is trained using the GAN framework with
the completion network. By assuming the original images have
higher quality than the completed ones, the proposed method
trains the IQE model by replacing the discriminator (described
in Section 2) with the IQE model.

IV. EXPERIMENTS

We conducted simulation experiments on the proposed
method. We first compared the coded-bit amount and sub-
jective image quality of the proposed method and HEVC-
based methods, namely, base-HEVC and comparison-HEVC
methods. Then we evaluated the effectiveness of the proposed
encoding techniques.

A. Experimental Conditions

We obtained experimented images in the public domain
from Flickr [16] with resolutions of 1856 × 960 pixels.
We set the minimum size of the skipped area to 16 × 16
pixels. The skipped areas’ pixel values were replaced by the
encoder with average values of each area, based on the coding
efficiency of a preliminary experiment. We used HM-16.0 [17]
for HEVC encoding. HEVC applies a constraint quantization
parameter (QP) and all-intra mode. The QP for the base-HEVC
method and proposed method was set to 37. We encoded
the comparison-HEVC method and the proposed method to
reduce the coded-bit amount by around 25% compared to
the base-HEVC method. We selected λ for the proposed
method and QP for the comparison-HEVC method to satisfy
the target coded-bit amount. Parameter µ for the proposed
method was set to 0.95. The deblocking filter was disabled in
the experiments. We applied the proposed method only for
luminance components and HEVC was used to encode all
chroma components. Binary flags for each CU, which indicate
whether the CU was skipped, were sent as side information
and counted in the coded-bit amount of the proposed method.

Architectures of the IQE model and completion network
were based on the discriminator and completion network of
[11], respectively. For the completion network, we introduced
the architecture of U-Net [18] to improve the quality of
completed images. For training the completion network and
the IQE model, we used 830,000 192 × 192 patches made
from the DIV2K dataset [19]. The completion network trained
40 epochs, while the IQE model trained 35. The optimizer was
AdaDelta [20] and the batch size was 16.

Subjective evaluation was also conducted using a five-point
absolute category rating, where the image quality was scored
in five levels for each image independently. The number of
participants was 15, and other settings followed [21].

B. Results

Figure 3 shows the images obtained with the base-HEVC
method, and completed and missing images obtained with
the proposed method indicating reduced coded-bit amount.
Skipped areas are drawn in black for the missing images.
Note that while the base-HEVC method and missing images
were both encoded by setting QP to 37, the coded-bit amount

(a) MS-SSIM (b) Raster scanning (c) Proposed

Fig. 4. Effect of IQE model and coded-bit-based evaluating order.

decreased by around 25% with the proposed method. The
results lead us to conclude that desired completion results
were obtained, as we could not recognize which images the
proposed method completed at a glance.

Table 1 lists the coded-bit amount, peak signal-to-noise ratio
(PSNR), multi-scale structural similarity (MS-SSIM) [22], and
mean opinion score (MOS) of the subjective evaluation for
tested images. Note that the PSNR and MS-SSIM are not
appropriate to evaluate the proposed method since completion
quality cannot be measured with them. As Table 1 shows, the
MOSs of the proposed method were higher than those of the
comparison-HEVC method for the same bitrate. Significantly,
for Test 2 the proposed method’s MOSs equaled those of the
base-HEVC method. However, for Test 3 they were worse
than those for other tests. Some viewers said the discontinuity
between waterfall and trees was noticeable. One possible so-
lution would be to introduce an image segmentation technique
not to detect skipped areas on object boundaries.

We also evaluated the effectiveness of the proposed method
by applying the IQE model with coded-bit-based evaluating
order. Figure 4 shows a comparison of completed images at
an equal bitrate encoded using MS-SSIM instead of the IQE
model to measure image quality, evaluating CUs to detect
skipped areas by raster scanning order instead of coded-
bit-based order, and using the proposed method. Although
MS-SSIM provides close to subjective image quality, it also
includes noticeable noise, as shown in the figure. Also, since
the raster scanning order-based method requires large skipped
areas to encode within the target bitrate, we obtained poor
image quality. However, the proposed method enabled us to
reduce unwanted noise.

V. CONCLUSION

We have proposed an image-encoding method for executing
image completion at the decoder. Our method detects skipped
areas to be completed using a cost function with a trained
scoring model and processes the order in which coding ef-
ficiency increases. With this method, we could reduce the
coded-bit amount by 25% while maintaining subjective quality
for particular images.
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