
Blind Tone-mapped Image Quality Assessment and
Enhancement via Disentangled Representation

Learning
Lei Wang, Qingbo Wu∗ , King Ngi Ngan, Hongliang Li, Fanman Meng, Linfeng Xu

University of Electronic Science and Technology of China, Chengdu, China
E-mail: lwang@std.uestc.edu.cn;{qbwu;knngan;hlli;fmmeng;lfxu} @uestc.edu.cn

Abstract—For compatibility with existing low dynamic range
(LDR) display devices, the tone mapping operator (TMO)
is widely applied to the high dynamic range (HDR) image,
which inevitably leads to visual quality degradation. Various
blind image quality assessment models have been developed to
quantify the distortion degrees across different HDR images.
However, these models only extract the quality-aware features
and serve as a selector for different TMOs, which excludes
visual content information and fails to conduct an end-to-end
image enhancement towards a desired quality score. In this paper,
we propose to jointly conduct blind tone-mapped image quality
assessment and enhancement via disentangled representation
learning. An encoder is firstly used to map the input image into
the general feature space. Then, two branches are separately
developed to extract the quality-aware and content-aware latent
representations from the general feature, which are supervised
with the quality score and image reconstruction constraints,
respectively. Meanwhile, these two branches are also coupled with
the adaptive instance normalization, which enables our model
to flexibly modify the image towards any desired quality score.
Extensive experiments confirm the effectiveness of the proposed
method.

I. INTRODUCTION

Recent years have witnessed the rapid growth of high
dynamic range (HDR) imaging applications, which enjoy great
popularity due to their better visual expression in terms of
luminance, contrast and color variations. But the unfriendly
price of special display devices also limits the popularization
of HDR images in our daily life. Several tone-mapping oper-
ators (TMOs) and multi-exposure fusion methods are born to
convert HDR images to low dynamic range (LDR) images [1],
which are compatible with existing display devices. However,
the perceptual quality degradation is inevitable regarding the
change of dynamic range during the tone mapping process.
Given different HDR images, the degrees of quality degrada-
tion produced by each TMO are different as well. To select the
optimal TMO, a lot of efforts are devoted to the blind tone-
mapped image quality assessment (BTMIQA) to quantify the
quality of LDR image without accessing to its original HDR
version.

Classical BTMIQA models develop various handcrafted
features to capture quality-aware information, such as image
sharpness, colorfulness, naturalness and so on. Then, these
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features are mapped to the quality scores via different regres-
sion models. Recently, some deep learning based methods also
attepmt to conduct the BTMIQA task by training the feature
extractor and quality regressor simultaneously. Although dif-
ferent descriptors or network archtectures are explored in these
methods, they all focus on extracting the quality-aware global
representation, which is irreversible to the content information
in different spatial locations. Therefore, existing BTMIQA
models could only passively select the best tone-mapped image
from several candidate TMOs instead of directly enhancing the
LDR image in an end-to-end manner.

In this paper, we propose a more flexible and interpretable
network architecture for joint image quality assessment and
enhancement, which is achieved via the disentangled rep-
resentation learning. More specifically, an encoder is firstly
used to map the input image into the general feature space.
Then, two branches are separately developed to extract the
quality-aware and content-aware latent representations from
the general feature, which are supervised with the quality score
and image reconstruction constraints, respectively. Meanwhile,
these two branches are also coupled with the adaptive in-
stance normalization, which enables our model to flexibly
modify the image towards any desired quality score. Extensive
experiments on the ESPL-LIVE HDR database verify the
effectiveness of the proposed method in both the image quality
assessment and enhancement tasks.

II. RELATED WORK

A. Representative BTMIQA Methods

Like natural image quality assessment, most existing BT-
MIQA methods still assumes that the natural scene statistics
(NSS) [2] play a critical role in distinguishing the tone-mapped
images with different qualities. Kundu et al. [3] explore
the performance of many representative NSS features in the
BTMIQA task, such as the statistics of log-derivative, mean
subtraction and divisive normalization operators, and gradient
information. In [4], Gu et al. extract the TMO specific features
by measuring the information volumes of different illuminance
ranges, the means and standard deviations of local pathces, and
the mean responses of the sobel filter. In [5], Yue et al. further
enrich the NSS features with the normalized colorfulness
and contrast information. Recently, some deep learning based
methods are also explored for BTMIQA task. Kumar et al.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

1096978-988-14768-8-3/20/$31.00 ©2020 APSIPA APSIPA-ASC 2020



[6] employ the AlexNet to extract the deep features, and then
reduce their dimension via principal component analysis. He
et al. [7] develop a multiscale deep representation based on
the ResNet-50.

It is noted that all of aforementioned methods focus on
extracting the quality-aware global representation, which ex-
cludes the content information and fails to directly conduct
the image enhancement.

B. Disentangled Representation Learning
Disentangled representation learning aims to obtain inter-

pretable and attribute-specific latent codes, which is widely
discussed in many conditional image generation task. In [8],
Yan et al. achieve this target by optimizing the neural network
parameters to maximize the conditional log-likehood, whose
variables include the input image, attribute, and the latent code.
In [9], Chen et al. introduce the attribute related latent code
into the generative adversarial network, which rewards the
mutual information between the latent code and the generator
distribution. In [10], Lin et al. further increase the distinction
of disentangled representations via a contrastive regularizer.
In [11], [12], the disentangled representation learning is also
explored in different domain or style transfer tasks.

These works inspire us to decompose the image feature into
the quality-aware and content-aware latent codes which could
serve for image quality assessment and enhancement tasks
respectively.

III. METHOD

In contrast to conventional BTMIQA, the joint image quality
assessment and enhancement is more challenging. We need to
ensure that the extracted features are correlated with different
target attributes. In this section, we first describe the motiva-
tion of the proposed model. Then, we introduce the detailed
architecture design and loss function. At last, we describe the
method of transferring the desired quality to the input tone-
mapped image.

A. Model
Let x be the input tone-mapped image. We want to extract a

latent z which correlates to image quality. Existing BTMIQA
models typically optimize a regressor f(.) to minimize the
difference between f(z) and the mean opinion score (MOS)
y, while imposing no restrictions on z. As a result, the latent
representation z may be used in a highly entangled way,
which brings quality irrelevant attributes into z. In the test
phase, the distribution of such latent representation z may
abruptly change across different image content, thus tampering
the generalization capability of the model and limiting its
quality assessment. In this context, we want to decompose the
image feature into two distinct latent representations, which
correspond to the image quality and content respectively.
More specifically, quality-aware and content-aware represen-
tations could be learned with the supervision of MOS and
image reconstruction based self-supervision. By integrating the
quality-aware and content-aware representations together, we
can achieve a quality-controlled image enhancement.

B. Architecture Design

Fig. 1 shows the detailed network architecture of our joint
image quality assessment and enhancement model. We first
map the input image x into a general representation t with the
encoder E, a popular network architecture, ResNet50 [13].
Inspired by recent work [12], the representation n includ-
ing little information about quality which we could treat as
style of image, we use Instance-Normalization for content
feature extraction. Naturally, the discarded mean and variance
of the feature layers are treated as quality representations.
specifically, the content-aware representation n = t−µ(t)

σ(t) and
quality-aware representation z = µ(t)

⊕
σ(t) where

⊕
is

feature concatenation. Here µ(x) and σ(x) are computed
across spatial dimensions independently. Given z, we use a
Multi-Layer Perceptron(MLP) which contain 4 fully connected
layer to predict the score. Given such content representation
n, we require that n guarantees the preservation of content
information to reconstruct image. Here we use U-net [14]
architecture connect decoder our D, as its skip-connection help
to propagate the multilayer spatial information. To cooperate
with quality representation and speed up the translation, image
are reconstructed by the decoder which is equipped with
an Adaptive Instance Normalization (AdaIN) [12]. In order
to guarantee skip-connection, decoder D have same scale
architecture as E, which contain 5 maxpool layer and several
convolution layers.

C. Loss Function

Inspired by the deep variational information bottleneck [15],
We regard the quality representation as a stochastic encoding
z of the input source x, defined by a parametric encoder
p(z|x). We expect the quality representation to be aligned with
the Gaussian distribution while predicting the quality score.
This has two advantages, one is to reduce relevance to the
content and the other is to generate quality representations
from samples taken from gaussian distributions. Loss related
to quality representation is established as:

Ep(z|x) [log q(y|z)]− βDKL (p(z|x)‖m(z)) (1)

where q(y|z) is a variable approximation of the decoder to
conditional posterior p(y|z), m(z) is a variable approximation
to marginal posterior p(z), and p(·|x) is conditional prior of
the encoder. Given n we want to be able to reconstruct x. Loss
related to content representation can be write as :

Ep(z,n|x) [log q(x|z, n)] (2)

We now propose a method for extract a quality representation z
and retain appropriate content information meanwhile. We pro-
vide the decoder network with both the quality representation
z and the content latent code n. Ideally, the images generated
through the generator q(x|z, n) are based on two factors n and
z, But in practice, it is easy to converge to a solution satisfying
q(x|z, n)=q(x|n) that latent code z has little effect on the
output and the change of image is determined by x totally.
To cope with the problem of trivial codes, we added a little
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Fig. 1. The architecture of the proposed QD-net. E:encoding module, Q:a score prediction module, G:a decoding module. The bottom pipeline is similar to
general image quality method. The top pipeline is the added reconstruction constraint part

trick to the training process. When we optimized reconstruct
term, We added a pair term to increase the influence of z:

Ep(z,n|x) [log q(x|z, n) + log q(x̃|z̃, n)] (3)

Where z̃ and x̃ are corresponding representation and image
with the same content but different quality. Formulation,
Replace function x̃ = F (x), z̃ = Ez(F (x)).The technique
of replacing features in this way to enhance the effect of
features is seen in domain translation papers, such as [11].Let
us establish a network G which estimates the parameters of
the distribution q(x|z, n). We assume further, as it is common
practice [16], that the distribution q(x|z, n) has constant
standard deviation and the function G(z, n) is a deterministic
function in z, n. As a consequence, the network G(z, n) can
be considered as an image generator network and can replace
Eq.(1) with the reconstruction loss Ep(z,n|x) [‖x−G(z, n)‖1]
. The total loss can be written as :

L = Ep(z|x) [log q(y|z)]− βDKL (p(z|x)‖m(z))

+ αEp(z,n|x) [‖x−G(z, n)‖1]

+ γEp(z,n|x) [‖F (x)−G(Ez(F (x)), n)‖1]

(4)

D. From Quality Assessment to Enhancement

Image quality is a continuous variable, so image enhance-
ment should be modeled by a continuous process instead of
a discrete domain transfer. Given an image, we want to get a
quality score from the IQA model and then form scores to get
quality features to transfer an image to another one. In order
to achieve the fine-granularity control of the enhancement
process, we propose to formulate a IQA guided enhancement
equation by:

x̂ = G(Ec(x), ẑ) (5)

TABLE I
THE EVALUATION RESULTS OF ALL BIQA MODELS

MODEL QD-net He et al. HIGRADE-2 BIBQA DESIQUE GM-LOG

SROCC 0.841 0.823 0.730 0.702 0.570 0.556
PLCC 0.837 0.827 0.728 0.692 0.568 0.557

where ẑ = Q−1(ŷ). We want to get a quality representation
ẑ from objective quality ŷ through Q−1 which is the inverse
function of Q. After training, generator G can generate image
from ẑ, which should be sampled from Gaussian distribution.
It’s easy to training a predicting network Q for mapping ẑ to
ŷ, while it is hard to get a higher-dimensional representation
ẑ from a scalar ŷ. Ideally, given a image x, the quality
representation z is sampled from the Gaussian distribution
p(z|x) which parameters are estimated by the encoder network
Ez . Aim to get a suitable ẑ, we use Monte Carlo method [17]
repeated sample from N (z | 0, I) to select a quality repre-
sentation z̄ satisfying Q(z̄) ≥ ŷ. Because of the continuity of
the neural network, we can search a suitable ẑ between z̄ and
z which quality score is between ȳ and y. The objective of
searching quality representation can be formulated as:

min
ε
‖Q(εz̄ + (1− ε)z)− ŷ‖ (6)

where ε is the parameter to balance the fusion of z̄ and z.
Since z̄ was already obtained in the previous Monte Carlo
sample, We use the SGD [18] optimizer to optimize (6) to get
a suitable ε. The architecture are show in figure 2

IV. EXPERIMENT

A. Implementation
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Fig. 2. The architecture of transfer quality to image. A suitable quality representation z̄ is generated from a gaussian distribution and it fuses with z of input
to get ẑ corresponding target score ŷ. Then ẑ is used to generate target images.

1) Datasets: In order to test the performance of our
method, the proposed QD-net is trained on ESPL-LIVE HDR
image database, which is the largest common tone-mapping
image database in TMIQA. It covers a variety of methods
for obtaining tone-mapped images: the images in the database
were obtained from the HDR illumination map and the SDR
image stack through 11 different methods.Therefore, this
method is suitable for the experiment of predicting the quality
of tone mapping HDR images under the influence of complex
factors. There are a total of 1811 tone-mapped HDR images,
which are divided into three types according to their acqui-
sition methods: 747 images are generated by four different
tone mapping operators; Through five multi-exposure fusion
methods, 710 images were directly created from the SDR
image stack. Through two different post-processing settings,
354 images were obtained by Photomatix. We randomly split
the data into disjoint training and testing sets at a 4:1 ratio and
the splits were randomized over 100 trials. Care was taken to
ensure that the same source scene did not appear during both
training and testing to prevent artificial inflation of the results,
following the work in [19].

2) Preprocessing: Images in the training set are randomly
cropped to 302*302, because the random crop can augment
our dataset amount. Images in the test set are fed to our model
without crop. All of this operation is considering that cropped
images have the same score as the original one.

3) Detailed Implementation: The proposed QD-net model
consists of a encoding module E, a score map module Q, and
a decoding module G. We use SGD with learning rate 0.01
for optimization, and learning rate decay 0.8 per 7 epochs,
and dropout rate 0.5 for regularization. During training phase,
each batch contains 16 pairs of images and can form totally

16 pairs for optimized loss. During testing phase, each batch
contains 1 pair of images because images in testing set are
fed to our model without crop. During enhancement phase, we
input a low-quality image to obtain its quality representation
and predicted quality score, and at the same time, we sample to
generate another high-quality image, increase the value of the
original quality score, and get pictures with different quality
scores through (6) We implement the proposed QD-net with
the PyTorch library, and perform the experiments in a work-
station with Intel Xeon E5-2660 CPU and NVIDIA TI-TAN
X GPU.

B. Comparisons

We conduct experiments on ESPL-LIVE HDR Database to
compare the performance of our proposed method with some
existing TMIQA methods and some state-of-the-art NR-IQA
methods which are aimed at general SDR images. Because
most of the existing TMIQA methods are full-referenced and
the original HDR images are not available in the ESPL-
LIVE HDR Database, we compared two NR-TMIQA methods
among them. He et al. [7], HIGRADE [3], BIBQA [20],
DESIQUE [21], GMLOG [22] are included for comparison.

C. Results

1) TMIQA Result: We evaluate the performance of each
BIQA model via two widely used indices: Spearman’s rank-
order correlation coefficient (SROCC) and Pearson’s linear
correlation coefficient (PLCC). These criteria are calculated
for every run, and the medians of the three criteria in 100 runs
are reported separately. We repeat the random split experiment
100 times and report the median results in the following.
Table I shows the evaluation results of all quality assessment
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Fig. 3. Quality degree adjustment by controlled quality representation (the leftmost is the original input, from left to right: light to heavy enhancement).

models, where the best results are highlighted by boldface
in each column. The results of HIGRADE, DESIQUE, GM-
LOG, BRISQUE on the same database are quoted from [3],
the results of BIBQA method are quoted from [20], the results
of He et al. are quoted from [7].

2) Enhancement Result: To prove the performance of en-
hancement, we conduct experiments on the real photo from
the internet. In Fig. 3, the images in the left column are the
inputs, and we gradually enhance their qualities in ascending
order from the left to the right columns. Similarly, in Fig. 4,
all inputs are listed in the leftmost column, and we gradually
degrade them with the proposed method in descending order
from the left to the right side. It is seen that the proposed
method could flexibly and effectively change the image to-
wards a desired quality. In addition, past work [16] has shown
that the encoder network is able to learn to cluster high-
dimensional data, so we conjecture that posterior z outputted

from the encoder network should cluster the representation
into meaningful groups. Figure 5 visualizes the posterior z in
the test dataset in 2D space using t-SNE [23]. It is seen that
the learned latent space is highly correlated with the quality
score, which confirms our assumption.

V. CONCLUSION

In this paper, we propose a QD-net to jointly conduct the
blind tone-mapped image quality assessment and enhance-
ment. Instead of serving as TMO selector like most existing
BTMIQA models, the proposed method could learn quality-
aware and content-aware latent codes with the disentangled
representation learning simultaneously, which could support
a quality-controlled image translation. Extensive experiments
verify the effectiveness of the proposed method in both the
quality assessment and enhancement tasks.
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Fig. 4. Quality degree adjustment by controlled quality representation (the leftmost is the original input, from left to right: good to bad quality).
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Fig. 5. t-SNE visualization of the quality representation z for test dataset
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