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Fig. 1. A hallucinated high-resolution panoramic scene. On the right we show the corresponding low-resolution (top) and high-resolution (bottom) patches of
the red-framed region in the panorama.

Abstract—The goal of this work is to synthesize high-resolution
panoramic images of a scene. We propose a system that takes
low-resolution panoramic video frames as the input, extracts
geometric information as the reference, and produces high-
resolution panoramas of the scene as the output. The deep
learning module of our system benefits from the structure-from-
motion geometry and learns to decouple the content and the
style of an input low-resolution patch for hallucinating its high-
resolution version. We show that the high-resolution panoramas
generated by our system achieve a better quality of detail
and color enhancement than those produced by existing super-
resolution and style-transfer methods.

I. INTRODUCTION

The motivation of this work is to investigate and propose
an alternative way of acquiring high-quality panoramic views
of a scene. We consider the process of capturing a scene as
a constrained sampling problem. Suppose that we are allowed
to use a panoramic camera to take high-resolution panoramas
at only a few spots in the scene. (In our experiment we only
take four high-resolution panoramas for a scene.) To obtain
the high-resolution views at other spots in the scene, one may
apply some view-synthesis techniques to generate the novel
views. However, the underlying issue of multi-view geometry
is itself a challenging problem, in particular if we would
like to generate high-resolution novel views. Now, consider
an augmented scenario in which we are also allowed to
take densely sampled low-resolution panoramas. By “densely
sampled” we mean capturing views at more spots that are
close to each other in spatial domain. Such a setting avoids
the issues of novel-view synthesis and instead reformulates the
problem as how to hallucinate high-resolution images from
low-resolution ones.

The proposed problem setting and formulation are differ-
ent from those of conventional image super-resolution. For
image super-resolution, a main issue is the lack of real

high-resolution and low-resolution pairs of image patches
for evaluation and for training. Existing approaches often
create the high- and low-resolution pairs by downsampling
the high-resolution ground truth to get the low-resolution
counterpart. However, the downsampling operation is unlikely
to be coherent with the real process of resolution degradation.
Our approach, on the other hand, only relies on the structure-
from-motion (SfM) information to find correlated high- and
low-resolution pairs, but the corresponding image patches do
not have to be accurately aligned. Nevertheless, the pairs
of corresponding image patches provide a more realistic
transformation in appearance than simply downsampling. The
proposed learning method can decouple the corresponding
image patches to extract details for better enhancement in
resolution.

Our approach also differs from existing style-transfer and
image-to-image translation methods. We integrate the geom-
etry information of the scene obtained by SfM into the deep
learning module, and therefore the low-resolution and high-
resolution pairs are not totally uncorrelated. Existing style-
transfer methods do not take into account the geometric cues
and correspondences derived from SfM.

In sum, our system integrates SfM, deep networks, and
image stitching to form a pipeline for generating high-
resolution panoramas. SfM provides the geometric information
of the scene for extracting image patches from low-resolution
panoramas as the training data. Our deep learning module
learns with SfM geometry to decouple the content and the
style of low-resolution patches for producing detail-enhanced
patches. The hallucinated patches are stitched to form a high-
resolution panorama as the final output. The experiments
show that our system can synthesize visually appealing high-
resolution panoramas with enhanced color and detail.
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A. Related Work
The conventional super-resolution problem has been studied

for a long time [15]. Successful commercial applications are
available for digital cameras, TV production, and medical
imaging, etc. Recent super-resolution techniques often use
deep learning for further improvements. For example, SR-
CNN [3] adopts a deep architecture for end-to-end training.
Dong et al. show that using a larger filter size is better than
using a deeper CNN architecture. DRCN [8] uses deep CNN
layers with shared weights to reduce the number of parameters,
and achieves significant improvements.

Ledig et al. [11] propose a GAN-based approach that is
capable of inferring photo-realistic natural images. They use a
perceptual loss function to model the natural image manifold
via a discriminator for distinguishing super-resolved images
from original realistic images. Shrivastava et al. [17] propose
Simulated+Unsupervised (S+U) learning with a GAN-based
simulator, where the task is to learn a model for improving
the simulator’s output using unlabeled real data. Gharbi et al.
present deep bilateral learning for real-time image enhance-
ment [5]. They introduce a new neural architecture for image
upsampling via predicting the coefficients of a locally-affine
model in bilateral space.

Another closely related topic is image-based rendering [4],
[18] in computer graphics and computer vision. Its goal is
to render novel views based on a set of images of a scene.
Previous techniques can be categorized with respect to how
much the geometric information is used: rendering without
geometry, rendering with implicit geometry, and rendering
with explicit geometry. Kopf et al. [9] introduce a model-based
viewing system for browsing, enhancing, and manipulating
casual outdoor photographs by combining them with already
existing georeferenced digital terrain and urban models.

MUNIT [7] and DRIT [12] share similar ideas that image
representation can be decomposed into a content code that
is domain-invariant, and a style code that captures domain-
specific properties. Our work differs from MUNIT and DRIT
in that it includes geoference information derived from SfM.
We are able to provide low-resolution images as the reference
for inferring the corresponding high resolution images.

II. OUR APPROACH

The objective of our approach is to learn a generator G
that can synthesize a high-resolution patch x̂L!H from the
low-resolution patch xL and its georeference code gL:

x̂L!H = GH(xL, gL) . (1)

First, in the pre-processing stage, we establish the geometry
model from the collected datasets, including densely sampled
low-resolution panoramic video frames of size 1920 ⇥ 453
and sparsely sampled high-resolution panoramic images of
size 5376 ⇥ 1269. The georeference information includes
rotation matrix R, translation vector t, and the associated 3D
reconstruction of feature points. Second, during the training
phase, we generate sample patches with embedded geometric
information. We use xL and xH to denote the image patches in

(a) (b)

(c) (d)

Fig. 3. (a) The red line represents a 3D point re-projecting onto a high-
resolution image, which is represented as a red point. The yellow lines
represent the re-projections of the same 3D point onto three different low-
resolution images. Given a 3D point, we sample the patch pairs according
to the angles and positions. (b) Examples of sampled patch pairs that
correspond to the same 3D points. (c) Patches of texture-less regions without
corresponding 3D points: Starting from the center of a patch in a low-
resolution image, represented as the yellow dot, the green line represents the
ray from the camera center through the patch center into the 3D space. By
equispacedly sampling along the ray, we can obtain candidate high-resolution
patches in the corresponding high-resolution image, represented as a red point.
The patch among the candidates with highest similarity is selected as the
training pair. (d) Examples of texture-less low- and high-res patch pairs.

low-resolution L and high-resolution H domains. We denote
the georeference codes by gL and gH , queried from the
geometry model and image location (u, v) in the panorama.
The generator G and the cross-domain translation model T are
trained based on the pairs of image patches (xL, xH), which
do not have to be well aligned. Last, in the inference phase, we
use the generator to convert input low-resolution video frames
to high-resolution ones.

A. Collecting the Data

We record low-resolution panorama videos to cover a target
scene using a 360 camera ’RICOH THETA S’, and take
sparsely sampled high-resolution panoramic images at only
four spots in the scene. We then perform OpenSfM [1],
[2] to establish the geometry relations from the input video
frames and estimate the 3D structures of the corresponding
feature points. Both of the georeference information and the
distribution of 3D points provide valuable cues in the training
phase, which will be further discussed in the next subsection.

1) Extracting Training Samples: We obtain training patches
in two ways, depending on the number of feature points.
For a patch containing more than five feature points in
low-resolution space, we take account of the 3D geometry
information, as illustrated in Fig. 3(a), where the 3D points are
reprojected to low-resolution images and high-resolution im-
age. For a patch containing less than five feature points (less-
textured regions), we generate samples by checking image
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Fig. 5. At the training phase, we have two paths to get a high-resolution
patch, depending on how we obtain the style code: i) using xL to generate
style code s̃H , and ii) deriving sH from xH . Further, we integrate s̃H with
cL and gL to generate xL!H . Note that, at the testing phase, only the first
path can be used to get xL!H since xH is unknown.

similarity between the low-resolution patch and corresponding
high-resolution candidate patches along the epipolar line, as
shown in Fig. 3(c).

B. Modeling Different Domains

Let E⇤ denote an encoder to decompose a patch x⇤ into its
latent code. The latent code will further be decomposed into a
content code c⇤ and a style code s⇤. We use a generator G to
reproduce an image patch by decoding from the latent codes,
formulated as x̂⇤ = G⇤(Ec

⇤(x⇤),Es

⇤(x⇤), g⇤), where ⇤ can be
either L or H . Similar to previous approaches [7], [12], the
content code in our method is assumed to be domain-invariant,
while the style code captures domain-specific properties. To
translate a low-resolution patch xL to a high-resolution patch,
we recombine the content code with a style code s̃H learned
from the high-resolution domain by a translation model.

Fig. 4 shows an overview of our model. It consists of a
within-domain constructor and a cross-domain transfer. Each
patch is factorized into content code c⇤ and style code s⇤,
where (c⇤, s⇤) = (Ec(x⇤),Es(x⇤)). To transfer low resolution
to high resolution or vice versa, we swap encoder-decoder

pairs, see in Fig. 4(b). For example, to translate xL to x̂L!H ,
we extract the content code cL = Ec

L
(xL), and find the style

code from paired patch sH = Es

H
(xH), and use the decoder to

generate patch images x̂L!H = GH(Ec

L
(xL),Es

L
(xH), gL).

Our model contains two discriminators. The discriminator
DH aims to distinguish x̂L!H from real patch xH . On the
other hand, DL distinguishes x̂H!L from real patch xL. The
model is trained with a set of loss terms detailed as follows.

Bidirectional reconstruction losses compute the reconstruc-
tion error of image patch and latent code, which are defined
by

L
xH

recon
= E [||GH(Ec

H
(xH),Es

H
(xH), gH)� xH ||1] ,(2)

L
cL
recon

= E [||Ec

H
(GH(cL, sH , gL))� cL||1] , (3)

L
sH
recon

= E [||Es

H
(GH(cL, sH , gL))� sH ||1] . (4)

Adversarial loss ensures that generated patches should be
indistinguishable from the real ones. Fig. 5 illustrates the two
paths to generate high-resolution patches depending on how
we obtain the style code.

L
xH

GAN
= E [log(1� DH(GH(cL, sH , gL)))]

+ E [log(1� DH(GH(cL, s̃H , gL)))]

+ E [logDH(xH)] .

(5)

Transfer loss ensures the style code s̃H estimated by
TL(xL) is similar to the real style code sH extracted from
xH .

L
xL

Trans
= E [TL(xL)� sH ] . (6)

The final objective combines all of the loss terms:

min
{EH ,EL,GH ,GL,TH ,TL}

max
{DH ,DL}

L
xH

GAN
+ L

xL

GAN

+ �x(L
xH

recon
+ L

xL

recon
) + �c(L

cH
recon

+ L
cL
recon

)

+ �s(L
sH
recon

+ L
sL
recon

) + �s(L
xH

Trans
+ L

xL

Trans
) .

(7)
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Fig. 6. The pipeline of generating high-resolution patches.

C. Testing
During testing we can only use the low-resolution patches

to generate high-resolution patches. As shown in Fig. 5, we
get cL = Ec

L
(xL) and the georeference gL. We also estimate

s̃H from xL using T, i.e., s̃H = TL(xL). A high-resolution
patch can therefore be generated by xH = G(cL, s̃H , gL).
After getting all high resolution patches, we use Poisson
blending [14] to stitch the patches and obtain the high-
resolution panorama.

III. IMPLEMENTATION AND EXPERIMENT

Fig. 6 summarizes the pipeline of our system. The architec-
ture is inspired by [6], except that we include the georeference
information and predict the style code using a style transfer
encoder. The content encoder is composed of residual blocks
The style transfer encoder predicts the high-resolution style
code from a low-resolution patch. The decoder reconstructs
the image patch from the content code and style code. We
concatenate the style code and georeference information, and
use a multilayer perceptron (MLP) to obtain the normalization
weights and biases for the residual blocks in the decoder.

The discriminator D⇤ consists of two components DImage

⇤
and DLap

⇤ , where DImage

⇤ distinguishes real patches from
generated ones using the RGB cues and DLap

⇤ using the
Laplacian features, inspired by [16], [10]. We use LSGAN
[13] as our discriminator backbone.

A. Evaluation Metrics
We conduct user study to evaluate the quality of different

methods. At each round of evaluation, we show the user seven
randomly picked patches generated by the following methods:
MUNIT [7], CycleGAN [20], SRGAN [11], ours, ours w/o
Laplacian, ours w/o georeference g, ours w/o georeference and
Laplacian. With the input low-resolution patch as reference,
the user has to select two among seven patches generated by
different methods in terms of visual quality.

In addition to qualitative evaluation, we adopt LPIPS
(Learned Perceptual Image Patch Similarity) [19] as a metric
to measure the perceptual similarity between real and gener-
ated patches, xH and x̂L!H .

B. Results

Table III-B shows the evaluation results of different methods
with respect to LPIPS score and user study. We split the LPIPS
scores into Quartile (Q1,Q2,Q3) and mean, and the last column
of the table shows the results of user study. Many less-textured
patches have high similarity with their real high-resolution
versions so the scores will be within Q1. On the other hand,
complex patches often have lower similarity with the real
patches, so the scores will distribute within (Q2,Q3). SRGAN
is not good at adapting to color change, especially for complex
patches. Therefore, SRGAN only has a good score in (Q1),
but achieves much worse performance in (Q2,Q3). MUNIT
performs well in user study, in comparison with CycleGAN
and SRGAN. Our method achieves better LPIPS scores than
all other methods.

Fig. 7 shows some examples of high-resolution panoramas
generated by different methods. We also include the original
low-resolution panorama at the bottom of the figure for
reference. MUNIT does not have a style-transfer encoder
as our method does, and therefore it can only arbitrarily
choose a style code for generating a high-quality patch. Some
patches might not be suitable for the chosen style code and
thus the generated patch would exhibit an irrelevant style.
MUNIT, CycleGAN, and SRGAN do not use the geometric
information, and therefore the visual quality of generated
panorama might degrade at some locations.

IV. CONCLUSION

This work suggests a new way of acquiring high-resolution
panoramas of a scene. We present a learning-based system
that learns to hallucinate high-resolution panoramas from low-
resolution patches. The proposed system differs from previous
style-transfer and super-resolution methods in that it uses the
geometric information derived from SfM reconstruction. On
the other hand, novel view synthesis from captured high-
resolution panoramas is not applicable here because only
three or five high-resolution panoramas are captured at far-
apart spots and from different perspectives. The style transfer
encoder of our system can directly predict the style code from
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LPIPS User
Model Q1 Q2 Q3 Mean Studey

Low resolution 0.335 0.616 0.73 0.553 N/A
MUNIT [7] 0.447 0.578 0.682 0.562 42.18%

CycleGAN [20] 0.405 0.527 0.623 0.503 13.34%
SRGAN [11] 0.298 0.618 0.739 0.543 5.62%

w/o g and Lap 0.446 0.543 0.628 0.526 7.9%
w/o g 0.326 0.492 0.599 0.500 28.58%

w/o Lap 0.369 0.552 0.644 0.482 5.34%
Ours 0.289 0.487 0.593 0.435 48.58%

TABLE I
EVALUATION BY LPIPS SCORE AND USER STUDY. LOWER LPIPS MEANS

BETTER VISUAL QUALITY. FOR USER STUDY, THE PERCENTAGE MEANS
HOW LIKELY THE USER CONSIDERS THAT THE PATCH QUALITY IS GOOD.

low-resolution patches, which allows the system to produce
high-resolution results without paired correspondences. The
high-resolution panoramas generated by our approach are
visually appealing and exhibit better quality than the results
of state-of-the-art style-transfer and super-resolution methods,
in terms of LPISP scores and user study.
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Fig. 7. (a) Our result. (b)-(d) Different methods: MUNIT, CycleGAN, SRGAN. (e) Low-resolution input.
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