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Abstract—This paper presents unsupervised domain adversar-
ial training in angular space (UDAT-AS), a novel unsupervised
domain adversarial training method for facial expression recog-
nition (FER). UDAT is effective as it can adapt existing neural
network based classification models to the target domain by
utilizing only unlabeled data sets. It is realized by forming a
domain adversarial network consisting of a domain classifier and
a gradient reversal layer. UDAT reduces the domain dependency
of neural network based classification models by making them
insensitive to domain labels. However, conventional unsupervised
domain adversarial training is not suitable for FER because facial
expressions strongly depend on the domain of the training data
sets, e.g., race, gender, shooting environment, and pose. In order
to learn domain invariance more clearly, our key advance in
UDAT-AS is to perform unsupervised domain adversarial train-
ing with angular softmax loss. UDAT-AS is an extension of the
domain adversarial network; its domain classifier uses angular
softmax loss, a commonly utilized metric learning technique. This
enables us to efficiently reduce domain bias in FER models and
allow the effective use of unlabeled target domain data sets. We
evaluate our approach using two different collection methods,
and demonstrate that our method outperforms conventional
alternatives.

I. INTRODUCTION

Facial expressions are an important part of understanding
the emotional state of people [1]. Automatic facial expression
recognition (FER) is expected to be used in various ap-
plications such as human-computer-interaction, robotics, and
healthcare. Recently, fully neural network based methods using
a large number of face images have advanced recognition
performance [2], [3]. One remaining issue is that most facial
expression data sets suffer from the domain bias problem. This
is because human faces have complex and wide domains due
to differences in race, age, face pose, photograph condition,
and facial expressions. Thus, it is difficult to train universal
FER models that can be applied to any face data.

The domain bias problem can be often tackled by domain
adaptation, which learns to shift an existing source domain
to the target domain [4]. In particular, unsupervised domain
adaptation can optimize the domain shift by using only un-
labeled data sets. One of the most representative unsuper-
vised domain adaptation methods compatible with fully neural
network based classification models is unsupervised domain
adversarial training (UDAT) [5]. The main strategy of UDAT
is to add a domain classifier and a gradient reversal layer to the
domain adversarial network. This helps to reduce the domain
dependency of the neural network based classification models
by making training insensitive to domain bias, e.g., learning

domain invariant features. It is reported that UDAT offers good
adaptation performance in speaker recognition [6].

However, conventional UDAT is not suitable for FER be-
cause facial expressions strongly depend on the training data
domain, e.g., race, gender, shooting environment, and pose. In
other words, it is difficult for FER models to be insensitive to
domain bias. Therefore, a more sophisticated UDAT is needed
if we are to acquire domain invariant features. To this end, our
key idea is to utilize angular softmax loss in UDAT. This idea
is motivated by its success in face verification; the angular
softmax loss is leveraged for metric learning [7]–[9]. It is
known that the angular softmax loss is superior to cross-
entropy loss for clearly separating input features. Thus, we
can expect to attain domain invariant features by introducing
the angular softmax loss to the domain classification network
in the domain adversarial network.

In this paper, we propose UDAT in angular space (UDAT-
AS). UDAT-AS computes the angular softmax loss by utilizing
the norm of features and weights in the last layer in the domain
classifier. The angular softmax loss is leveraged for reducing
domain bias in the FER models thorough the gradient reversal
layer. In addition, UDAT-AS considers the angular margin [9]
between a source domain and the target domain to efficiently
learn domain invariant features. To the best of our knowledge,
this paper is the first study to utilize angular space for UDAT.
In our experiments, we use two FER data sets from different
domains, and compare the proposal with conventional UDAT.
We show that our angular softmax loss term and angular
margin effectively improve UDAT.

II. RELATED WORK

A. Neural Facial Expression Recognition

Many FER tasks set the goal of recognizing seven facial
expressions, including the seven basic facial expressions (an-
gry, disgust, fear, happy, sad, surprise, and neutral) . In recent
years, methods using convolutional neural networks (CNNs)
such as VGG [10], ResNet [11] has been proposed. It is
reported that CNN is robust to facial position and orientation
in FER [12]. Other studies consider face distortion components
using face alignment based on landmark information [13] and
covariance pooling [14]. Furthermore, FER performance can
be improved by fine tuning of pre-trained CNN trained with a
large amount of face images; examples include FaceNet [15],
VGGface [16], and VGGface2 [17]. In this work, we examine
UDAT with the utilization of pre-trained CNN networks.
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B. Unsupervised Domain Adaptation for Neural Networks

Unsupervised domain adaptation is the approach of trans-
ferring machine learning models into the target domain by
utilizing only unlabeled data sets. Recently, several studies
have described unsupervised domain adaptation specific to
fully neural network based methods. Representative methods
attempt to match the distribution of the source representations
with that of the target without considering sample category [5],
[18]–[21]. Of particular interest, domain classifier-based adap-
tation algorithms have been applied to many tasks [6]. This
paper also adopts the domain classifier-based approach for
unsupervised domain adaptation. In addition, some methods
specific to FER have been proposed. While existing methods
use limited 3D facial expression data sets and enable domain
adaptation independent of subject and pose [22], [23], UDAT-
AS, our proposed unsupervised domain adaptation method,
can be applied to any classification modeling by using 2D
facial expression data sets.

C. Angular Softmax Loss

Angular softmax loss is now being utilized for face verifi-
cation tasks [7]–[9]. The face images are mapped into angular
space and the discriminative features in the angular space are
acquired by using the angular softmax loss. It is known that
angular softmax loss can make inter-class variances larger and
intra-class variances smaller compared with standard softmax
loss. The angular softmax loss has some variants. CosFace
and SphereFace use the extended angular softmax loss in
which a non-linear angular margin is used in learning hidden
representations on a hypersphere [7], [8]. Similarly, ArcFace
learns hidden representations on a hypersphere and adds a
constant linear angular margin between classes [9]. In this
work, we utilize the angular softmax loss with the linear
angular margin, which is used in the ArcFace, for UDAT-AS.

III. NEURAL FACIAL EXPRESSION RECOGNITION

This section describes fully neural network based FER. The
problem is to use neural networks for estimating the proba-
bility distribution of facial expressions y = [y1, · · · , y|Y |]

⊤

and so categorize input face image x. The face images are
represented in the fundamental RGB color space and Y
represents a set of classes. In this case, the neural FER models
are composed of a feature extraction network and a label
prediction network. The neural networks first produce pre-
output representation y′ by

y′ = Gy(Gf (x;θf );θy), (1)

where Gf () denotes the feature extraction network that con-
verts an input feature into a hidden feature representation
and Gy() denotes a part of the label prediction network
that converts the hidden feature representation into the pre-
output representation. θf and θy are model parameters for
each network. For both functions, arbitrary network structures
such as VGG, ResNet, and fully-connected network can be

leveraged. In the output layer in the label prediction network,
the predicted probability for the i-th class is computed as

yi =
exp(w⊤

i y
′)∑|Y |

k=1 exp(w
⊤
k y

′)
, (2)

where {w1, · · · ,w|Y |} ∈ θy are the parameters in the output
layer with the use of softmax activation.

Model parameters Θ = {θf , θy} can be optimized by
preparing training data set D = {(x1, ȳ1), · · · , (xN , ȳN )}
where ȳn = [ȳn1 , · · · , ȳn|Y |]

⊤ is represented as a one-hot vector.
In this case, cross-entropy loss, i.e., softmax loss, is computed
as

L = − 1

N

N∑
n=1

|Y |∑
i=1

ȳni log yni , (3)

where yn = [yn1 , · · · , yn|Y |]
⊤ is the estimated probability

distribution for the n-th face image xn. The optimization is
conducted by mini-batch stochastic gradient descent (SGD).
The model parameters are updated by

Θ←− Θ− µ
∂Ll

∂Θ
, (4)

where µ is the learning rate and Ll is the softmax loss for the
l-th mini-batch.

IV. CONVENTIONAL UNSUPERVISED DOMAIN
ADVERSARIAL TRAINING

This section briefly describes conventional UDAT [5]. Its
training uses both source domain data sets with annotated
class labels and target domain data sets without class labels
to optimize a fully neural network FER model for the target
domain. To this end, a domain adversarial network is formed
from not only the feature extraction network and the label
prediction network, but also a domain classification network
and a gradient reversal layer. The gradient reversal layer out-
puts the input vectors without any conversion during forward
propagation, and sign inversion of the gradients during back
propagation [5].

The feature extraction network and the label prediction
network are defined as Eqs. (1) and (2), respectively. The
domain classification network estimates the probability dis-
tribution of domain labels d = [ds, dt]

⊤ from the hidden
feature representation of the input face image. A pre-output
representation in the domain classification network is given
by

d′ = Gd(Gf (x;θf );θd), (5)

where Gd() denotes that part of the domain classification
network that converts the hidden feature representation into
the pre-output representation, and θd represents the model
parameters for the domain classification network. In the output
layer of the domain classification network, the predicted
probability of the target domain label is computed by

dt =
exp(z⊤

t d′)

exp(z⊤
s d′) + exp(z⊤

t d′)
, (6)
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where {zs, zt} ∈ θd are the parameters in the output layer
assuming the use of softmax activation.

In UDAT, model parameters are optimized by
preparing both source domain training data set
Ds = {(x1, ȳ1), · · · , (xN , ȳN )} and target domain training
data set Dt = {xN+1, · · · ,xN+M}. UDAT attempts to
make the distributions of hidden feature representations for
the source domain data sets similar to those for the target
domain data sets. In order to achieve domain invariant feature
extraction in UDAT, we define the objective probability
distributions of domain labels for the source domain
training data set as d̄n = [1.0, 0.0]⊤. On the other hand,
we define those for the target domain training data set
as d̄n = [0.0, 1.0]⊤. In this case, loss functions for label
prediction and domain classification can be defined as

Ly = − 1

N

N∑
n=1

|Y |∑
i=1

ȳni log yni , (7)

Ld = − 1

N +M

N+M∑
n=1

(d̄ns log d
n
s + d̄nt log d

n
t ), (8)

where yn = [yn1 , · · · , yn|Y |]
⊤ and dn = [dns , d

n
t ]

⊤ are the
estimated probability distributions for the n-th face image. The
optimization is conducted by mini-batch SGD. Due to use of
the gradient reversal layer, the model parameters are updated
as follows:

θy ←− θy − µ
∂Ll

y

∂θy
, (9)

θd ←− θd − µ
∂Ll

d

∂θd
, (10)

θf ←− θf − µ(
∂Ll

y

∂θf
− λ

∂Ll
d

∂θf
), (11)

where µ is the learning rate, hyper parameter λ has the role
of adjusting the trade-off between the two predictions, and Ll

y

and Ll
d are the softmax losses for the label prediction and

the domain classification, respectively, for the l-th mini-batch.
Note that UDAT is suppressed by setting λ to 0.0.

V. PROPOSED METHOD

This section details our proposal, UDAT-AS. Its main dif-
ference from UDAT is its use of angular softmax loss in
the domain classification network. UDAT-AS computes the
angular softmax loss by utilizing the norm of features and
weights in the last layer of the domain classification network.
The angular softmax loss is leveraged for reducing domain
bias in the FER models through the gradient reversal layer.

Figure 1 shows the network structure of UDAT-AS. Its
domain classification network estimates the probability distri-
bution of domain labels r = [rs, rt]

⊤ from the hidden feature
representation of the input face image. As in conventional
UDAT, the domain classification network produces the pre-
output representation by

r′ = Gd(Gf (x;θf );θr), (12)

where Gd is the same function as in Eq. (5) and θr are the
model parameters for the domain classification network with
angular softmax activation. The output layer of the domain
classification network computes the predicted probability of
the target domain label by

rt =
exp(s cos ρt)

exp(s cos ρs) + exp(s cos ρt)
, (13)

where s is a scaling factor for the angular softmax function.
cos ρt is computed by

cos ρt =
z⊤
t r′t

||z′
t|| · ||r′t||

. (14)

In addition, we introduce an angular margin term to increase
the between-class distances in the angular space. Figure 2
shows how the angular margin is used. The angular margin
corresponds to the geodesic distance margin penalty in the
normalized hypersphere; it takes account of the ground-truth
domain labels. When the ground-truth is the target domain,
the predicted probability for the target domain is computed by

rt =
exp(s cos(ρt +m))

exp(s cos ρs) + exp(s cos(ρt +m))
, (15)

where m denotes the angular margin. On the other hand, when
the ground-truth is the source domain, the predicted probability
for the target domain is computed by

rt =
exp(s cos ρt)

exp(s cos(ρs +m)) + exp(s cos ρt)
. (16)

UDAT-AS operates in the same manner as conventional
UDAT. Thus, we prepare source domain training data set
Ds = {(x1, ȳ1), · · · , (xN , ȳN )} and target domain training
data set Dt = {xN+1, · · · ,xN+M}. In addition, we define
the objective probability distributions of domain labels for the
source domain training data set as r̄n = [1.0, 0.0]⊤ and those
for the target domain training data set as r̄n = [0.0, 1.0]⊤.
In this case, loss functions for the label prediction and the
domain classification are defined as

Ly = − 1

N

N∑
n=1

|Y |∑
i=1

ȳni log yni , (17)

Lr = − 1

N +M

N+M∑
n=1

(r̄ns log rns + r̄nt log rnt ), (18)

where yn = [yn1 , · · · , yn|Y |]
⊤ and rn = [rns , r

n
t ]

⊤ are the
estimated probability distributions for the n-th face image.
Optimization is performed by mini-batch SGD. Due to use of
the gradient reversal layer, the model parameters are updated
as follows

θy ←− θy − µ
∂Ll

y

∂θy
, (19)

θr ←− θr − µ
∂Ll

r

∂θr
, (20)

θf ←− θf − µ(
∂Ll

y

∂θf
− λ

∂Ll
r

∂θf
), (21)

where Ll
r is the angular softmax loss for the l-th mini-batch.
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Fig. 1. The pipeline of unsupervised domain adversarial training in angular
space
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Fig. 2. Unsupervised domain adversarial training in angular space with margin
added to ground-truth domain

VI. EXPERIMENTS

A. Datasets

We use two public facial expression datasets to evaluate
UDAT-AS.

a) FER2013: The FER2013 dataset is a face image data
set having seven classes of facial expressions: the six basic fa-
cial expressions and neutral expression [24]. All 35,887 images
are 48x48 resolution grayscale images without background.
The images were automatically collected from Google image
search using 184 keywords related to emotions; the keywords

were manually associated with the seven facial expression
categories. We split all images into training data set (28,707
images), and test data set (3,589 images).

b) RAF-DB: The RAF-DB dataset is also a face image
data set having the same seven categories [25], [26]. The
15,339 images are 100x100 resolution RGB color images
without background. The images were collected from SNS
sites using keywords related to emotions and facial expression
categories were manually annotated. We split all images into
training data set (12,271 images), and test data set (3,068
images).

B. Implementation Details

In our experiments, we used a unified CNN network struc-
ture for FER. We used the modified version of the VGG16
architecture, which introduced 13 convolutional layers and 4
fully-connected layers. Input shape of the network was set to
(224, 224, 3). Note that the last layer corresponds to a softmax
layer with linear transformation. When we performed UDAT,
the domain classification network was connected to the second
fully-connected layer. The domain classification network was
composed of 3 fully-connected layers where the last layer
corresponds to the softmax layer or the angular softmax layer.

To train these networks, we used the SGD optimizer where
the learning rate was set to 0.001 and batch size was set to
64. For UDAT, we altered parameter λ, which controls the
influence of adversarial training, from 0.0-1.0 in steps of 0.1
and selected the value with the highest performance. For the
angular softmax loss, we set the scaling parameter s to 64 and
margin parameter m to 0.5. For training, we examined two
setups. One is flat-start training in which all initial parameters
were randomly initialized. The other is fine-tuning of pre-
trained model that was trained by VGGface [16].

C. Results

Results of evaluating RAF-DB and FER2013 data sets with
exchange of the source and target data are shown on Tables 1
and 2. Table 1 shows results without pre-training while Table
2 shows those with VGGface pre-training.

In each table, S:FER2013 means that FER2013 was set
to the source domain. On the other hand, T:RAF-DB means
that RAF-DB was set to the target domain. Line 1 shows
the ideal results gained by utilizing the labeled target domain
data sets. Line 2 shows the results gained by utilizing labeled
source domain data sets. The results show that there is a
performance gap between line 1 and line 2. This indicates that
domain bias is clearly present in the different facial expression
datasets. In each table, Lines 3 show results of UDAT using
standard softmax loss that used both labeled source domain
data sets and unlabeled target domain data sets. Lines 4-5
are for UDAT-AS. The results show that each UDAT method
outperformed the use of only labeled source domain data
sets. This confirms that UDAT methods are an effective way
of improving performance in the target domain. In addition,
lines 4 and 5 (UDAT-AS) yielded better performance than
line 3 (UDAT). This verified that angular softmax loss was
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TABLE I
RECOGNITION ACCURACY ACHIEVED WITHOUT PRE-TRAINED MODEL (%)

Method S:FER2013 S:RAF-DB
T:RAF-DB T:FER2013

Train on target 74.13 60.15
Source only 58.55 39.04

UDAT (using softmax loss) 59.68 42.21
UDAT-AS 60.63 43.63

UDAT-AS with margin 61.34 44.41

TABLE II
RECOGNITION ACCURACY ACHIEVED WITH PRE-TRAINED MODEL (%)

Method S:FER2013 S:RAF-DB
T:RAF-DB T:FER2013

Train on target 84.78 70.49
Source only 66.10 53.78

UDAT (using softmax loss) 67.57 54.81
UDAT-AS 68.25 55.50

UDAT-AS with margin 68.61 56.34

more effective than standard softmax loss. It is thought that
the angular softmax loss helped to achieve domain invariant
features in the FER model. The highest results were achieved
by the angular softmax loss with angular margin. This indi-
cates that increasing the between-class distances in the angular
space can improve the performance of unsupervised domain
adaptation. Furthermore, Table 1 and 2 show that UDAT-AS
offered performance improvements whether the pre-trained
model was used or not. Thus, we can conclude that pre-
trained methods can be combined with unsupervised domain
adversarial training.

Figure 3 shows a visualization of the output feature vectors
of the layer before the gradient reversal layer. The feature
vectors were dimensionally reduced to 2 dimensional map
by t-SNE [27]. In this experiment, we used FER2013 as the
source data and RAF-DB as the target data, and each model
was trained with pre-training. We used test data of source
and target datasets as input data for the feature extraction.
The mismatched distribution of target and source features
indicates that domain invariant features are not acquired. In
the results for “Source Only”, features of target data do not
overlap those of source data. This indicates that the trained
model was not invariant to domain dependency. The results
for “UDAT” showed that less mismatches were attained than
“Source Only”. The results for “UDAT-AS with margin”
showed that features of target data match those of source data
more clearly. This indicates that our proposed UDAT acquired
domain invariant features over conventional UDAT.

VII. CONCLUSION

In this paper, we proposed an unsupervised domain adver-
sarial training (UDAT) method in angular space (UDAT-AS) to
improve the performance of unsupervised domain adaptation
in facial expression recognition models. Main strength of the
proposed method is that domain invariant feature extraction
can be well trained by introducing just angular softmax loss
to the domain classification network. Experiments showed that

��������	
� ��� ������ ����������	

��������������	���
��� ������������������
���

Fig. 3. Visualization of the feature map before the gradient reversal layer

our proposed method offers significant improvements over
UDAT and yield better performance in the target domain. In
future work, we will apply UDAT-AS to other classification
tasks and generation tasks that involve unsupervised domain
adaptation.
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