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Abstract—Diagnosis of Major Depressive Disorder (MDD) is
currently a lengthy procedure, due to the low diagnostic accuracy
of clinically readily available biomarkers. We integrate predic-
tions from multiple datasets based on a credibility parameter
defined on the probabilistic distributions of individual sparse
prediction models. We demonstrate by means of structural
and resting-state functional Magnetic Resonance Imaging and
blood markers obtained from 62 treatment naive MDD patients
(age 40.63±9.28, 36 female, HRSD 20.03±4.94) and 66 controls
without mental disease history (age 35.52±12.91, 30 female), that
our method called Maximum Credibility Voting (MCV) signif-
icantly increases diagnostic accuracy from about 65% average
classification accuracy of individual biomarker models to 80%
(accuracy after integration of the models). Classification results
from different combinations of the available datasets validate the
method’s stability with respect to redundant or contradictory
predictions. By definition, MCV is applicable to any desired
data and compatible with missing values, ensuring continued
improvement of diagnostic accuracy and patient comfort as new
data acquisition methods and markers emerge.

I. INTRODUCTION

Due to a lack of profound knowledge of functional and
physiological characteristics, the diagnosis of Major Depres-
sive Disorder (MDD) is currently based on lengthy and tedious
evaluations of behavioral symptoms [1]. The complexity in
expression, as well as progression of these symptoms, further
impede diagnostic procedures. However, reliable diagnosis and
connection of the symptoms to physiology is a prerequisite
for effective psychological and pharmacological interventions.
Hence, with the number of MDD patients surging worldwide,
identification of accurate and distinctive fingerprints of the
disease is becoming increasingly urgent [2]. Advances in
neuroimaging and data analysis techniques have triggered an
intensive search for MDD-relevant biomarkers, continuously
revealing statistically significant differences between depres-
sion patients and healthy controls [2] and encouraging diagno-

sis of MDD through machine learning algorithms [3]. Despite
significant progress, however, accurate clinically translatable
biomarkers for MDD are yet to be defined[4], [2], [5], one
pervasive limitation being the heterogeneity inherent in MDD
studies. As a result, individual biomarkers generally exhibit
low specificity and sensitivity and are prone to confounding
factors.

Integrative evaluation methods using multiple biomarkers
have thus been suggested to improve prediction. Hahn et
al. [6] trained Gaussian process (GP) classifiers of brain
activity during three separate tasks involving emotional and
reward processing and integrated their predictions using a
decision tree algorithm. This method resulted in a classifi-
cation accuracy of 83% (sensitivity, 80%; specificity, 87%),
an improvement in accuracy of 11% compared with the single
best of all GP classifiers, suggesting that several neurological
pathways contribute to a more robust classification. A sim-
ilar effect was demonstrated with multiplex protein assays,
where over 90% prediction accuracy was achieved [7], [8]
by mathematically integrating nine blood protein markers as
well as physical measures into a single MDD score, again
suggesting the consideration of multiple biological pathways
as robust source of tissue-based MDD biomarkers with trait
and state characteristics [2]. Considering the multiple facets
of MDD symptoms and development, this seems a reasonable
if not necessary approach. While both of the aforementioned
studies are very promising, an obstacle for clinical application
is that they are both highly specific with respect to the acquired
biomarkers, as well as data evaluation.

We propose a novel, more flexible method, which allows
for integration of any biomarker acquired by any modality.
The idea is to simplify the process of deciding which of
the available biomarkers delivers the most reliable diagnosis
for a certain subject. In the studies described above, this is
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done by creating a decision tree and mathematical formula,
respectively, both of which are tailored specifically for the
available biomarkers. In a previous study [9] we reported that
probabilistic classification algorithms can provide an estima-
tion of the prediction reliability based on the overlap of the
odds ratio distributions for target and control group. Here, we
make this idea explicit and introduce a prediction credibility
measure C(z), defined on these odds ratio distributions, which
expresses the chance that a certain odds ratio predicts the
correct diagnosis. Essentially, this measure can be seen as
local prediction accuracy. This credibility measure can be
estimated for any probabilistic model, enabling ranking of
multiple predictions according to their diagnostic reliability.
The most reliable prediction is considered diagnostically valid.
Commonly, it is believed that the higher the absolute value of
the odds ratio, the higher the chance of correct prediction.
However, this is only true if the distributions are to a certain
extent well separated and even then the problem of predic-
tion reliability for small odds ratios, where the distributions
overlap, still remains. We demonstrate that in contrast to other
simple integration methods applied to the odds ratios (majority
of votes, sum, maximum, and mean of odds ratio), our method
called Maximum Credibility Voting (MCV), consistently im-
proves prediction accuracy. It is further superior to common
approaches such as support vector machine (SVM) and re-
gression tree with respect to its formulation. It is formulated
such that the addition of biomarkers remains optional and its
application to data with missing values (i. e. measurements)
is possible without modification of the algorithm. The only
requirement is the estimation of the credibility measure for
the model of the new data.

We demonstrate the aforementioned benefits of MCV for
clinical MDD diagnosis by means of anatomical MRI data,
resting state fMRI data, and the methylation rate at several
CpG islands in the promotor region of the brain derived
neurotrophic factor (BDNF) gene. We further demonstrate how
the results of MCV can be used to stratify subjects based on
which data yields the most reliable diagnosis and which MDD
symptoms they exhibit. In contrast to task-based fMRI data
acquisition, structural MRI and rsfMRI scans can be rapidly
acquired and processed. Instructions are simple and prognostic
procedures can be kept short and uncomplicated, making them
suitable for a wide range of subjects (i. e. subjects with
difficulties adhering to task paradigms). Further, identified
discriminative brain regions can be directly related to their
physiological cause, namely, substance loss or increase in
brain tissue in the case of structural data and loss or increase of
spontaneous neural activity in the case of rsfMRI. The same is
true for the methylation rate, which inhibits gene transcription
and in turn inhibits neurogenesis in cortex [10]. Unlike protein
identification, determination of the methylation rate at several
sites can be accomplished in a single measurement.

The only requirement for classification models of the data
we wish to integrate is that they are of probabilistic nature.
In this study, we chose Elastic Net and sparse logistic regres-
sion with a least absolute shrinkage and selection operator

(LASSO). These models limit the number of effective vari-
ables by penalizing the sum of the absolute weights or the
sum of squared weights and setting small weights to zero
depending on a given threshold. As a result, they return a
model based on features with the most discriminative relevance
only (compare with SVM, which is inherently based on all
input features, so that there is a risk of noise or nothing at all).
In addition, we have previously shown that these algorithms
can successfully handle a number of features that are several
times larger than the number of training instances [9]. For
this reason, we opted for whole brain analysis rather than
targeted brain area analysis, with the intent to construct an
unbiased classification model and to reveal new brain areas as
MDD indicators. The same holds for the application of these
algorithms to the methylation data.

II. MATERIALS AND METHODS

This study was approved by Research Ethics Committee of
the Okinawa Institute of Science and Technology and the Re-
search Ethics Committee of Hiroshima University (permission
nr.172). All methods were performed in accordance with the
relevant guidelines and regulations.

A. Subjects

Sixty-two MDD patients (age 40.63±9.28, 30 female), free
of substance-related disorders other than alcohol and any
co-morbidity were recruited by the Psychiatry Department
of Hiroshima University. They were diagnosed by senior
psychiatrists according to DSM-IV[1] criteria, interviews and
information from medical records. Diagnosis was reconfirmed
by experienced psychiatrists and psychologists at the time
of participation in the study, using the Japanese version of
the Mini-International Neuropsychiatric Interview (M.I.N.I
[11]), which has been shown to have good to excellent
interrater and test-retest reliability [12]. All patients had been
treated less than 14 days at the time of participation in
the study. Beck Depression Inventory (BDI) scores for this
group ranged from 11 to 53 (average 30.52±9.08) and Patient
Health Questionnaire (PHQ9) scores from 6 to 26 (average
17.71±4.5). About half of the patients had experienced a
previous depression period. Age of depression onset was
38.22±1.07. The length of the episode at time of the study var-
ied considerably (160.98±209.54 days). Depression severity
was evaluated using the Hamilton Rating Scale for Depression
(HRSD17 20.03±4.94). In addition the scores for following
self-reported measures were recorded: Snaith-Hamilton Plea-
sure Scale (SHAPS), State Trait Anxiety Inventory (STAI),
Child Abuse Trauma Scale (CATS), Life Event Scale (LES).

As control group, 66 persons (age 35.52±12.91, 36 female)
free of mental or neurological disease history were recruited by
advertisements in local newspapers. All healthy controls (HC)
underwent the same self-assessments and examinations admin-
istered to the MDD group (except for MDD-specific HRSD).
BDI scores were between 0 and 24 (average 6.74±5.88) and
PHQ9 ranged from 0 to 18 (average 3.36±3.76). 61 MDD
subjects (out of 62) had values ≥14 (standard cutoff for MDD
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at Hiroshima University), while 57 controls (out of 66) had
scores under 14. For PHQ9 scores with a cutoff value of
10, 60 patients had scores ≥10 and 61 controls under 10.
Subjects of both groups completed the Japanese version of
the National Adult Reading Test [13] for an estimate of their
IQ (108.37±9.81 for the MDD group and 113.32±8.03 for
controls, Table I).

Two-sample t-test was used for continuous variables, χ
square test for binary variables. For estimation of the classifi-
cation models, sex and age matched subsets of these subjects
were used (see appendix for comparative evaluation of the
demographic and clinical characteristics of these subsets).
Nomenclature: BDI II = Beck’s Depression Inventory II, PHQ9 =
9 Question Patient Health Questionnaire, SHAPS = Snaith-Hamilton
Pleasure Scale, STAI = State Trait Anxiety Inventory, CATS = Child
Abuse and Trauma Scale, LES = Life Event Stress, HRSD17 = 17
Question Hamilton Rating Scale of Depression

Written informed consent was obtained from all participants (ap-
proved by the Research Ethics Committee of the Okinawa Institute
of Science and Technology and the Research Ethics Committee of
Hiroshima University).

TABLE I
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF ALL SUBJECTS INCLUDED IN THE

STUDY.
MDD Control p-value

Number of subjects 62 66 -
Sex (male/female) 32/30 30/36 0.49
Age (years) 40.63 ± 9.28 35.52 ± 12.91 0.04*a

IQ 108.37 ± 9.81 113.32 ± 8.03 0.6
Alcohol dependent subjects 5 0 0.02*
BDI II b 30.52 ± 9.08 6.74 ± 5.88 2.03e-09***
PHQ 9 17.71 ± 4.50 3.36 ± 3.76 9e-14***
SHAPS 37.26 ± 5.46 23.62 ± 6.13 2.34e-09***
STAI 56.48 ± 7.76 40.5 ± 8.82 1.45e-05***
CATS 34.75± 23.20 24.89 ± 14.30 0.56
LES -6.57 ± 6.39 -0.71 ± 3.90 0.006**
HRSD 20.03 ± 4.94 - -
Age of Depression Onset (years) 38.22 ± 1.07 - -
Number of Previous Episodes 0.61 ± 0.94 - -
Length of Current Episode (days) 160.98 ± 209.54 - -
Lexapro single agent 52 - -
Lexapro combination 2 - -
Other single agent 2 - -
No Treatment 6 - -
a Asterisks denote significant differences: *p<0.05, **p<0.01,***p<0.001.
b Nomenclature: BDI II = Beck’s Depression Inventory II, PHQ9 = 9 Question Patient

Health Questionnaire, SHAPS = Snaith-Hamilton Pleasure Scale, STAI = State Trait
Anxiety Inventory, CATS = Child Abuse and Trauma Scale, LES = Life Event Stress,
HRSD17 = 17 Question Hamilton Rating Scale of Depression

B. Data
Anatomical and resting state functional MRI data were collected

from all participants. Blood samples could only be obtained for a
subgroup.

MRI Data: Anatomical T1 images were acquired on a 3T GE
Signa HDx scanner (IRP FSPGR, TR = 6.32 ms, FA=20, voxel size
1x1x1mm, matrix size 256 x 256 x 180) and processed using VBM8
(Christian Gaser, University of Jena, Department of Psychiatry),
yielding voxel wise white matter (WM) and gray matter (GM) density
maps.

For acquisition of resting state functional MRI (rsfMRI) data, sub-
jects were asked to close their eyes and relax. Images were obtained
over 5 min, resulting in 145 images (2D EP/GR, TR=2000ms, no
gaps, interleaved, matrix size 64 x 64 x 32, voxel size 4x4x4mm).
Debriefing routinely conducted after the scans revealed that two
subjects had fallen asleep during the measurement. Their data were
thus excluded from analysis. Measurements during which patients had
moved more than 3mm or 3 degrees translationally or rotationally,
respectively, were also excluded (exclusion of the whole time series).
The difference in motion between MDD and HC subjects of which

data was used to estimate classification models was not significant
(p=0.68, average framewise displacement for controls 0.08±0.10mm
and 0.07±0.05mm for MDD subjects, see Appendix).

Images were realigned, normalized and smoothed (FWHM = 8mm)
using SPM8 (Wellcome Trust Centre for Neuroimaging, UCL, Lon-
don). Motion was regressed out using the standard six-head motion
parameters. Time series were band pass filtered (0.009-0.1Hz) and de-
trended using the Resting-State fMRI Data Analysis Toolkit (REST
[14]). Using the band pass filtered rsfMRI measurements, functional
connectivity between regions of interest (ROIs) was evaluated as
correlation coefficients between the average time series of BOLD
fMRI signals of ROIs. The ROIs consist of 90 brain regions across
14 intrinsic connectivity networks that were derived by means of
Independent Component Analysis [15]. These networks comprise
(number of ROIs in parentheses): Anterior Salience (7), Auditory
(3), Basal Ganglia (5), Dorsal Default Mode (9), Language (7), Left
Executive Control (6), Precuneus (4), Posterior Salience (12), Right
Executive Control (6), Ventral Default Mode (10), Visuospatial (11),
Primary Visual (2), Higher Visual (2), and Sensorimotor (6) network.
Nifti templates of the ROIs are publicly available [16]. We discarded
correlations if the probability that there is an actual relationship
between the time series, was small (p¿0.01) for all healthy subjects.
This ensures that connections passed to the classification algorithms
are functionally meaningful in terms of synchronization. The thresh-
old of 0.01 was used in order to retain connections for which
there is substantial evidence against the null hypothesis (i. e. that
the found correlation is coincidence), while leaving a margin for
weaker correlations that might be of importance to establish group
differences. This resulted in 108 connections.

While functional connectivity identifies spatial patterns of syn-
chronous low-frequency oscillations on a network level, it does
not reveal information on localized dysfunctions of specific brain
regions, which ultimately contribute to network abnormalities. Such
local brain activity can be assessed by evaluating low-frequency
oscillations themselves. We have done this by calculating the Ampli-
tude of Low frequency fluctuation (ALFF), which accounts for the
summed amplitude in the low frequency range (0.009-0.1Hz), and
Regional Homogeneity (ReHo), which accounts for signal homogene-
ity between neighbouring voxels. We also assessed fractional ALFF
(fALFF), which evaluates the ratio of a low frequency amplitude
(0.009-0.1Hz) with respect to the amplitude of the whole frequency
spectrum. As a results we have an absolute measure of low frequency
fluctuations (ALFF) and a relative measure (fALFF). While fALFF
is robuster to physiological noise, ALFF shows higher test-retest reli-
ability in gray matter regions and thus more sensitive for differences
between groups [17]. However, we decided to evaluate both measures
due to their different characteristics. All three local parameters were
assessed using REST[14].

Bloodmarkers: Genomic DNA was extracted from the acquired
blood samples and the methylation rate at 32 CpG islands at pro-
moters of the BDNF exon1 gene was assessed using a MassArrayH
system (SEQUENOM). The majority of these sites have previously
been shown to be related to depression [18] (see appendix for details).

For each acquired diagnostic feature, data were age- and sex-
matched with respect to patient and control group. The number of
subjects in each group was matched in order to avoid sample size
bias during model estimation. This resulted in 60 subjects per group
for the anatomical data, 42 subjects for per group for the resting state
data and 33 subjects per group for the BDNF methylation data (See
Appendix for demographic and clinical comparison of the groups
used for each feature).

Data Availability Statement: Due to potentially identifying informa-
tion, data for this study are restricted by the Ethical Committee for
Epidemiology of Hiroshima University, Japan. Interested, qualified re-
searchers may request the data by contacting Dr. Shoji Karatsu (kasumi-
kenkyu@office.hiroshimau.ac.jp)
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C. Classification
Datawise Classification: The sole requirement for Maximum

Credibility Voting is for the applied models to be probabilistic,
i. e. the models provide odds ratio distributions for control and
target (i. e. MDD patient) group. As previously mentioned, we chose
algorithms that are effective in handling a large number of features
relative to the number of subjects [9]. In this way, we can make use
of all information in the datasets and achieve classification without
bias introduced by prior assumptions.

We applied Elastic net and logistic regression with Least Absolute
Shrinkage and Selection Operator (sLASSO) regularization to the
brain area-wise mean of WM, GM, rsfMRI ALFF and ReHo maps.
We also applied both methods to FC and BDNF methylation. The
whole volume data of WM, GM, ALFF and ReHo were also subjected
to group LASSO (gLASSO) regression, where the sum of weights
for voxels located in the same brain area (defined in the anatomical
labeling atlas AAL [19]) is constrained, resulting in brain area-
wise reduction of discriminative voxels [9]. These sparse algorithms
return only features with the greatest diagnostic relevance, clearly
identifying MDD correlates.

Validity of models and their regularization parameters were as-
sessed using 10-fold nested cross-validation, repeated 10 times, each
time shuffling training and test data.

Model evaluation was based on standard parameter accuracy (per-
centage of correctly diagnosed subjects), specificity (the percentage
of healthy controls, correctly identified as such) and sensitivity
(percentage of patients correctly identified as such).

Integrated Classification - Maximum Credibility Voting
(MCV): Probabilistic classifiers yield negative and positive log odds
ratios z = ln(p/(1 − p)), where p is the predictive probability that
the subject belongs to the target group (here, the MDD group). These
log odds ratios (usually) assume different distributions for control and
target groups. The overlap of these two distributions gives information
on the reliability of a prediction with a certain odds ratio. We fit the
normalized log odds ratio distributions for HCs and patients in the
training data using the Weibull distribution function (Fig. 1):

Wλk(z) =
k

λ
(
z + 1

λ
)k−1e−( z+1

λ
)k , (1)

z > 0, where k > 0 allows for a skewed shape of the distribution
and λ > 0 determines the width of the distribution. These parameters
were fitted using maximum likelihood estimation. Since the Weibull
function exists strictly only for positive values, log odds ratios were
shifted by 1 before fitting and were shifted back thereafter.

In the following, we denote the Weibull distribution fitted for log
odds ratios of HCs and MDD patients as W− and W+, respectively.
The values of W− and W+ at a certain log odds ratio allow estimation
of how many false positive or negatives in comparison to true
positives or negatives we can expect. In other words, they give an
estimate on how high the chance is for a prediction with a specific
log odds ratio to be correct. We define the credibility function C as:

C(z) =

{
W−/(W− +W+) for z < 0

W+/(W− +W+) for z > 0,
(2)

the ratio of true (negative or positive) predictions within all (negative
or positive) predicted outcomes (Fig. 1). For the sake of completion,
we define the C(z) = C(1) for z > 1 and C(z) = C(−1) for
z < −1 (i.e. predictions with log odds ratios outside the normalised
range are assigned the respective credibility at the far ends of the
distributions).

We use this credibility measure to estimate diagnosis reliability
for predictions obtained from each dataset. The prediction with the
highest credibility is chosen as the final diagnosis. We refer to this
method as Maximum Credibility Voting (MCV):

MCV (z1, ..., zN ) = I(zj > 0),with j = argmax
i=1:N

C(zi), (3)

Fig. 1. The credibility C(z) (Eq. 2) of each log odds ratio is defined
through the ratio of the Weibull distributions fitted to the log odds
ratio distributions of healthy controls (W+) and MDD patients (W−),
respectively (Eq. 1). It reflects the portion of true predictions among all
predictions with certain odds ratio. Here, the low credibility of small negative
odd ratios compared to the high credibility for large positive log odds ratios,
is a result of false negatives toward the end of the spectrum.

zi the normalized log odds ratios obtained from N models yielded by
different data obtained from the same subject and zj the odds ratio
with the highest credibility value (C(zi) the credibility function as
defined in Eq. 2). For MCV (z1, ..., zN ) = 1, the subject’s diagnosis
is MDD and for MCV (z1, ..., zN ) = 0 healthy. Intuitively, this
procedure is straight forward. Out of several predictions, we pick the
one we can trust the most (Fig. 2). We remark that MCV itself does
not require training data per se, but is a method that can be applied
as is. However, the more training data are available for each of the
underlying classification models, the more accurate their credibility
functions (due to the increased number of data points (i.e. odds ratios)
outlining the probability distributions, Fig. 2, left column), resulting
in MCV being more effective in its prediction improvement.

We validated MCV using 10-fold cross validation, where predic-
tion credibility functions for each model were estimated based on
the log odds ratio distributions obtained in each cross validation
of the training data. In this way, test and training data are kept
independent throughout the model estimation procedure, as well as
in the following MCV procedure.

We compared MCV to other model integration methods, where
the number of negative or positive predictions (most votes), sum,
maximum and mean of log odds ratio, respectively, determine di-
agnosis. Further, comparisons to the performance of support vector
machine (SVM) and classification tree are made. As opposed to the
arithmetic approaches, SVM and classification tree cannot be applied
to data with missing values.

III. RESULTS

A. Diagnostic Accuracy for Each Diagnostic Feature
For clarity, we only consider one model per data modality and

restrict the MCV results to the models that achieved the highest
classification accuracy in each data modality. Models with accuracy
lower than 60% are disregarded. Further, only features selected in
more than 80% of all cross validated models are presented and
considered of diagnostic relevance. A performance summary for all
models and their diagnostic features can be found in the appendix.

Anatomical MRI: For the white matter and gray matter density
volumes, only white matter classification using group LASSO yielded
an accuracy over 60% (63±2% accuracy, 58±3% specificity, 68±4%
sensitivity). Left and right post central cortex, left frontal superior
cortex and right middle temporal cortex were assigned negative
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Fig. 2. Maximum Credibility Voting (MCV): Diagnosis is based on the log
odds ratios zi of multiple classification models derived from different types of
data (here, WM, ALFF, ReHo, FC and BDNF related data) and determined by
the prediction (odds ratio) zj with the highest credibility value Cj(zj) (Eq. 2).
The credibility functions Cj are derived from the odds ratio distributions of
the respective classification models. In the depicted case, WM decides with
nearly 80% credibility, that the subject is a healthy control.

weights, indicating that these areas are denser in white matter in
healthy controls than in depression patients. Left middle temporal
cortex was assigned positive weight.

Resting State fMRI: Mean brain area ALFF subjected to Elastic
Net, showed the best classification among the resting state data with
an accuracy of 68±1%(specificity 67±2%, sensitivity 69±1%). Left
and right posterior cingulate cortex (PCC) and left thalamus thereby
showed negative weights indicating that the amplitude in these areas
is lower in MDD patients than healthy controls.

L1 and Elastic Net applied to the mean ReHo values in brain
areas showed similar performance of 66% accuracy, 65% specificity
and 67% sensitivity, but with slightly smaller variance for the model
estimated with Elastic Net. Both models assigned negative weights to
left PCC, medial orbitofrontal cortex (OFC). Elastic Net also showed
negative weight for the left amygdala. Positive weight was assigned
to the left cerebellum pars8 in both models and additionally to the
right cerebellum pars 8 in the Elastic Net.

For the FC data L1 LASSO yielded the best classification with
65±4% accuracy, 65±5% specificity and 66±6% sensitivity. Two
connections with negative weights were selected as diagnostic: the
connection between right parahippocampus and right retrosplenial
cortex including a part of the posterior cingulate (network 13, areas
08 and 05) and the connection between PCC/Precuneus and medial
prefrontal/anterior cingulate/orbitofrontal area (network 3, areas 04
and 01). While the first connection is part of the ventral default mode
network (DMN), the other is part of the dorsal DMN.

BDNF Exon1 Methylation: Elastic Net yielded 78±3% ac-
curacy (84±5% specificity, 73±2% sensitivity) and assigned neg-
ative weights to 12 (out of 32) sites, positive weights to 11 sites.
CpG1, CpG18, CpG24, CpG52,CpG61, CpG63, CpG77 with negative
weights were in agreement with the results given in Fuchikami et al.,
2011[18]. The contributing islands, CpG19.20.21, CpG28, CpG32
showed reversed relation to the results in that study; however, the
difference in CpG28, Cpg32 methylation between the two investi-
gated subject groups was not significant. CpG25.26.27, CpG29.30.31
methylation, both without significant group differences and CpG33.34

methylation with significant group difference were not measured
in Fuchikami et al., 2011. Indication of a role in MDD diagnosis
opposite to the one found in their study was also true for CpG5,
CpG15, CpG36, CpG37, CpG48 and CpG78, which were assigned
positive weights in our model, but were more highly methylated in
healthy controls than in MDD subjects in their study. In our study,
methylation differences in these sites exist, but were not significant.
CpG8.9, CpG14 also countered the relation given in their study, but
in both their and our study, group differences were not significant.
CpG17, CpG50.51, CpG74.75, CpG22 agreed with Fuchikami et al.,
2011, but here again, significant group differences could not be found.

To summarize, none of the methylation sites that were assigned
positive weights showed significant group differences. All sites with
significant methylation differences between healthy and MDD sub-
jects were negatively weighted and selected in over 98% of all cross-
validated models. Hence, the contribution of these sites with positive
weights to the diagnostic power lie in the combination with the other
selected methylation sites. Mean methylation rates were generally
lower in our study than in Fuchikami et al., 2011, which may be
attributed to the greater number of subjects (HC/MDD = 33/33 to
18/20).

B. Maximum Credibility Voting (MCV)
For demonstration of MCV, we chose the highest performing

model for each diagnostic data: the group LASSO model for white
matter, the Elastic Net model applied to mean brain areas values of
ALFF and ReHo, L1 for FC and the Elastic Net model for the BDNF
methylation data.

To evaluate MCV for different data combinations, appropriate
subsets of the available data were used. Differences between results
were considered significant at p<0.05. We also give the F-scores in
order to account for the imbalances in cohort sizes in the test data.

All individual models were evaluated repeating ten 10-fold nested
cross validations, each time shuffling the subjects. As a result, we
obtain ten odds ratios for each subject and dataset available for
the subject. Equally, we have ten different odds ratio distributions
for controls and MDD subjects, in which the test subjects are not
included. We use these to construct the credibility functions and
evaluate MCV prediction accuracy.

MCV(All), Application to Dataset with no Missing Data:
Within all subjects, structural MRI, resting state MRI and methylation
data were available for 23 healthy controls (age 41.22±11.94, 7
female) and 20 MDD patients (age 35.1±6.03, 10 female). For these
subjects, the average BDI2 and PHQ9 scores were 8.78±7.00 and
4.30 ± 4.07 for the HC group and 29.60±10.7 and 18.70±4.53 for
the MDD group. Detailed demographic and clinical characteristics
are given in Table II. Figure 3 shows the data sets acquired for each
subject.

The average accuracy when diagnosing this group of subjects
based on each biological data modality alone was 66.22±6.53%.
Application of MCV significantly improved accuracy to 80±3%
(F-score 77±4%), with a specificity of 87±3% and sensitivity of
73±7%. This is an average increase in accuracy of 14% compared
to the accuracies delivered by each individual data model alone (Table
III, MCV(WM, rsfMRI, BDNFexon1)).

Note that MCV performance relies solely on the accuracy of the
credibility functions, which are constructed based on training data
provided for the different classification models, i. e. , the number
of subjects to which MCV is applied does not influence MCV
performance. For the same reason, overfitting is not applicable.

Comparing MCV results with those of SVM, Decision Tree,
maximum number of votes, sum, mean and maximum absolute
value of the odds ratios, we find significant superiority of MCV
over all other approaches (p<0.001 for all comparisons, Table III,
Fig. 4(b)). For voting arithmetic methods (Most Votes, Sum, Mean
and Maximum Absolute Value of the odds ratios), specificity was
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Fig. 3. Available Data for Each Subject: structural MRI data (strMRI),
resting state fMRI data (rsfMRI) and BDNFexon1 methylation data were
evaluated for 60, 42 and 33 subjects, respectively, for each experimental group.
For 23 controls and 20 MDD patients strMRI, rsfMRI and methylation data
were available. For all the others, only one or two of the biomarkers could
be acquired.

TABLE II
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF SUBJECTS FOR WHICH ALL DATA

SETS WERE AVAILABLE.
MDD Control p-value

Number of subjects 20 23
Sex (male/female) 10/10 16/7 0.20
Age (years) 35.1 ± 6.03 41.22 ± 11.94 0.04*a

IQ 109.47 ± 9.45 111.00 ± 9.23 0.59
Alcohol Dependent Subjects 0 0 1
BDI II b 29.6 ± 10.70 8.78 ± 6.99 2.03e-09***
PHQ 9 18.7 ± 4.53 4.30 ± 4.07 9.00e-14***
SHAPS 36.65 ± 4.16 24.04 ± 6.31 2.34e-09***
STAI 55.8 ± 6.04 43.35 ± 9.81 1.45e-05***
CATS 35.25 ± 21.33 31.70 ± 18.71 0.56
LES -5.5 ± 7.08 -0.52 ± 3.93 0.006**
HRSD17 19.5 ± 4.49 - -
Age of Depression Onset (years) 30.5 ± 7.17 - -
Number of Previous Episodes 0.75 ± 0.44 - -
Length of Current Episode (days) 118.65 ± 85.74 - -
Lexapro single agent 16 - -
Lexapro combination 0 - -
Other single agent 2 - -
No Treatment 2 - -
a Asterisks denote significant differences: *p<0.05, **p<0.01,***p<0.001.
b Nomenclature: BDI II = Beck’s Depression Inventory II, PHQ9 = 9 Question Patient

Health Questionnaire, SHAPS = Snaith-Hamilton Pleasure Scale, STAI = State Trait
Anxiety Inventory, CATS = Child Abuse and Trauma Scale, LES = Life Event Stress,
HRSD17 = 17 Question Hamilton Rating Scale of Depression

higher than that of MCV, but could not achieve comparable accuracy
due to low sensitivity.

Adding the predictions from the different models to MCV one by
one (Table IV) shows the stepwise increase in accuracy. Naturally,
the accuracy significantly increases with addition of models that have
higher accuracy to begin with. However, the importance lies in the
fact that per construction, the accuracy should never significantly de-
crease when adding new predictions. We can see this in the decrease
in accuracy when adding FC, which is not significant (p=0.81), but
shows the same credibility as in the previous step. This confirms
that MCV is robust to unreliable and redundant predictions, so that
we always end up with a diagnosis about which we can be more

TABLE III
MCV OVER ALL AVAILABLE DIAGNOSTIC DATASETS OUTPERFORMS SINGLE DATA CLASSIFIERS
AS WELL AS THE INTEGRATION METHODS SVM, CLASSIFICATION TREE, MOST VOTES, SUM,

MAX AND MEAN OF ODDS RATIO. P-VALUES ARE GIVEN WITH RESPECT TO MCV ACCURACY

HC/MDD=23/20 Specificity Sensitivity Accuracy (F-score) p-value

ALFF 60±4 73±2 66±2 (62±4) 2.5e-10***
Single ReHo 64±4 67±8 65±3 (66±1) 3.3e-09***
Feature FC 67±8 61±4 64±4 (64±5) 3.0e-08***
Classification WM 53±6 69±7 60±3 (64±6) 1.1e-10***

BDNFexon1 80±5 68±4 75±3 (71±3) 0.0017**

SVM 79±6 64±11 72±4 (68±8) 8.5e-06***
Classification Tree 65±9 61±11 63±8 (60±9) 2.1e-04***

Integrating Most Votes 64±4 81±7 73±4 (73±5) 6.5e-04***
Methods Sum of odds ratio 65±3 82±5 74±3 (74±3) 2.8e-04***

Max of odds ratio 69±6 75±6 72±2 (71±3) 9.1e-07***
Mean of odds ratio 65±3 82±5 73±3 (74±3) 9.9e-05***
MCV 87±3 73±7 80±3 (77±4) -

Fig. 4. MCV classification accuracy: MCV significantly outperforms single
data models, but also the more intuitive integration methods SVM, Decision
Tree, most votes, sum of odds, maximum of odds and mean of odds (see also
Table III).

confident, even if the accuracy has not improved. We corroborate
this fact by evaluating the results for different combinations of data,
namely MCV(rsfMRI), MCV(rsfMRI, WM), MCV(WM, BDNF), see
appendix.

TABLE IV
STEPWISE MCV FOR DATA WITHOUT MISSING VALUES: P-VALUES ARE GIVEN IN COMPARISON TO THE

ACCURACY IN THE PREVIOUS STEP

HC/MDD = 23/20 Specificity Sensitivity Accuracy (F-score) p-value Credibility
WM 53±6 69±7 60±3 (62±4) - 61±2
MCV(WM, ALFF) 60±4 73±4 66±4 (66±3) 0.004*** 73±11
MCV(WM, ALFF, ReHo) 63±3 74±3 68±3 (68±3) 0.20 75±10
MCV(WM, ALFF, ReHo, FC) 62±3 74±3 67±3 (68±3) 0.85 75±10
MCV(WM, rsfMRI, BDNFexon1) 87±3 73±7 80±3 (77±4) 1.6e-08*** 84±2

The number of true negative (TN) and true positive (TP) subjects in
this dataset was 20±1 and 15±1, respectively. In approximately 50%
of the cases, their final diagnosis was determined by BDNF methy-
lation (53±7% for TN and 49±11% for TP subjects). ALFF was the
second most frequent determining factor, comprising 27±4% of true
negatives. For the true positives, this proportion was with 47±14%
nearly as high as the BDNF proportion. WM was determining for
13±6% of the true negatives, but only for 2±3% for true positives.
For neither group was FC the diagnostic factor.

Nineteen subjects were diagnosed as true negative and 15 as true
positive in over half the cross validations. For controls in this group,
the most frequent diagnostic dataset was BDNF methylation (10
subjects), followed by ALFF (5 subjects), WM (3 subjects) and finally
ReHo (1 subject). Depression subjects in this group were exclusively
diagnosed by BDNF methylation (8 subjects) and ALFF (7 subjects).

Missing Data Compatibility: MCV can also to be applied
to data with missing values. The credibility for missing values is
simply set 0; therefore, it does not interfere with the Voting process.
For 47 healthy controls and 53 depression patients, at least two
different, but not all measurements were available. MCV significantly
outperformed all other odds ratio integration methods (here, most
votes, sum, max and mean of odds ratio) with at least 7% higher
correct rate (see appendix for details). SVM and classification tree are
inherently incompatible with datasets that comprise missing values.
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IV. DISCUSSION AND CONCLUSION

The results show that MCV allows easy integration of predictions
from different datasets and significantly improves classification ac-
curacy. The diagnostic accuracy of MCV when integrating over all
data given in this study (81.56±2.58%) is on average 15.33±6.53%
more higher than the classification accuracy yielded by the individual
diagnostic datasets and 6.40±3.76% higher than the other integration
methods investigated (SVM, decision tree, maximum number as
Votes, sum, maximum and mean odds ratio, Table III).

In detail, MDD diagnosis is significantly improved through appli-
cation of MCV to the three characteristics, ALFF, ReHO and FC ob-
tained from rsfMRI data (see appendix). It could be further improved
by integrating white matter density or information on BDNFexon1
methylation at certain sites. The addition of BDNFexon1 methy-
lation to rsfMRI data significantly improved the specificity, while
no significant improvement could be observed for the sensitivity.
Looking at the reverse operation, adding rsfMRI to already obtained
diagnosis from methylation data, does not improve specificity, but
significantly improves sensitivity. For the integration of methylation
and white matter density data, only the specificity is significantly
improved. However, the sensitivity did not significantly decrease,
either. In general, all examined cases showed improved or comparable
specificity and sensitivity, confirming that MCV is robust with respect
to redundant or little reliable predictions.

With respect to clinical application, the results suggest the fol-
lowing: MDD diagnosis with reasonable accuracy is provided by
sLASSO regression of BDNF methylation markers (84±5% speci-
ficity, 73±2% sensitivity). Integration of rsfMRI and anatomical data
can further increase the accuracy by approximately 6%, lowering the
risk of false negatives by nearly 10% and the risk of false positives by
2%. If a blood test is not available, acquisition and MCV integration
of rsfMRI data is advisable (The often used PHQ9, which is fast
to acquire and to evaluate, has a specificity as well as sensitivity
of 88%[20], however, as a self-administered questionnaire the differ-
ences in diagnostic accuracy in comparison to the accuracy acquired
from biomarkers is difficult to interpret.). Here, the procedure is
based on structural MRI, rsfMRI, and BDNF methylation rate data,
but the extension of MCV to an arbitrary number of appropriate
data is straightforward. Moreover, in contrast to SVM and decision
tree, MCV is not restricted by lack of available data for a subject.
Credibility for missing data is simply set to zero.

MCV differs from the introduced integration methods[7] in that it
does not try to combine all predictions into a new model. It merely
decides which of the predictions is the most reliable. Intuitively,
that would be the prediction derived from the model with the
highest accuracy, but this accuracy is based on global evaluation
of the model, ie. the sum of all positive and negative predictions,
regardless of their odds ratio, are weighed against the sum of the
actual positive and negative labels. In contrast, MCV considers the
local accuracy of these models. It quantifies the accuracy of the
model for different odds ratios, expressing it as credibility function.
Despite low general diagnostic power, for example, the WM model
is quite accurate for certain odds-ratios, even more accurate than
the other models, thus helping to boost accuracy when using MCV.
Finding the data with the highest credibility thus equals identifying
the data with the most pronounced MDD or HC characteristics
for the subject in question. If we consider all data as part of a
single mechanism, MCV points to the weakest or strongest link in
the mechanism of a specific subject, respectively. Multiple subjects
with the same weakest link suggest an MDD subtype. In our data,
for example, ALFF and BDNFexon1 methylation were the most
pronounced determining factors for true positives. In an experiment
with a bigger cohort, these groups could point to two depression
types that might benefit from different treatment. If the demographic

and clinical characteristics of these groups are the same, these
depression types would indicate physiological subtypes of depression.
If the characteristics are different, these depression types would
indicate subtypes whose demographic and clinical characteristics
are linked to different physiological phenomena. In the latter case,
further investigation would be needed to establish if regulation of the
physiological symptoms is possible and if it can be used to remedy
MDD symptoms.

We exploit the fact that MCV can be used with any type of
probabilistic models, by using sparse classification algorithms, which
ensure that the effective variables (here, brain regions and methylation
islands) are explicit, a crucial aspect for development of effective
medication. Knowing details about the contributing factors allows
for insight into their possible relation to depression as well as into
the relation between the different data modalities, and the underlying
mechanism of MDD. The discriminative white matter brain areas, for
example, are responsible for somatosensory information processing
(post central gyrus), cognitive (frontal superior cortex), and language
related functions (middle temporal lobe), which are hypofunctional
in MDD [21], [22], [23]. ALFF data identified the PCC and left
thalamus (left hemisphere), as MDD discriminative, both of them
exhibiting lower activation in depressed patients. Investigation of why
the spontaneous activity in these areas is suppressed represents an
important future direction. Low ALFF could be, for example, an
indicator of the volumetric changes in PCC seen in first episode
MDD subjects [24] , but which were not big enough yet in our study
to be captured by the anatomical data. Such investigations reveal if
and maybe also how ALFF can be altered. If subtypes like indicated
above exist, subtype specific treatment and prevention methods could
be developed.

Similar implications can be drawn for subjects for which other
data modalities are the predominant decisive factor: Left PCC and
amygdala showed lower ReHO in MDD, i. e. spontaneous activa-
tion is locally badly synchronized, which may affect not the only
regional functioning of this brain area, but also the connectivity
with other brain areas. For both PCC, a central node of the default
mode network, and left amygdala, which has significant functional
connectivity with the ventral striatum, this may have a significant
impact on behaviour. Increased ReHo was found in the cerebellum,
which during the last years has been shown to participate in emotion
regulation, inhibition of impulsive decision making, attention, and
working memory [25]. This increase might be a result of the cerebel-
lar cortical connections known to be disrupted in depression subjects
[26]. However, in line with the above, whether these ReHO alterations
are entirely functional or cause to subtle anatomical changes, such
as speculated above, remains to be investigated.

For FC, the merit of sparse discriminative feature selection be-
comes especially apparent. So far, predictions are mainly based
on SVM procedures [3], yielding models based on more than a
hundred relevant connections [27], despite preselection procedures.
Here, two connections were selected as discriminative, one that is
located within the ventral DMN (vDMN) involving right PCC/RSC
and parahippocampus, and one in the dorsal DMN (dDMN), concern-
ing the PCC/Precuneus and medial prefrontal cortex(mPFC)/anterior
cingulate (ACC)/orbitofrontal cortex (OFC), respectively (Appendix,
Table S5). Both connections were weaker in MDD subjects. Both
connections involve part of the PCC, which has been shown in our
data to exhibit altered ReHO and ALFF characteristics in MDD
subjects and is thus subject to future investigation on whether and
how these phenomena are related. If strongly correlated, treatment of
one deficiency could be sufficient to correct several of them.

The importance of BDNF in MDD is evidenced not only by its
supportive role in serotonin signaling [28], [29] and in the dopamin-
ergic system [30], [31], but also by its impact on neurogenesis, neural
differentiation and cell survival, and thus on formation, stabilization
and continuity of long-term memory [32]. Its effects on white matter
density are obvious. Indeed, Choi et al. [33] have shown an inverse
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association of BDNF DNA methylation and reduced white matter
integrity in the anterior corona radiata in major depression. Here
again, these WM changes might have been too subtle to detect
in the MRI images of our cohort, but might already be reflected
in the DNA methylation characteristics, the major mechanism for
neural plasticity[34]. This is supported by the fact that for controls,
WM (which is denser in controls) was more often involved in the
affirmation of the diagnosis than for MDD subjects.

Finally, examining all biomarkers identified in this study (Ap-
pendix, Table S6), we can outline their relations to each other.
The cerebellum indicated as distinctive in the ReHO data, targets
prefrontal as well as temporal cortices through the thalamus. This
is also reflected in the functional connectivity of the cerebellum
with these regions [35]. While prefrontal and temporal areas were
discriminative in the WM, the thalamus was distinctive in the ALFF
data. Further, the medial OFC, also selective in the ReHO data, has
strong connections with the hippocampus and associated areas of the
cingulate and RSC (identified in the FC data), as well as with the
anterior thalamus (ALFF)[36].

Considering the above, the aspects found in ALFF, ReHO, FC
and WM density each seem to depict potential deficiencies in MDD
within a common functional and anatomical network that connects
the limbic system and cortical areas. This hypothesis is supported by
Chen et al., 2016 [37], who found that the frontal-striatal-thalamic
pathways are affected in MDD. A more recent study found clusters of
functional connections in the above mentioned areas to lie at the core
of four anxiety- and anhedonia-related subtypes of depression [38].
The well known symptom variability in MDD may result from these
equally variable network deficiencies. While they cannot always be
picked up by the data modality one might expect (e. g. FC), they
might be reflected in mechanism-related characteristics of other data
modalities (here, ALFF, ReHo, WM or BDNF methylation).

With this whole picture now illuminated, we return to the original
purpose of identifying the most reliable diagnostic dataset for a
subject and reiterate that in MCV, this equates to finding the dataset
with the most pronounced MDD or HC characteristics for a given
subject. In other words, it pinpoints which of the biological factors in
the variable network is dysfunctional (in a typical way). At the same
time, it is just that consideration of variability, i. e. consideration of
potential MDD subtypes, that results in higher prediction accuracy.
The derived effective variables are limited by the small number
of subjects and need to be reconfirmed on a lager data sample.
However, the proposed MCV method itself is by construction robust
and flexible, so that we are confident that it will allow simple to use
and accurate MDD diagnosis in clinical settings. Its transparency with
respect to the ”weakest link” aids the identification of MDD subtypes
and consequently the development of adequate medical treatment.
As cheaper and more accessible neural and physiological markers
become available, this method will naturally become an increasingly
useful clinical tool. Finally, we wish to underscore the fact that MCV
is not restricted to MDD diagnosis alone, but is widely applicable.
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APPENDIX: SUPPORTING INFORMATION

CpGs used for classification:
CpG1, CpG4, CpG5, CpG7, CpG8.9, CpG14, CpG15, CpG17,
CpG18, CpG19.20.21, CpG22, CpG23, CpG24, CpG25.26.27,
CpG28, CpG29.30.31, CpG32, CpG33.34, CpG36, CpG37, CpG47,
CpG48, CpG50.51, CpG52, CpG59, CpG61, CpG63, CpG72.73,
CpG74.75, CpG77, CpG78, CpG79.

TABLE S1
AVERAGE FRAMEWISE TRANSLATIONAL AND ROTATIONAL DISPLACEMENT

DURING RSFMRI SCAN IN MM AND DEGREES, RESPECTIVELY.
HC MDD p-value

△transx 0.0069±0.0028 0.0061±0.0032 0.21
△transy 0.0381±0.0466 0.0423±0.0417 0.67
△transz 0.0364±0.0560 0.0255±0.0161 0.22
△rotx 3.63e-04±2.48e-04 3.34e-04±2.13e-04 0.56
△roty 1.86e-04±1.47e-04 1.65e-04±8.29e-05 0.41
△rotz 1.42e-04±5.45e-05 1.36e-04±6.05e-05 0.62
Framewise displacement 0.08±0.10 0.07±0.05 0.68

TABLE S2
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF SUBJECTS WHICH WERE USED TO

ESTIMATED THE WM AND GM MODEL.
MDD Control p-value

Number of subjects 60 60 -
Sex (male/female) 29/31 32/28 0.5738
Age (years) 40.57 ± 8.99 36.95 ± 12.6657 0.0738
IQ 108.52 ± 9.7 1113.34 ± 7.4 0.0028**a

Alcohol Dependent Subjects 5 0 0.0224*
BDI2 30.15 ± 8.79 6.63 ± 6.03 1.08e-33***
PHQ9 17.65 ± 4.41 3.13 ± 3.80 2.38e-38***
SHAPS 37.12 ± 5.48 23.70 ± 6.21 1.92e-23***
STAI 56.33 ± 7.74 40.6 ± 8.88 2.97e-18***
CATS 34.69 ± 23.41 24.47 ± 14.86 0.0060**
LES -6.64 ± 6.43 0.42 ± 3.37 2.48e-11***
HRSD17 19.95 ± 4.96 - -
Age of Depression Onset (years) 38.06 ± 10.83 - -
Number of Previous Episodes 0.51 ± 0.6 - -
Length of Current Episode (days) 164.68 ± 212.01 - -
Lexapro single agent 50 - -
Lexapro combination 2 - -
Other single agent 2 - -
No Treatment 6 - -

a asterisks denote significant group differences, *p<0.05, **p<0.01, ***p<0.001

TABLE S3
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF SUBJECTS WHICH WERE USED TO

ESTIMATED THE ALFF, REHO AND FC MODEL.
MDD Control p-value

Number of subjects 42 42 -
Sex (male/female) 23/19 25/17 0.6592
Age (years) 36.24 ± 6.04 38.36 ± 13.22 0.3476
IQ 108.65 ± 10.84 112.39 ± 7.40 0.0686
Alcohol Dependent Subjects 4 0 0.0404*
BDI 2 30.17 ± 9.25 7.64 ± 6.35 1.21e-21***
PHQ9 17.88 ± 4.40 3.83 ± 4.08 1.60e-25***
SHAPS 37.71 ± 5.21 25.05 ± 6.11 2.73e-16***
STAI 56.02 ± 7.93 41.26 ± 8.69 3.84e-12***
CATS 37.23 ± 25.32 27.48 ± 15.90 0.0390*
LES -6.275 ± 6.71 0.02 ± 3.58 8.44e-07***
HRSD17 19.55 ± 5.076 - -
Age of Depression Onset (years) 32.83 ± 8.36 - -
Number of Previous Episodes 0.56 ± 0.63 - -
Length of Current Episode (days) 148.90 ± 195.61 - -
Lexapro single agent 35 - -
Lexapro combination 2 - -
Other single agent 2 - -
No Treatment 3 - -
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TABLE S4
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF SUBJECTS WHICH WERE USED TO

ESTIMATED THE METHYLATION MODEL.
MDD Control p-value

Number of subjects 33 33 -
Sex (male/female) 15/18 21/12 0.1380
Age (years) 40.36 ± 10.26 36.42 ± 12.76 0.1716
IQ 108.15 ± 9.46 111.42 ± 9.79 0.1721
Alcohol Dependent Subjects 1 0 0.3136
BDI 30.76 ± 9.76 8.18 ± 6.26 1.05e-16***
PHQ9 18.30 ± 4.86 4.18 ± 3.73 5.28e-20***
SHAPS 36.97 ± 4.44 23.33 ± 6.22 4.01e-15***
STAI 56.54 ± 6.60 42.61 ± 9.14 1.22e-09***
CATS 34.17 ± 19.56 29.15 ± 16.69 0.2767
LES -6.07 ± 6.50 0.303 ± 4.61 2.92e-05***
HRSD17 20.36 ± 4.97 -
Age of Depression Onset (years) 37.29 ± 11.96 -
Number of Previous Episodes 0.52 ± 0.51 -
Length of Current Episode (days) 162.45 ± 196.34 -
Lexapro single agent 27 - -
Lexapro combination 0 - -
Other single agent 2 - -
No Treatment 4 - -

TABLE S5
CLASSIFICATION ACCURACY FOR EACH INDIVIDUAL DATA MODALITY

Data HC/MDD Algorithm Specificity Sensitivity Accuracy
gLASSO 58±2 68±4 63±2

WM 66/66 sLASSO <60 <60 <60
Elastic Net <60 <60 <60
gLASSO <60 <60 <60

GM 66/66 sLASSO <60 <60 <60
Elastic Net <60 <60 <60
gLASSO 64±4 66±4 65±2

ALFF 42/42 sLASSO 66±3 69±2 68±2
Elastic Net 67±2 69±1 68±1
gLASSO <60 <60 <60

fALFF 42/42 sLASSO <60 <60 <60
Elastic Net <60 <60 <60
gLASSO <60 <60 <60

ReHo 42/42 sLASSO 65±4 67±6 66±3
Elastic net 65±2 67±6 66±2

FC 42/42 sLASSO 65±5 66±6 65±4
Elastic Net <60 <60 <60

BDNFexon1 33/33 sLASSO 81±2 74±4 77±2
Elastic Net 84±5 73±3 78±3

Each MRI dataset was subjected to group LASSO, L1 LASSO and Elastic
Net. All models were evaluated based on ten times repeated 10-fold cross
validation.

TABLE S6
DIAGNOSTIC FEATURES, INDIVIDUAL DATASETS: BRAIN AREAS AND METHYLATION SITES,

WHICH HAD DISCRIMINATIVE CAPABILITY IN MORE THAN 80% OF THE CROSSVALIDATED
CLASSIFICATION MODELS (AREAS AS DEFINED IN [15]). NEGATIVELY WEIGHTED FEATURES

EXHIBIT LARGER VALUES IN HEALTHY CONTROLS THAN DEPRESSION SUBJECTS. POSITIVELY
WEIGHTED FEATURES SHOW LARGER VALUES IN DEPRESSION SUBJECTS.

Data Accuracy
(HC/MDD) (Algorithm) Negative weights Positive weights
WM 63±2 Post Central Gyrus L/R Middle Temporal Cortex L
(66/66) (gLASSO) Frontal Superior Cortex L

Middle Temporal Cortex R
ALFF 68±1 Posterior Cingulum L/R
(42/42) (Elastic Net) Thalamus L

ReHo 66±2 Posterior Cingulum L Cerebelum8 L/R
(42/42) (Elastic Net) Middle Frontal Orbitalis L

Amygdala L
FC 65±4 Ventral DMN 8 - Ventral DMN 5 a

(42/42) (sLASSO) Dorsal DMN 4 - Dorsal DMN1 b

BDNFexon1 78±3 CpG33.34 CpG8.9
(33/33) (Elastic Net) CpG24 CpG14

CpG1 CpG5
CpG63 CpG37
CpG77 CpG48
CpG52 CpG78
CpG61 CpG36
CpG19.20.21 CpG22
CpG18 CpG74.75
CpG25.26.27 CpG17
CpG29.30.31 CpG15
CpG32

a Ventral DMN:
Area 5: Right Retrosplenial Cortex, Posterior Cingulate Cortex (BA 20, 23),
Area 8: Right Parahippocampal Gyrus (BA 37,30)
b Dorsal DMN:
Area 1: Medial Prefrontal Cortex, Anterior Cingulate Cortex, Orbitofrontal Cortex (BA
9,10,24,32,11)
Area 4 : Posterior Cingulate, Precuneus (BA 23, 30)

TABLE S7
MCV FOR RSFMRI DATA: PREDICTION RATE BASED ON INDIVIDUAL DATASETS AND FOR MCV
COMBINATIONS. IF NOT INDICATED OTHERWISE P-VALUES INDICATE PERFORMANCE DIFFERENCE

WITH RESPECT TO MCV(RSFMRI)
HC/MDD=42/42 Specificity Sensitivity Accuracy p-value Credibility
ALFF 67±2 69±1 68±1 3.6e-05*** 71±2
ReHo 65±2 67±5 66±2 3.1e-06*** 61±4
FC 65±5 66±6 65±4 6.3e-05*** 55±3
MCV(ALFF, ReHo) 65±3 77±2 71±2 2.7e-04*** wrt ALFF 73±2

1.3e-05*** wrt ReHo
0.716

MCV(ALFF, FC) 67±3 77±3 72±2 1.2e-04*** wrt ALFF 72±2
1.3e-04*** wrt FC
0.6

MCV(ReHo, FC) 64±3 73±7 68±4 0.104 wrt ReHo 64±3
0.096 wrt FC
0.007**

MCV(rsfMRI) 66±4 79±3 73±2 - 74±2

TABLE S8
MCV FOR RSFMRI AND WM:PREDICTION RATE BASED ON INDIVIDUAL DATASETS AND FOR

MCV COMBINATIONS. IF NOT INDICATED OTHERWISE P-VALUES INDICATE PERFORMANCE
DIFFERENCE WITH RESPECT TO MCV(RSFMRI,WM)

HC/MDD=39/41 Specificity Sensitivity Accuracy (F-score) p-value Crediblity
ALFF 67±1 64±2 70±2 (69±1) 1.5e-07*** 70±2
ReHo 63±3 66±5 64±2 (66±3) 2.4e-06*** 61±4
FC 65±6 66±6 66±4 (67±5) 0.002** 55±3
WM 52±3 70±6 61±3 (65±4) 5.7e-09*** 62±2
MCV(rsfMRI) 64±4 79±3 71±2 (74±2) 0.033* 73±2
MCV(rsfMRI, WM) 69±4 78±3 74±2 (75±0) - 75±2

TABLE S9
MCV FOR RSFMRI AND BDNF METHYLATION: PREDICTION RATE BASED ON INDIVIDUAL DATASETS

AND FOR MCV COMBINATIONS. IF NOT INDICATED OTHERWISE P-VALUES RATE PERFORMANCE
DIFFERENCE WITH RESPECT TO MCV(RSFMRI, BDNFEXON1)

HC/MDD=25/21 Specificity Sensitivity Accuracy (F-score) p-values Credibility
ALFF 63±4 70±2 66±2 (66±2) 5.1e-07*** 71±2
ReHo 67±3 68±7 67±3 (65±4) 3.2e-06*** 61±4
FC 60±7 65±10 62±4 (61±6) 1.6e-07*** 54±3
BDNFexon1 82±5 65±3 70±4 (70±3) 1.4e-08*** 74±3
MCV(rsfMRI) 59±5 76±3 67±3 (68±2) 5.0e-06*** 74±2
MCV(rsfMRI, BDNFexon1) 83±4 70±7 77±4 (74±5) - 82±2

TABLE S10
MCV FOR WM AND BDNF METHYLATION: PREDICTION RATE FOR INDIVIDUAL DATASETS AND FOR
MCV COMBINATIONS. IF NOT INDICATED OTHERWISE P-VALUES INDICATE PERFORMANCE DIFFERENCE

WITH RESPECT TO MCV
HC/MDD=28/31 Specificity Sensitivity Accuracy (F-score) p-values Credibility
WM 53±4 70±6 62±3 (66±4) 1.6e-12*** 61±2
BDNFexon1 81±6 75±2 78±3 (78±3) 0.005** 72±4
MCV(WM, BDNFexon1) 89±5 73±5 80±4 (79±4) - 78±3

TABLE S11
MCV VS STRAIGHT FORWARD INTEGRATED PREDICTION METHODS FOR DATA
WITH MISSING VALUES. FOR ALL SUBJECTS AT LEAST TWO DIFFERENT, BUT NOT

ALL MEASUREMENTS WERE AVAILABLE. P-VALUES INDICATE PERFORMANCE
DIFFERENCE WITH RESPECT TO MCV

HC/MDD = 47/53 Specificity Sensitivity Accuracy (F-score) p-value
Most Votes 61±2 67±4 64±3 (78±3) 7.1e-10***
Sum of odds ratio 69±3 76±4 72±3 (75±3) 1.9e-05***
Max of odds ratio 69±2 72±5 70±2 (72±3) 2.5e-07***
Mean of odds ratio 69±2 76±4 73±3 (75±3) 2.8e-05***
MCV 84±4 77±5 80±3 (81±3) -
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