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Abstract—Structural variants (SVs) are observed differences
between the sequenced genome of an individual as compared to
a reference genome for that species. These differences include
deletions, inversions, insertions, and duplications. Since some
variations are associated with certain diseases, our work focuses
on developing methods to detect such genomic anomalies. Current
DNA sequencing methods may be costly and existing SV-detection
techniques often rely on high quality data. We present a deep
learning method to identify deletions in DNA based on genomic
information of related individuals.

In this paper, we implement neural networks to predict
SVs as a means to reduce the false positive rates of existing
methods. A neural network - a sequence of linear and nonlinear
transformations - takes in training data and uses that information
to learn how to classify corresponding test data. Our preliminary
model incorporates the observed genomic information of two
parents and an offspring to predict locations of SVs in the
genome of the child. We also investigate the performance of this
model under different neural network architectures using various
performance metrics. With these limited features and low-quality
data, we propose a generalization of our model that allows for
the simultaneous prediction of SVs in all three individuals.

Index Terms—Structural Variation, Deep Learning, Computa-
tional Genomics, Biomedical Signal Processing

I. INTRODUCTION

Structural variants (SVs) are observed differences, longer
than one base pair, between the sequenced genome of an
individual as compared to a reference genome for that species.
These differences are generally greater than 50 base pairs
in length and include deletions, inversions, insertions, and
duplications [1], [2]. Since some variations are associated with
disease, our work focuses on developing methods to detect
such genomic changes [3].

Because of their relevance to disease and their record of
human evolutionary history, detecting SVs has become a major
scientific question. The common method for SV identification
is to sample fragments from an individual’s genome and
compare these fragments to a high-quality reference. Regions
where these fragments are consistent with the reference sug-
gest the absence of an SV. This process of comparison is
known as mapping, and the precise characteristics of consis-
tency depend on the specific sequencing technology used [4],
[5]. Computational methods for structural variation detection
began to appear in the early 21st century when the cost of next-
generation sequencing decreased to the point that the genomes

of many individuals could be sequenced [6], [7], [8], [9]. In
recent years, SV detection algorithms have emerged to cope
with ever-changing genomic technologies [10], [11]. However,
the majority of SV detection algorithms perform poorly when
the average sequencing depth is low. It is also challenging to
separate the signal of a true SV from erroneous mappings and
most existing algorithms have difficulties resolving boundaries
of SVs [12], [13]. One successful approach to improving SV
detection is to use multiple SV detection methods and report
a consensus series of predictions [14]. In this case the weak
signal is “boosted” by combining SV predictors. We take an
alternate approach by leveraging the knowledge that since
SVs are shared by closely related individuals, we can boost
the signal of a true SV by simultaneously predicting SVs in
multiple related individuals at the same time.

Fig. 1. Example Deletion Structural Variant. The unknown genome (top)
has a deletion (missing segment) relative to a reference or known genome
(bottom). The signal for a deletion SV comes from multiple fragments (blue
and red arrows) which are sampled from the test genome and whose ends
map to a longer distance than expected in the reference.

In this work, we use neural networks to predict the location
of SVs by simultaneously considering related individuals. For
simplicity, we focus only on the deletion SV. (A deletion
structural variant occurs when a portion of the reference
genome is not present in the sample genome of an individual.
See Figure 1). Our first model considers two parents and their
shared offspring, predicting deletions in the child’s genome
based on the observed presence of DNA fragments in all
three individuals. We then expand the model to simultaneously
predict deletions in both parents and the child from the
same input of genomic information. Further, we compare
the performance of each model to preexisting techniques of
deletion calling.
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II. METHOD

We consider a framework for reducing false positive pre-
dictions in structural variation (SV) genomic signals in a two
parent-one child family. As such, we have data from two par-
ents (p1 and p2) and one offspring c, for n potential variation
locations. For simplicity, we consider haploid signals (either a
variant is present or not), where the truth for individual i takes
a binary value ~fi ∈ {0, 1}n. In the case of m = 3 individuals,
this results in a total of 8 possible combinations, or classes,
describing variant presence.

A. Observational Model

The observed data represent the number of DNA fragments
supporting a potential SV at particular genomic loci. We
assume the observed data, xi, for each individual i follows
a Poisson distribution [4], i.e.,

~xi ∼ Poisson
(
(λi − ε)~fi + ε

)
, (1)

where λ is the expected DNA sequencing coverage and ε
represents the sequencing and alignment errors. When λ
increases, ~xi can be approximated by a normal distribution
and methods exists to classify such signals (see e.g., [15]).
Related work (see [16] and the references therein) based on
sparse optimization techniques [17] infer ~fi from ~xi using the
maximum likelihood principle while leveraging parent-child
relationships formulated as optimization constraints. Machine
learning-based approaches have also been previously used for
detecting SVs [18], [19], [20], [21]. Our proposed method
differs from these existing method in two ways: 1) we consider
familial relationships simultaneously and 2) we differentiate
between types of inheritance with no pre-processing and
limited features in related individuals. In turn, this allows
us to develop the following framework without relying on
convolutional layers in our proposed architectures.

B. Classification Frameworks

For simplicity, we focus on classifying deletion structural
variants. Given this noisy data, we consider the following two
classification approaches:

Predicting Offspring Variation. We first developed a model
for a specific case of our problem, where we use the two
parents and child observational data to predict the presence of
a variant in the offspring. This simplification of detecting SV
presence in the child results in a binary classification problem
for reconstructing the truth signal fc.

Simultaneous Trio Prediction. To further use the relatedness
of the individuals, we expand our classification framework
to simultaneously predict the location of deletions in all trio
members. We enumerate and describe all variant possibilities
in Table I. We reduce the 8 categories to 5 possible classes,
according to relatedness information. Since we only consider
the presence of an SV and do not account for the number of
copies, we note that the Class 4 contains the possibility of
a variant in both parents which is absent in the child (i.e.,
fp1

= fp2
= 1 and fc = 0).

c p1 p2 Class Description
0 0 0 0 No SV
1 0 0 1 De novo (novel) SV
1 0 1 2 Inherited SV1 1 0
0 0 1 3 Non-inherited SV0 1 0
1 1 1 4 Parent SV (present
0 1 1 in both parents)

TABLE I
CLASS DEFINITIONS AND DESCRIPTIONS FOR SIMULTANEOUS

PREDICTION FOR c-p1-p2 TRIO.

C. Neural Network Approach

We use fully-connected neural network models which take
the genomic information of related individuals and output
predicted deletion locations for those individuals. In particular,
we consider neural networks with exactly two hidden layers
where the first hidden layer results from a linear transformation
of the input values and the second hidden layer consists
of linear transformations on the first hidden layer. After a
nonlinear transformation on the second hidden layer and the
application of the sigmoid function, the model produces the
desired output as class probability. Additionally, we allow each
layer to have between 2 and 5 nodes, providing a total of 16
different models to explore (see Figure 2 for the proposed
neural network architectures).

xp1

xc

xp2

Hidden
Layer 1
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Layer 2

ŷ

Input Output

Fig. 2. Neural network architecture with inputs xc, xp1 and xp2 and output
ŷ with variable widths of Hidden Layers 1 and 2.

We use the nn.CrossEntropyLoss() loss and encode
the respective classes as outlined above [22]. We refer to
specific models as having 3-l-m-1 architectures, where the 3
denotes the number of inputs (the genomic information of all
trio individuals), l represents the width of layer 1, m represents
the width of layer 2, and 1 represents the number of outputs
(where outputs are either binary for the child prediction models
or one of 5 classes in the simultaneous prediction case).

III. NUMERICAL EXPERIMENTS

Next, we consider both simulated and real genomic data
of related individuals for our models. We implemented the
subsequent models in Python using the open source machine
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learning framework PyTorch. Models were trained on 40-
60, 50-50, and 60-40 training-testing splits on a commodity
machine with 8 GB of RAM and an Intel i5 processor.
The neural networks were trained using the default stochastic
gradient descent optimizer Adam, 1000 epochs, with learning
rate = 0.01 [23].

A. Simulated Data

We simulated truth signals ~fc, ~fp1 ,
~fp2 , along with the cor-

responding observed data ~xc, ~xp1 , ~xp2 with n = 105 potential
deletion locations. For all individuals, the expected coverage
was set λ = 4 and the error term was defined to be ε = 0.01.
In each individual, only 500 true variants are present.

B. 1000 Genomes Data

We train and test our models previously sequenced data
from the 1000 Genomes project [24]. Specifically, we use the
CEU trio which consists of three Utah residents with European
ancestry (namely two parents and their child). After calling
deletions with GASV, the data input to our method consists of
the total number of fragments supporting a potential deletion.
For each of the three individuals, we consider 57,078 genomic
locations. Of these positions in the observed data, approxi-
mately 2% were experimentally validated as true deletions.

C. Data Imbalance

Due to the imbalanced nature of the data, we also discuss
models trained on an upsampled training set, where minority
classes are oversampled, so that the models are trained on a
balanced dataset across classes. We note that Class 0 comprises
approximately 98% of all the data, Class 4 makes up 1.5%, and
the remaining classes comprise the rest of the data. To evaluate
the performance of our models, we will explore AUC (Area
Under the Receiver Operator Curve), test loss, Top-1 accuracy,
and Top-3 accuracy.

IV. RESULTS

For both of our approaches, we observed high accuracy in
signal reconstruction for the simulated data. We report an AUC
of 0.99 for predicting offspring deletions and a Top-1 accuracy
of 0.99 (results not displayed). As such, we focus on the results
for CEU trio from the 1000 Genomes Consortium. For our
first approach, we predict child SV locations and found that
the best model in terms of AUC was the neural network with
l = 5 and m = 4. This model was created using a 50/50
train/test split. We note that this model architecture produces
an AUC 0.09 higher than the GASV model proposed in [25]
(see Figure 3).

For simultaneously predicting deletions in all trio individu-
als, we measure performance using Top-1 test accuracy, since
we are unable to calculate the AUC (as previously discussed)
for this multi-class classification problem. The highest Top-1
test accuracy is 0.8718 and is produced by the 3-3-4-1 neural
network model which was trained on 60% of the full dataset.
Figure 4 shows the top 1 test accuracies for all 16 models
created with a 60/40 split.
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Fig. 3. ROC and Area Under the Curve (AUC) for 3-5-4-1 model (blue)
compared to GASV ROC (green) when predicting CEU offspring deletion
locations.
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Fig. 4. Top-1 accuracy across all classes for the CEU 60/40 train-test split,
for all explored neural network architectures.

Further, we can evaluate the Top-1 accuracies of this model
by class, as shown in Table II. This model performs very well
for classes 0 and 3, and Top-3 accuracies indicate potential
to correctly classify other SV inheritance patterns. When
compared to multinomial logistic regression, we see an 8%
improvement in class 4 predictions. We also observe architec-
tures (i.e. 3-2-3-1) which perform better at detecting de novo
deletions, with a Top-1 Accuracy of 83.3% for class 1. These
results further warrant more exploration of using a limited set
of features in a population to better predict the distribution of
types of structural variants in related individuals.

V. CONCLUSIONS

We present a neural network framework to detect SVs in
DNA sequencing data from parent-child trios. This method
makes use of relatedness between the individuals to improve
signal reconstruction of low quality data. Moreover, this
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Class 0 1 2 3 4
Top 1 Accuracy 88.6 0 2.4 52.6 13.2
Top 3 Accuracy 91.4 0 97.6 73.7 93.4

TABLE II
TOP-1 AND TOP-3 TEST ACCURACIES (%) BY CLASS OF 3-3-4-1 MODEL

ON REAL DATA, WHERE OUR METHOD IMPROVES UPON DETECTION
NON-INHERITED SVS PRESENT IN A PARENT. WE NOTE THAT A MAJOR

IMPROVEMENT IN THE TOP-3 ACCURACY FOR CLASS 2, 3, AND 4.

work aims to fill a gap in the currently available research
by incorporating familial data into machine learning models
and simultaneously calling SVs in multiple individuals. We
present results for both simulated and real data from the 1000
Genomes Project and our framework is adaptable to individual
and simultaneous predictions. In future work, we intend to
incorporate more individuals of a population.
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