
 

 

 

 Abstract— The characterization of each Individual Wave 

Component (IWC) is essential in determining the different 

types of Bowel movements. Equally important is the 

effective use of the IWCs to predict anomalies in the 

digestive system. As it is often the case, the rigorous testing 

of an algorithm is always limited by the quality and quantity 

of available data. Recently, a mathematical model was 

presented as an alternative to generating synthetic bowel 

sound data that can be used as a stimulus to test new 

algorithms. In this paper, we present an analysis of this 

model and a new algorithm to estimate the parameters of the 

individual wave components. The performance of the 

algorithm is evaluated in both synthetic and clinically 

recorded data.   

 
 Index Terms—Bowel Sound, Bowel Sound Modeling, 

Bowel Movement, Individual Wave Component, Parameter 

Estimation.  

I. INTRODUCTION 

S the means to perform advanced signal analysis 

become more powerful and sophisticated, the necessity 

to acquire more data is gaining more attention. In this 

particular case where effective diagnosis plays a significant 

role in human life, there is the need to process more 

biomedical signals to develop better algorithms for a more 

accurate diagnosis. Unlike the sound signal of lung and 

heart, the investigation of gastrointestinal tract sounds has 

been very limited. This may be the result of the irregularity 

of natural bowel sounds as compared to cardiovascular 

sounds, which makes systematic analyses more difficult. 

Nonetheless, researchers have made a great endeavor to 

study the acoustic features of the bowel sound [1-3]. 

Different types of bowel sounds were then documented, 

along with the differentiation and classification methods 

utilizing a neural network or Bayes model [4-10]. However, 

the modeling of the bowel sound itself remains as the frontier 

of bowel sound study. 

 

Very recently, a mathematical model of bowel sound 

generation was proposed [11]. In this model, the 
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mathematical formulation and generation of Individual 

Wave Component (IWC) were proposed which is the 

building block for all types of bowel sounds. In the paper, 

the authors successfully simulated various types of bowel 

sound with the important tuning parameters of individual 

IWC and interdependent relationship between IWCs: 

Pressure Index (PI), Component Quantity (CQ), and 

Component Interval Time (CIT). 

 

Due to the nature of the digestive system research, a large 

number of recordings are difficult to obtain. Therefore, if the 

model is accurate and thorough, it would give researchers the 

capabilities to generate valuable synthetic data with high 

confidence crucial to develop and evaluate the performance 

of algorithms such as machine learning for abnormality 

detection. 

 

In this paper, we first validate and analyze the usefulness 

of the model. We simulate several types of bowel sounds. 

Then, we develop an algorithm that can extract the 

parameters of an IWC. We demonstrate the algorithm with 

synthetically generated IWC from the model to verify the 

effectiveness of the algorithm. We also verify, given a 

clinically recorded IWC, the feasibility to recreate the IWC 

using the model. Then, by comparing the reconstructed IWC 

using parameters extracted from clinical recordings with the 

original recording, we verify the accuracy of both our 

algorithm as well as the mathematical model.  

II. PARAMETER EXTRACTION APPROACH 

The mathematical model of the IWC is deducted by 

assuming the sound is generated from the vibration of the 

walls of the guts while fluid changes because of the pressure 

onto the wall. Thus, the motion can be regarded as a spring-

mass-damping system. As a result, we have a damped 

motion of a vibration frequency given by 

 

𝑝𝑖𝑤𝑐 = 𝐴𝑖𝑤𝑐 𝑠𝑖𝑛(2𝜋𝑓𝑖𝑤𝑐𝑡) (1) 

 

where 𝑡 is time, 𝑓𝑖𝑤𝑐  is the resonant frequency, and 𝐴𝑖𝑤𝑐 is 

the envelope of the IWC given by 
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𝐴𝑖𝑤𝑐 =
𝑝𝑒

−𝐸
𝑡⁄

𝑡𝑏
(2) 

 

where 𝑝 is the Pressure Index (PI) to scale the envelope of 

the signal, 𝐸 is the envelope index that is influenced by the 

pressure, and 𝑏 controls how narrow is the IWC which is 

related to the damping. 

 

The model separates the IWC into two fundamental 

components, a sinusoidal oscillation 𝑠𝑖𝑛(2𝜋𝑓𝑖𝑤𝑐𝑡)  where 

the main parameter is the frequency 𝑓𝑖𝑤𝑐  which can be easily 

obtained from a spectrogram; and a more complicated 

envelop function 𝐴𝑖𝑤𝑐  where our parameter extraction 

algorithm is mainly concentrated. Taking the natural log of 

equation (2), we have 

 

ln(𝐴𝑖𝑤𝑐) = ln(𝑝) +
−𝐸

𝑡
− 𝑏 ln(𝑡) (3) 

 

The envelop function then becomes a linear combination 

of the parameters. Then take the partial derivatives with 

respect to each parameter 𝑝, 𝐸, and 𝑏, we have 

 
𝜕
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𝜕

𝜕𝐸
ln(𝐴𝑖𝑤𝑐) = −

1

𝑡
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𝜕

𝜕𝑏
ln(𝐴𝑖𝑤𝑐) = ln(𝑡) (6) 

 

The partial derivatives of the envelope functions are 

reasonably simple. Thus, a nonlinear regression method is 

used in the algorithm to determine the value of the 

parameters. We then use the Levenberg-Marquardt 

algorithm for our parameter extraction method [12]. 

 

At this point, the problem is to extract enough data points 

from the IWC to achieve the curve-fitting convergence of the 

algorithm. According to the mathematical model, the IWC’s 

points that coincide with its envelope is when the oscillation 

𝑠𝑖𝑛(2𝜋𝑓𝑖𝑤𝑐𝑡) equals to a minimum or a maximum. Due to 

the relatively low frequency of bowel sound, it is easy to 

obtain accurate peak values and its corresponding time  𝑡 

with oversampling. But, it also poses a problem of too few 

peaks from the IWC if the resonant frequency is low or when 

the envelope decay into the noise level very fast. To address 

this problem, we utilize the Hilbert Transform on the IWC to 

generate additional points close enough to the IWC within a 

tolerance. To maintain the characteristics of the IWC itself 

without too much deviation, only points that are close to the 

peaks are selected for nonlinear regression. 

 

In the following section, simulation is carried out to 

demonstrate the algorithm in detail with generated IWCs 

according to the mathematical model. 

III. PARAMETER EXTRACTION WITH SIMULATED DATA 

With this mathematical model described by equation (1), 

a generated IWC is shown in Figure 1. The IWC is defined by 

the resonant frequency 𝑓𝑖𝑤𝑐 , and is strictly bounded by the 

envelop function 𝐴𝑖𝑤𝑐  which shape is mainly defined by the 

inhibitory relationship between parameter 𝐸 and 𝑏. Since 𝑝 

is just a scaling factor, by fixing it to a constant value, for 

instance 𝑝 = 1, while changing the other parameters, we can 

obtain different forms of IWC Figure 2. 

 

 

Figure 1: An IWC with its bounding envelope 

 

 

Figure 2: Multiple IWCs with changing parameters. 

Figure 1 shows the result of generating one IWC using the 

model while Figure 2 shows the flexibility to generate 

multiple IWCs at varying values of the parameters. The first 

step in the parameter extraction from the envelope function 

is to find the peaks of the generated bowel sound signal. 

Then, we set a minimum threshold for the peaks and group 

the nearby peaks so that we could obtain the points that 

belong to one single 𝐴𝑖𝑤𝑐 , as shown in Figure 3. 
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Figure 3: Peaks of IWC obtained from its envelop function 

As shown above, depending on the resonant frequency 

and the decaying speed of the IWC envelope, the number of 

peaks varies. In the case of lower frequency and fast 

decaying IWC like the one on the right in Figure 3, the 

number of points for parameter extraction is insufficient to 

guarantee convergence. Thus, we introduce the Hilbert 

transform that provides an estimated envelope of the IWC, 

shown in Figure 4. 

 

However, due to noise during the recording of the actual 

bowel sound, treating the Hilbert envelope as the IWC 

envelope function would introduce distortion. To preserve 

the fidelity of the original 𝐴𝑖𝑤𝑐 , only points with a distance 

less than a threshold 𝜀 to the peaks are considered. Shown in 

Figure 5 are examples of the points that we consider for the 

IWCs. 

 

Figure 4: Envelop Estimation using the Hilbert Transform. 

 

 

Figure 5: The upper graph shows points on the Hilbert Transform envelope 
that are close to the peaks are selected. The graph in the middle shows the 

points in red from the IWCs selected for curve fitting. Lower left is the 

absolute values of the points of the first IWC for curve fitting; while the 

lower right points are from the second IWC. 

 

After collected suitable points for the envelope function 

fitting, the Levenberg-Marquardt algorithm is applied for 

parameter extraction. The Levenberg-Marquardt algorithm 

is widely used for nonlinear curve fitting problems [12]. 

First, we defined the function to be fitted. As described in 

section II, we take the natural log of the equation first, yet to 

compensate for a time shift, we add another parameter 𝜏 to 

the model defined in [11]. So, the envelope function 

becomes 

 

𝐴𝑖𝑤𝑐 =
𝑝𝑒

−𝐸
(𝑡+𝜏)⁄

(𝑡 + 𝜏)𝑏
(7) 

 

with 𝛽 is the vector of parameters 

 

𝛽 = [𝑝 𝐸 𝑏 𝜏] (8) 
 

Thus 

 

𝑓(𝛽) = ln(𝐴𝑖𝑤𝑐) = ln(𝑝) +
−𝐸

𝑡 + 𝜏
− 𝑏 ln(𝑡 + 𝜏) (9) 

 

Then according to Equation (9), the logarithmic values of 

the points in Fig.5 form pairs of (𝑥𝑖 , 𝑦𝑖), and with an initial 

guess of parameter vector 𝛽, we compute 

 

𝐽𝑖 =
𝜕𝑓(𝑥𝑖 , 𝛽)

𝜕𝛽
(10) 

 

where 𝐽𝑖  is i-th row of the Jacobian matrix, then solve the 

equation for 𝛿 

 

(𝐽𝑇𝐽 + 𝜆𝐼)𝛿 = 𝐽𝑇[𝑦 − 𝑓(𝛽)] (11) 

 

where 𝜆 is the damping factor that is modified according to 

the gradient reduction for faster convergence. Upon solving 

for 𝛿, the parameter vector is updated by 𝛽 + 𝛿. The results 

are shown in Figure 6 below. 
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Figure 6: Levenberg–Marquardt curve fitting on the two IWCs 

To verify the parameter extracted, we reconstructed the 

IWCs. We can observe that our algorithm could accurately 

reconstruct the generated IWCs as shown in Figure 7. 

 

 

Figure 7: Comparison of reconstructed vs. original IWC 

IV. MODEL VALIDATION 

To validate our parameter extraction algorithm as well as 

the mathematical formulation, we applied the algorithm to 

the clinically recorded bowel sound signals. Figure 8 shows an 

IWC of clinically recorded bowel sound. 

 

We then applied the algorithm introduced in the previous 

section using tunning parameters and with a higher threshold 

of peak detection to eliminate the noise. Figure 9 shows the 

results for the Hilbert transform envelope of the parameter 

extraction.  

 

 

Figure 8: An IWC from a recoded bowel sound 

 

 

Figure 9: The graph is the Hilbert transform for the IWC, where red points 

are selected for curve fitting. 

 

Figure 10: Comparison of reconstructed vs. real IWC 

The extracted parameters allow reconstruction of this IWC 

as shown in Fig 10. The high accuracy of the reconstruction 

validates the capability of the proposed mathematical model 

in [11], and the effectiveness and robustness of our 

parameter extraction algorithm. 

V. CONCLUSION 

The accurate diagnosis of the digestive system remains a 

problem in the medical community. One of the issues is the 

lack of a computerized system that would capture bowel 

movement at all the identified locations accurately. While a 

computerized system will help alleviate the problem, a 

reliable model can help develop better algorithms to address 

this critical problem where recorded clinical data is not 

available. This paper expands on a previous model and 

presents a new algorithm to estimate the parameters of an 

IWC and also provides a reconstruction of the original 

Individual Wave Component from the estimated parameters. 
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