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Abstract—The agricultural industries have always demanded
technologies for the automatic discovery and diagnosis of plant
diseases with high speed, accuracy, and low cost. Numerous
studies have been conducted in response to this demand; however,
significant issues remain in most cases where a large-scale dataset
of field images is taken with different atmospheric conditions,
lighting, scale, and in different directions. The large dataset often
causes high computational and storage costs. To overcome this
problem, we focus on methods based on efficient invariant image
features. These methods are robust against such external factors
added during image acquisitions with low computational cost
and higher accuracy. We then use a well-known data clustering
algorithm k-means to create visual features for lesions. We
then create a group of robust visual features (BoVF) using the
Term Frequency-Inverse Document Frequency (TF-IDF) weight-
ing scheme that considers the most important visual features
in the image for classification. Experimental results classify the
BoVF using K-means clustering that categorizes a particular
disease in the leaf image into their appropriate group.

I. INTRODUCTION

Quality control of agricultural products is one of the es-
sential issues for supporting economic activities worldwide.
Stably supplying these agricultural products to the market,
farmers need to properly manage the fields such as to monitor
the field conditions, ensure the appropriate use of water
and pesticides based on climate and humidity change, and
the sanitary management of farm equipment. Among these
management measures, early detection of plant diseases, which
is the direct cause of the decline in the commercial value
of crops, is especially important. In particular, plant virus
diseases are dangerous in the field because they can cause
secondary damage due to the spread of other crops in the same
field, and since it is not possible to treat the infected strains
once infected. Due to such viral diseases, considerable crop
losses have been attributed in Pakistan, India, United States,
Australia, and Japan. Annual crop losses due to only plant viral
diseases are estimated worldwide at 60 billion dollars [1].

The most common method for early disease discovery and
diagnosis is a visual diagnosis by farmers and experts in plant
pathology. However, this approach is very time-consuming
because the diagnostician must judge the entire field one by
one. Besides, visual diagnosis requires advanced knowledge
to detect abnormalities in leaves, stems, and roots at an early
stage. It is difficult to distinguish the presence and type of
symptoms appearing in a plant without some experience, and
especially the symptom in the early stage is almost indistin-
guishable from the healthy one. Also, when an ordinary person
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discovers such diseases, however, the symptoms may have
already progressed to the end stage and are uncontrollable.

Using a microscope for genetic information is another
solution for the visual diagnosis. LAMP method is a typical
method for gene diagnosis [2]. LAMP is an effective method
for plants of the family, e.g., Cucurbitaceae and Tomato, but
this diagnosis requires a dedicated kit, and the types of viruses
that can be diagnosed are limited. Furthermore, the kit is also
hard for farmers who are inexperienced in farming or for
ordinary people who do not have specialized knowledge.

The entire series of processes from the discovery to the
diagnosis of plant diseases in the agricultural field is currently
carried out based on the intuition and experience of farmers
and specialists. This fact not only causes a major burden on
farmers but in the case of a disease such as a viral disease that,
if spreads, there is a possibility that the amount of damage
caused by oversight will also increase. Therefore, automating
techniques for the diagnosis of plant diseases characterized
by speed, accuracy, and low computational cost have been
demanded by the agricultural industry [3].

In response to such demand, this study aims to reduce this
burden on farmers by image processing technology. In plants,
the disease symptoms appear in different parts of the plant,
such as leaves, stems, and roots. Among them, leaves are
often used as clues for diagnosing disease symptoms, and leave
observation with a camera is more accessible than stems and
roots. The automatic diagnosis of plant leaf diseases is always
affected by a large number of external factors such as light,
shadows, shaking leaves by the wind, and the camera position.
The conventional methods rely on a large dataset of field
images taken under such circumstances to minimize the effect
of such external factors for covering the issues. However, some
approaches, such as CNN based methods, overcome the issues,
but newly extracted issues, which are high computational cost
and storage cost, are unrealistic for business.

In this study, we overcome the issues by assessing invariant
image feature descriptors, which are robust against these exter-
nal factors and can keep low computational and storage costs.
We investigate various descriptors, e.g., SIFT, SURF, ORB,
KAZE, and AKAZE. Further, we use k-means clustering [4],
which creates the most important visual features for disease
classification. The center of each cluster is called the visual
word. Then we use TF-IDF [5] as the weighting scheme for
evaluating the frequency of visual words [6]. In this study, we
classified 680 plants leave images into seven different classes.
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Fig. 1: Example of sample images of PlantVillage Dataset.

II. RELATED WORK

In the past, the representative researches of the automatic di-
agnosis of plant leaf diseases are the gray-level co-occurrence
matrix (GLCM) and the spatial gray-level dependence matrix
(SGDM). For example, Huang et al. [7] trained a neural
network with GLCM features. They identified a total of three
types of lesions that appeared on orchid leaves and achieved
an average identification performance of 89.6%. Kai et al.
attempted to identify lesions on corn leaves. They trained a
BP neural network with GLCM features and succeeded in
diagnosing three types of lesions with a precision of 98% [8].
Bakshish et al. proposed a diagnostic framework that does not
depend on the type of plant. They extracted the features using
SGDM acquired on the HSV color space and achieved an
average classification performance of 89.5% for a total of five
lesions using a three-layer neural network [9]. Arivazhagan et
al. have proposed an identification method using SVM. They
trained the SVM classifier with SGDM features calculated
from the HSI image of the leaves. This classifier achieved an
average classification performance of 94.74% for many types
of plant diseases such as banana and guava [10]. Plant disease
diagnosis using these conventional methods are not invariant
for external factors and often causes much computation and
storage cost.

Recently, cutting edge methods, such as CNN, have been
widely used in the agricultural field due to its high classifi-
cation accuracy. From the viewpoint of the identification of
plant leaves, Lee’s method has high performance [11]. They
extracted features from 44 types of plant leaves and succeeded
in identifying plant leaves with 99.5% accuracy by placing
a multi-layer perceptron in the identification part. Mohanty
et al. have verified the utility of CNN for the diagnosis of
plant diseases using multiple CNN architectures [12]. They
conducted a verification experiment using a dataset containing
54,306 plant leaf images with 14 crop species and 26 types of

diseases for 38 classes. They achieved a classification accuracy
of 99.35%. Liu et al. [13] classify four types of apple leaf
diseases using CNNs. They achieved an average classification
accuracy of 97.62%. Jiang et al. [14] proposed a method that
analyzes the wheat diseases using the WDD2017 dataset con-
taining 9,230 images. The method diagnosed seven different
types of wheat diseases by using a full convolutional VGG-
based neural network. They achieved an average recognition
accuracy of 97.5%. Fuentes et. al [15] proposed a method
that detects and diagnoses lesions in tomato images based
on VGG-net and Faster region-based CNN. They succeed in
achieving a maximum of 0.83 mean average precision. The
recent approaches demonstrated promising realization of plant
disease diagnosis utilizing a large-scale dataset. However,
extensive power and memory processing is still the issue
remain unsolved.

The existing approaches for the diagnosis of leaf diseases
use large-scale datasets taken under favorable conditions.
However, one of the problems is that images to be taken in the
agricultural fields are not always under favorable conditions.
For example, the plants are often planted in a narrow sus-
ceptible to leaf overlap. In addition, the shooting environment
is effected by many external factors, such as the effect of
sunlight, shading from the sun, and shaking of the leaves by
the wind. This study uses efficient image feature descriptors
to implement an automatic plant disease diagnosis system that
is independent of such external factors.

III. METHODOLOGY

A. Dataset

For creating an automatic diagnosis system, a dataset con-
taining different plant leaf images is indispensable. For this
research work, we used the PlantVillage dataset [16] available
online on the internet, which consists of 54,393 images divided
into 38 categories by species and disease. Figure 1 shows
examples of some image samples of this dataset.
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B. Features Extraction and Description

In this paper, we compared five feature extraction methods
for the diagnosis of leaf diseases, such as SIFT, SURF, ORB,
KAZE, and AKAZE. We shortly describe the characteristics
of these methods.

1) SIFT: Scale-invariant feature transform (SIFT) [17] finds
interest points invariant to scale and rotation by searching the
entire image locations and scales. SIFT uses linear diffusion
to create a difference-of-Gaussian (DoG) and down-sampling
the images. The algorithm detects local maxima and minima
by choosing a pixel in the DoG image and compare it with
the 26 neighborhood pixels around it in 3 × 3 regions of
adjacent scales. Each pixel is investigated in several different
scales, and the candidate keypoints are selected that gave the
highest measurement in the frequency scale, causing the scale
invariance. The algorithm then localizes these interest points.
While localizing such interest points, there is a possibility of
outliers due to either low contrast candidates or caused by
noise or poorly localized candidates along the edges. Rejection
is done by examining potential surrounding points of interest
using a Harris corner detector that detects large gradients, i.e.,
derivatives, in all directions.

The algorithm then assigns the orientation to each interest
point localized previously, which is useful for rotation invari-
ance. An orientation histogram of the neighborhood, which
contains gradients around the region of each keypoint, is
essential for the rotation invariance. The histogram generates
different peak values, but the peak with the dominant direction
will be set as the orientation for the keypoint. If several peaks
of the same magnitude are found, then multiple keypoint with
different orientations, but the same location and scale will be
created at that peak. Finally, the descriptions for each keypoint
are computed using 16×16 neighborhood around the detected
point. This neighborhood window is further divided into 4×4
blocks, and the 8 bin orientation histogram is created for
each block. Then a 16 bin histogram of 128 dimensions in
one long vector is concatenated. The final vector contains the
descriptors of these keypoints.

2) SURF: DoG processing is the bottleneck of SIFT.
Speeded up robust features (SURF) [18] accelerate the DoG
processing by using box filtering with an integral image [19],
[20], [21]. In this algorithm, both keypoint extraction and scale
detection are approximated by combining Hessian-Laplace
detection with box filtering.

3) ORB: Oriented FAST and rotated BRIEF (ORB) [22]
is based on binary robust independent elementary features
(BRIEF) descriptor [23] and features from accelerated segment
test (FAST) detector [24]. Both methods are computationally
efficient. ORB uses Fast and Harris corner detector to detect
efficient keypoints. Since FAST is not rotation invariant, it uses
the intensity centroid technique to make it rotation invariant.
BRIEF descriptor in ORB has a weakness in orientation
performance. It was improved by computing a rotation matrix
using the orientation of patches. ORB then create a steer
version of BRIEF according to the orientation.

4) KAZE and Accelerated KAZE (AKAZE): The idea be-
hind the creation of KAZE and AKAZE is to detect and de-
scribe 2D features in a nonlinear scale-space extreme to obtain
a better localization accuracy distinctiveness [25]. Gaussian
blurring used in the other object recognition algorithms, such
as SIFT, does not respect the natural boundaries of objects
since image details and noise are smoothed to the same degree
at all scale levels. Gaussian filtering is isotropic in the scale-
space, the processing is performed by blurring the edge of the
object, and thus local features cannot be easily detected.

Therefore, to make the blurring adaptive to image fea-
tures, KAZE uses nonlinear diffusion filtering and additive
operator splitting (AOS) to reduce the noise. Also, AKAZE
defines a feature descriptor and uses a unique descriptor called
modified-local difference binary (M-LDB).

IV. CLASSIFICATION OF LEAF DISEASE IMAGES

After extracting features, we clustered the similar-looking
features using k-means clustering. The goal of k-means
clustering algorithm is the partition of n local features
(X = [x1, x2, ..xn]) into k clusters (k ≤ n) in order to mini-
mize the residual sum of squares within each cluster.

argmin
C

k∑
i=1

∑
xj∈Ci

‖xj − µi‖2 (1)

Equation (1) is the objective function for k-means clustering
where µi is the mean of samples in Ci. The value selected
for k in our experiment is 250 to create a vocabulary of 250
visual words. Different values for k were tried, but k = 250
is optimum enough that if we decrease or increase this value,
the resultant accuracy decreases.

After creating the visual words, the next step is to calculate
the most frequently occurring visual words. To do so, we used
a technique called TF-IDF to evaluate the frequency of visual
words to create a BoVW. The term TF (Term Frequency)
means a visual word has a high frequency of occurrence in an
image indicates that visual word can represent the content of
the image well.

TFi,j =
ni,j∑
k ni,j

(2)

In (2), ni,j denotes the occurrence of visual words in the image
and the denominator is the total number of visual words in the
image. Inverse Document Frequency (IDF) is calculated that
retrieve some common words that appear very frequently in
each image, but these words do not represent the content of
the image well, so this part of the word should be given a
lower weight.

IDFi = log
|D|

|{dj : ti ∈ dj }|
(3)

In (3), |D| is the total number of images D = d1, d2, ...dn
whereas |{dj : ti ∈ dj }| is the number of total images where
the word ti appears. Now the weight of TF and IDF is
calculated by multiplying them with each other.

TFIDFi,j = (TFi,j) (IDFi) (4)
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(a) Rotation invariance test (b) Scale invariance test

(c) Brightness invariance test (d) Blur invariance test

Fig. 2: Invariance test cases for each descriptor

TABLE I: Experimental results with the use of each image feature descriptor for 680 images.

Descriptor Time per frame [s] Total keypoints Accuracy [%]
SIFT 2.062 899845 87.25
SURF 1.762 789640 85.73
ORB 1.320 392764 54.64
KAZE 1.132 538033 63.23
AKAZE 0.287 572143 81.56

The weight of TF-IDF is then assigned to BoVW vector
that ultimately creates the BoVW. The system then uses k-
means method again to classify these bag of features into their
categories, which classified the leaf diseases as a result.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we compare each method. The experimented
code was implemented in Python with OpenCV. The CPU was
Intel Core-i5 4690 3.50 GHz, and the code was compiled with
Visual Studio 2017.

We compared the performance of each feature descriptor to
evaluate their robustness against the brightness, blur, rotation,
and scale-invariance, as shown in Fig. 2. The input image used
for the test cases was Lena, as it has more variations than a
leaf image to consider. In each test case, AKAZE, KAZE, and
SIFT, respectively shows good accuracy.

Figure 3 shows the results of keypoint matching between
two different images but the same condition type. In this test
case, SIFT, SURF, and AKAZE show maximum numbers of
keypoints matches.

We also compared the performance of each method based
on the computation cost and accuracy in Table 1. The experi-
mental results show that the computational speed of AKAZE
is about seven times faster than that of SIFT and SURF and
five times faster than that of ORB. The classification accuracy
achieved with SIFT is 87.25 %, with SURF 85.73%, and using
AKAZE is 81.56%, while the other two descriptors had the
lower performance than SIFT, SURF, and AKAZE.

AKAZE showed better performance in terms of robustness
to various variances, computation cost, and also the classi-
fication accuracy of AKAZE is slightly comparable to SIFT
and SURF. Therefore, we justify AKAZE as the most efficient
feature descriptor for the automatic diagnosis of leaf diseases.

Note that the famous approach of SIFT is fully accelerated
by using hardware [26], [27]. Further, recent signal processing
can accelerate the fundamental processing of Gaussian filtering
by using sliding transform [28], [29]. The technique is utilized
for SSIM computing [30], which has similar computational
scheduling in DoG computation. Using adequate implemen-
tation can reduce the cost of SIFT, which has the highest
accuracy.
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(a) Input images (b) SIFT

(c) SURF (d) ORB

(e) KAZE (f) AKAZE

Fig. 3: Comparison based on Keypoint matching.

VI. CONCLUSION

This paper proposes a method for the automatic diagnoses
of leaf diseases using efficient image feature descriptors and a
k-means clustering algorithm. We extracted the features from
the lesion on the images using SIFT, SURF, ORB, KAZE, and
AKAZE, respectively. We then used the K-means clustering
algorithm to cluster the extracted features into visual features.
The obtained visual features are then grouped by TF-IDF
technique for creating a bag of visual features. We then used
the K-means clustering algorithm again to classify these visual
words, which in turn classify the leaf diseases. However, the
major limitation of this study is the proposed method map
the irrelevant interest points during the clustering process,
which may reduce the accuracy of the system. Moreover,
the proposed method manually learn the parameters of the
encoders during the clustering.
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