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Abstract—Patients undergoing hemodialysis generally have
shunts implanted in their bodies; a number of other prob-
lems, such as vascular stenosis, can be encountered. Patients
undergoing hemodialysis can inspect the effective functioning of
their shunts by listening to the shunt murmur. However, this
manual inspection is difficult and requires experience. In this
paper, we propose a method of exploring the hyperparameters
of the shunt-murmur discrimination algorithm using Bayesian
optimization. The resistance index(RI) obtained from the ultra-
sound system is used as a class label. The normalized cross-
correlation coefficients, Mel frequency cepstrum coefficients, and
frequency power percentage were the features to be trained by a
random forest (RF). Bayesian optimization was used to explore
the hyperparameters of the RF, achieving a significant accuracy
improvement.

I. INTRODUCTION

Patients with kidney diseases such as kidney failure undergo
hemodialysis to eliminate waste products and excess fluid from
their blood. In this process, an arteriovenous fistula (AVF),
called a shunt, is created together with an anastomosis between
an artery and a vein. However, problems such as stenosis
and blockage can occur owing to factors such as aging of
patients, and prolonged use of a shunt. If the shunt’s function
is interfered with, patients cannot undergo hemodialysis unless
they undergo reoperation. Therefore patients must routinely
inspect the shunt for effective functioning. Although listening
to a shunt murmur can be used to investigate a functioning
shunt, relevant knowledge and experience are required to
make appropriate conclusions. Therefore, it is desirable to
provide a system that automatically determine a functioning
shunt. From Murakami [3], the number of patients with shunt
dysfunction increases if the resistance index (RI) value exceeds
0.6. Murakami further described the increasing trend observed.

In [1][2], discrimination experiments were conducted using
SVM and random forest (RF) based on features and RI values
from frequency analysis of shunt murmurs. An RI value is used
as a class label, particularly, classes with less than, and greater
than or equal to 0.6 RI values. RI is an indicator of poor blood
flow to the periphery and is measured using an ultrasound
device. However, owing to low discrimination accuracy, it
cannot be used in a real environment. An additional problem is
that, the hyperparameter search of the identification algorithm
is time-consuming.

Fig. 1. Flow of processing

In this study, we use Bayesian optimization to perform
hyperparameter search of shunt murmur’s discrimination al-
gorithm. Furthermore, we propose a method for identify-
ing shunt states. RF and neural network (NN) are used as
shunt murmur’s identification algorithms. Because Bayesian
optimization uses a surrogate model to perform the search
efficiently. We assumed that this can reduce the search time
compared to the grid search used in conventional methods.
To examine its effectiveness, we performed a cross-test and
evaluated it in terms of discrimination accuracy and search
time. The data and features used in the experiments are the
same as those used in existing studies[1].

II. PROPOSED METHODS

In this study, we use frequency analysis of shunt murmurs
and RI values to automatically identify shunt stenosis using
RF and NN. We propose a method to search for RF and NN
hyperparameters using Bayesian optimization. The processes
involved is shown in Fig.1. RI is a measure of the difficulty
of blood flow to the periphery and is expressed by (1).

RI =
PSV − EDV

PSV
(1)

where PSV indicates the maximum systolic blood flow and
EDV indicates end-diastolic blood flow.
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A. Bayesian Optimization

Bayesian optimization is a method to create a proxy model
for predicting the objective function using Gaussian process
and Tree-structured Parzen Estimators (TPE). It selects the
candidate search point with the highest expectation as the next
search point using the acquisition function. In this study, we
used TPE[4] as a proxy model and expected improvement
(EI) as an acquisition function. TPE models p(x|y) and is
composed of two distributions divided by a threshold y∗.

p(x|y) =
{

l(x) (y < y∗)
g(x) (y ≧ y∗)

(2)

y∗ is given prior by the quantile γ.

p(y < y∗) = γ

The l(x) and g(x) are distributions of y being large and
small, respectively. These probability density functions are
estimated by kernel density estimation from sampled points. If
minimizing the evaluated value, l(x) and g(x) are distributions
of parameters x that are less and greater than some loss,
respectively. EI is defined as

EIy∗(x) = (γ +
g(x)

l(x)
(1− γ))−1 (3)

To minimize the evaluated value, the acquisition function
selects a parameter x that has a higher probability of reducing
the loss than the threshold y∗. This method of searching for
the next parameter x to calculate the loss is used in TPE. For
search efficiency, this method enables finding optimal solutions
with few search than grid search.

B. Random Forest

An RF [5] is a machine learning algorithm that combines
multiple decision trees to estimate a class. It is considered
as a type of ensemble method because it combines multiple
decision trees to build a significantly powerful model. A
major problem with decision trees is that they overfit the
training data. In RF, the degree of overfitting can be reduced
by creating multiple decision trees that overfit in different
directions and averaging the results. The name random forest
originates from the introduction of random numbers in the
process of building the decision tree to distinguish decision
trees. In creating each decision tree, bootstrap sampling is
performed. This will enable duplicates from the total training
data and randomly extract data to develop a training data set.
This results in developing decision trees of random forests for
different datasets. In addition, because features are randomly
extracted to create a decision tree, it is feasible to investigate
their importance.

C. Neural Network

A neural network[6] is a mathematical model of the neurons
and their relationships in human brains. In neural networks,
the elementary units that model neurons in human brains
are called artificial neurons. Neural networks are also called
multilayer perceptrons. An example is shown in Fig.2. The

Fig. 2. Example of neural network

leftmost, rightmost and middle columns are called the input,
output, and middle or hidden layers, respectively. From the
input layer to the output layer, Layer 0, Layer 1, and Layer 2
in order, so Fig.2 is called a three-layer network. A perceptron
that receives two input signals x1, x2 and outputs y can be
expressed as (4) and (5). Where b is the bias and w is the
weight.

y = h(b+ w1x1 + w2x2) (4)

h(x) =

{
0(x ≤ 0)
1(x > 0)

(5)

The h(x) in (5) is called the activation function. Decomposing
(4), we obtain (6) and (7).

a = b+ w1x1 + w2x2 (6)

y = h(a) (7)

In the perceptron, (6) is the activation function. The NN learns
by updating (optimizing) the weights (w) reduce the value of
the loss function.

III. FEATURE EXTRACTION

A. MFCC

Mel frequency cepstrum coefficients (MFCC) is a low-
dimensional spectral information defined in the Keflency re-
gion. To determine MFCC, a filter called Mel-filter bank
is defined and multiplied by the spectra to obtain a low-
dimensional overview of the spectrum. The Mel filter bank
is a filter that is fine in the low frequency range and coarse in
the high frequency range on the Mel scale. The Mell scale[7]
used to obtain the Mel-filter bank is given by

Mel(f) = 2595 log 10(1 +
f

700
) (8)

The rough form of the spectrum obtained by multiplying the
Mel-filter bank with the spectra is transformed to the Keflency
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Fig. 3. Ratio of frequency power

region by a discrete cosine transform, and the resulting low-
dimensional feature is called MFCC. In this study, up to 16
MFCC dimensions were used as features.

B. Ratio of Frequency Power

A stenosis shunt murmurs is characterized by its frequency.
Therefore, the Fourier transform, that is a frequency analysis
method was used to extract the features. Initially, Fourier
transform is applied to the shunt murmur signal to obtain
the frequency spectrum. Thereafter, we partition the frequency
power for each band from 1-2,000 Hz into four parts at 500
Hz each.

p1 =

500∑
f=1

{
20 log 10(abs(X(f)))

}
(9)

p2 =

1000∑
f=500

{
20 log 10(abs(X(f)))

}
(10)

p3 =

1500∑
f=1000

{
20 log 10(abs(X(f)))

}
(11)

p4 =

2000∑
f=1500

{
20 log 10(abs(X(f)))

}
(12)

The sum of the values obtained from (9) to (12) is used to
calculate the sum of the frequency power from 1-2,000 Hz.

Ptotal = p1 + p2 + p3 + p4 (13)

Finally, we calculate the ratio for each band against the total
sum calculated in (13).

P1 =
p1

Ptotal
, P2 =

p2
Ptotal

, P3 =
p3

Ptotal
, P4 =

p4
Ptotal

(14)

This process is shown in Fig.3.

C. Normalized Cross-Correlation Coefficient

Normalized cross-correlation coefficients[8] can be obtained
by the normalized cross-correlation analysis method. It shows
the strength of cross-correlation between two images and is an
effective method to investigate the independence and similarity
between systems. Herein, the normalized cross-correlation

coefficients are obtained by treating the time-frequency results
obtained from the wavelet transform as images. The wavelet
transform[9] is a technique for time-frequency analysis by
shifting and scaling small waves called wavelets.
The function ψ(t), whose mean is 0 and is localized around
the origin t = 0, is called a wavelet. ψ(t) is shifted or scaled
on the t-axis to generate the basis ψa,b(t).

ψa,b =
1√
a
ψ(
t− b

a
) (15)

where, a is the parameter of scaling, called scale, and b is
called shift. The inner product of ψa,b and the signal f(t) is
the wavelet transform.
In this study, the normalized cross-correlation coefficients
were obtained by comparing them with the shunt sounds
of two patients with low RI values. The normalized cross-
correlation coefficients are calculated by (16).

R =
f(t, ω)− f(t, ω)× (g(t, ω)− g(t, ω))√
(f(t, ω)− f(t, ω))2 × (g(t, ω)− g(t, ω))2

(16)

where t denotes time, ω denotes frequency, and f(t, ω) and
g(t, ω) denote the average luminance. Furthermore, f(t, ω)
and g(t, ω) are given by (17) and (18).

f(t, ω) =
1√
a

∫
f1(t)ψ(

t− b

a
)dt (17)

g(t, ω) =
1√
a

∫
f2(t)ψ(

t− b

a
)dt (18)

where ψ(−) is the complex conjugate of ψ(−).

IV. EXPERIMENT

Bayesian optimization is used to search for RF and NN
hyperparameters. We aim to examine the effectiveness of the
proposed method by comparing the execution time and the
percentage of correct answers.

A. Experimental conditions and methods

Shunt murmurs used for identification is the shunt murmurs
presented in [1]. The shunt murmurs at the anastomosis of 60
patients with AVF was used for identification (RI value less
than 0.6 in 30 patients and 30 with a RI of 0.6 or higher).
Five 0.8-second data were extracted from each person from
the recorded shunt murmurs. A total of 300 data was used. A
fifth-order cross-test was conducted using 80% of the data as
the training data and 20% as the test data, and the percentage
of correct answers was used as the evaluation index. The
experimental conditions are shown in TableI. The percentage
of correct answers is determined using (19).

Accuracy =
The number of correct answer

The total number of data
(19)

Normalized cross-correlation coefficients, percentage of fre-
quency power, and MFCC were used as training features. The
training and test data were obtained from a different individual.
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TABLE I
EXPERIMENTAL CONDITION

Sampling frequency 48 kHz (microphone)
Data length 0.8 sec

Number of test data 60
Number of training data 240

MFCC
Feature Ratio of frequency power

Normalized cross correlation coefficient
Classification algorithm Random Forest

Neural Network

TABLE II
RF PARAMETERS

Parameters Range
Number of decision trees 1–22

Maximum depth of the decision trees 1–22
random state 1–999

Number of searches 1000

To compare the execution time, the hyperparameters were
searched by grid search and Bayesian optimization under the
conditions in TableI and TableII. Subsequently, the range of
hyperparameters was extended and discrimination experiments
were performed for RF and NN, respectively. The extended
hyperparameters are shown in TableIII and TableIV.

B. Experimental Results

To compare the execution time, the hyperparameter search is
performed using grid search and Bayesian optimization under
the conditions of TableI and TableII, and the results are shown
in TableV. Although from TableV the hyperparameter search
with grid search was prolonged, the optimal solution can be
determined. In the hyperparameter search with Bayesian opti-
mization, although the search time was significantly reduced,
it did not determine the optimal solution. However, because
we obtained a high percentage of correct answers in less time,
it is considered as an effective method.

Thereafter, we extended the range of hyperparameters to
discriminate between RF and NN, and the results are shown
in TableVI. We used Bayesian optimization to search for RF
hyperparameters and obtained a high percentage of correct
answers in a small search time. From the NN, additional
hyperparameter search is necessary for further studies. The
results of the correctness of the search are shown in Fig.4.

V. DISCUSSION

From the results in TableV, although Bayesian optimization
reduced the search time, it did not determine the optimal
solution. We can be attributed to wide range of random num-
bers. Therefore we conducted the experiment with a narrow
range of random numbers as shown in TableIII. Extending the
range of RF hyperparameters by using Bayesian optimization
can improve the discrimination accuracy with reduced search
time. However, the result of NN hyperparameter search using
Bayesian optimization is worse than RF discrimination accu-
racy. This can be owing to insufficient range of hyperparame-
ters to be searched. Further investigation of the discrimination
algorithm is required to improve its accuracy.

TABLE III
RF PARAMETERS(RANGE EXPANSION)

Parameters Range
Number of decision trees 1–100

Maximum depth of the decision trees 1–10
random state 580, 916
Split criterion gini, entropy

Minimum number of samples
required to split an internal node 2–9

Minimum number of samples
required to be at a leaf node 1–9

Number of features to consider
when looking for the best split sqrt, log2

Number of searches 1000

TABLE IV
NN PARAMETERS

Parameters Range
Batch size 6

Epoch number 10
Optimization algorithm Adam

Number of hidden layers 1–3
Number of units 4–128

Activation function relu
Dropout rate 0.2–0.5

Number of searches 1000

VI. CONCLUSIONS

In this study, to automatically identifying shunt stenosis, we
proposed a method to examine shunts using Bayesian opti-
mization by performing RF and NN hyperparameter searches.
Although expanding the range of the RF hyperparameters
using Bayesian optimization improves the discrimination ac-
curacy, the search time is reduced. However, the result of NN
hyperparameter search with Bayesian optimization is worse
than the discrimination accuracy of RF. This indicates that
shunt stenosis can be identified in a reduced search time if
the range of hyperparameters is set appropriately. Because the
current discrimination accuracy is difficult to use clinically,
it is necessary to examine the discrimination algorithm and
features to improve the accuracy in the further studies.
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TABLE V
RF RESULT

RF(Grid search) RF(Bayesian Optimization)
Time About 3 days About 24 min

Accuracy 71.3% 66.7%

TABLE VI
BAYESIAN OPTIMIZATION RESULT

RF NN
Time About21min About 60 min

Accuracy 73.0% 67.0%
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Fig. 4. Result of calculating accuracy
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