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Abstract— A contactless system to detect respiratory events 

during sleep may be advantageous because it enables normal 

sleeping pattern and eliminates the need for constant monitoring 

of contact sensors. To detect sleep respiratory events, a 3D time-

of-flight (TOF) camera is placed above the bed to measure a 

respiratory movement signal. Using this signal, we trained a 

long-short term memory (LSTM) model to detect respiratory 

events. In addition, we trained LSTM models based on SpO2, 

and abdomen and thorax respiratory inductance 

plethysmography (RIPsum). LSTM models were trained on 8 

folds using 61 synchronized 3D video and polysomnography 

(PSG) recordings of patients with suspected sleep apnea to 

classify 30-second segments as either respiratory event or normal 

breathing. Manual PSG annotations served as ground truth. The 

LSTM model based on 3D TOF camera achieved a mean 

accuracy of 0.79 and mean Cohen’s kappa of 0.54. SpO2 based 

model scored a mean accuracy of 0.86 and mean Cohen’s kappa 

of 0.68 while RIPsum based model scored a mean accuracy of 

0.82 and mean Cohen’s kappa of 0.61. The 3DRespMvt 

performance can be improved by combining it with SpO2, 

resulting in a mean accuracy of 0.87 and mean Cohen’s kappa of 

0.71. 

I. INTRODUCTION 

Sleep respiratory disorders are a subtype of sleep disorders 

that concern with the disruption of respiration. The main 

feature of these disorders is the presence of apneas and 

hypopneas [1], where an apnea is defined as a decrease in 

airflow signal of at least 90% for at least 10 seconds [2]. 

Hypopneas are similar to apneas but with at least 30% 

decrease in airflow signal with associated oxygen desaturation 

or arousal [2]. The severity of a sleep respiratory syndrome is 

described in the index called apnea-hypopnea index (AHI). 

AHI is the number of apneas and hypopneas per hour of sleep. 

The AHI can be measured via a sleep study called a 

polysomnography (PSG). PSG is an overnight test that 

monitors and analyzes sleep using several contact sensors. In 

particular for respiratory disorders, the specific relevant PSG 

signals are airflow signals via oronasal thermistor and nasal 

pressure cannula, SpO2 (level of oxygen in blood at the 

peripherals) via pulse oximetry, and respiratory effort via 

respiratory inductance plethysmography (RIP) belts. Decrease 

in airflow, respiratory effort, and SpO2 could be indicators of 

respiratory events wherein the specific rules concerning apnea 

and hypopnea scoring are set by the American Academy of 

Sleep Medicine scoring manual [2]. Another method of 

measurement is via the home sleep apnea testing (HSAT). 

HSATs are tests taken by patients in their homes and include 

four signals: nasal pressure, SpO2, pulse rate and respiratory 

effort via RIP belts.   

Due to the long waiting times, high prevalence of apnea in 

the population, and for economic reasons, the authors 

previously introduced contactless 3D time-of-flight (TOF) 

camera to derive a respiratory movement signal [3] – [4]. In 

addition, using a contactless sensor can improve sleep quality, 

enable usual sleep mobility, and reduce constant monitoring 

of sensors. Fig. 1 illustrates the setup of our system where the 

camera was placed above the bed. Through the depth 

information from the 3D TOF camera of the upper body 

region a respiratory movement signal we call 3DRespMvt is 

derived. In [3], we compared the decrease in 3DRespMvt to 

 

Fig. 1   3D TOF Camera and PSG setup in a sleep laboratory 
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the respiratory effort signal measured by RIP belts in a 

standard PSG during sleep respiratory events. In [4], we 

introduced a rule-based detection algorithm using 3DRespMvt 

and SpO2. In this paper, we want to evaluate further the use of 

3DRespMvt by developing a neural network detection model 

and comparing to other PSG signals to evaluate performance. 

Detection methods for apneas and hypopneas via neural 

networks have previously been evaluated. These networks 

either used a combination of signals already present in a PSG 

[5]–[7], or used a single signal such as electrocardiogram 

(ECG) or SpO2 [8]–[11], or used clinical information such as 

age, gender, and body mass index (BMI) [12], [13]. In this 

paper, we show the use of 3D TOF camera to detect 

respiratory events via neural networks. In addition, we also 

show the detection performance of SpO2 and RIP belts, as 

both are used in standard PSG and HSAT. We show the 

performance comparison between 3DRespMvt to the other 

two signals. 

II. METHODOLOGY 

A. Subjects 

61 3D video and PSG recordings of patients with suspected 

obstructive sleep apnea were recruited in this study. PSG 

recordings were performed at the sleep laboratories of Kepler 

University Clinic (JKU), Linz, Austria or at the Advanced 

Sleep Research GmbH (ASR), Berlin, Germany. The mean 

age of the patients was 56 (±12.8) and the mean BMI was 

29.8 (±5.8). Forty one of the patients were men. 

The following ethical committees approved this study: 

ethical committees of the state of Upper Austria (B-130-17) 

and of the Charité – Universitätsmedizin Berlin (EA1/127/16). 

Prior to the inclusion in the study, written consents from the 

subjects were acquired. 

B. Collection of Data 

The 3D TOF camera used in this study was the Kinect II. 

More information on the recording setup is further explained 

in [4]. The sleeping setup followed the usual protocol: lights 

were turned off and blankets were provided. The JKU clinic 

used the Somnoscreen Plus with Domino software 

(Somnomedics, Randersacker, Germany) while the ASR 

clinic used the EMBLA N7000 system with RemLogic 3.4.1 

software (Embla Systems, Broomfield, CO, USA). 

Recordings were annotated manually based on the AASM 

scoring manual [2]. These manual annotations served as 

reference in this study. Apneas and hypopneas were scored 

individually and grouped together in this study and are 

referred to as respiratory events.  

C. Training Data 

Consecutive respiratory events are shown in Fig. 2, where 

there is a decrease in signal or lack of respiratory movements 

shown in 3DRespMvt. The same can be observed from 

RIPsum. On the other hand, SpO2 desaturates by more than 

3% although with a delay. These changes in the signals enable 

identification of respiratory events. Therefore, we used 

3DRespMvt, SpO2, and RIPsum (sum of abdomen and thorax 

RIP belts), to derive features for the models. On the other 

hand, Fig. 3 shows the behavior of the signals when there are 

no respiratory events that can be observed. 

The following time features were computed: mean, 

minimum, maximum, average difference, standard deviation.  

Samples were created by dividing the recording to 30-s 

segments in each recording. Then another 30s segments 

succeeding and preceding were combined to each 30s 

segment to create 90s segments. Each sample of 90s segment 

will have 60 seconds of overlap. As shown in Fig. 4, each 

sample of data is a 90s segment where features were 

computed on 3s segments. This resulted in a (30, NF) input 

sample size where NF is the number of features for the LSTM 

model. If a respiratory event is present in the center 30s 

segment, the sample is labelled as P for respiratory event. 

Otherwise, it is labelled as N for normal breathing. 

D. LSTM Model 

In this study, we made use of long-short term memory 

(LSTM) neural networks. LSTM is a subclass of recurrent 

 

Fig. 2   Signal 3DRespMvt from 3D TOF camera compared to SpO2 

and RIPsum from PSG during respiratory events 

 
Fig. 4   Data timestep for features calculation and class definition 

 

Fig. 3   Signal 3DRespMvt from 3D TOF camera compared to SpO2 

and RIPsum from PSG during normal breathing 
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neural networks introduced in [14]. LSTM is capable of 

processing sequences of data such as time series.  

Five different model and signals combination were trained 

to compare the signals and to find the best signals to detect 

respiratory events. Every model used different signals or set 

of signals: (A) 3DRespMvt, (B) RIPsum (C) SpO2, (D) 

3DRespMvt and SpO2, and (E) RIPsum and SpO2.  

The model outputs a number between 0 and 1, indicating 

probability of a respiratory event in an input. We used a cutoff 

of ≥ 0.5 to classify segments as P (with respiratory event), 

otherwise it was classified as N (no respiratory event). Our 

models consisted of an input layer, bidirectional LSTM layers, 

fully connected layers, and an output layer. Bidirectional 

LSTM layers are two LSTM layers where the input is 

reversed in one. We added a dropout layer to avoid overfitting 

as shown in Fig. 5. 

E. Model Evaluation 

Evaluation of the models was performed by 8-fold cross 

validation. The folds were defined based on the AHI severity 

of recordings. The severity groups were mild (5-15), moderate 

(15-30), and severe (≥30) [15]. This was to ensure that a 

similar distribution between mild, moderate, and severe was 

present in each fold. Performing the division of data on the 

recording level ensured that data from a single recording were 

not subdivided into training and validation set. In addition, 

this approach enabled evaluation of the inter-personal 

generalization of the model. 

The average sample size of training data across 8 folds was 

39,214 (±530) and while for the test data it was 6,536 (±362). 

F. Statistical Analysis 

The model outputs a number between 0 and 1 where 

anything above 0.5 is classified as P (with respiratory event), 

and N (no respiratory event) if not. Accuracy, specificity, 

sensitivity, and Cohen’s kappa were used to evaluate the 

performance of the models. Cohen’s kappa is a measure of 

inter-rater agreement. A Cohen’s kappa score ranges between 

0 to 1, where a value between 0.41-0.60 suggests a moderate 

agreement, 0.61-0.80 suggests substantial agreement and 

0.81-1.00 suggests a perfect agreement [16]. Sensitivity is the 

ratio of the correctly classified P over all true P instances 

while specificity is the measure of correctly classified N over 

all true N instances. 

AHI estimates the severity of a sleep respiratory condition 

and is an index calculated after scoring to determine the 

number of respiratory events per hour of sleep. The equation 

of AHI (# events / hour) according to AASM is (1) where it is 

based on the total sleep time (TST) in minutes, and A and H 

are the number of apneas and hypopneas respectively. Here, 

we introduce the LSTM-based Respiratory Index (LRI) (# of 

positive segments / hour) to be compared to the AHI. LRI is 

calculated by assuming that for each input classified as P by 

the model is a single respiratory event. We calculated LRI per 

recording using the formula in (2) where Pn is the number of 

predicted P segments and T is the total number of input 

samples of a particular recording. LRI is therefore based on 

the total recording time (TRT). Pearson’s correlation was then 

used to compare LRI to the AHI. 

   

 
 

(1) 

 

 
 

(2) 

III. RESULTS 

As shown in Table I, model A based on 3DRespMvt 

performed with Cohen’s kappa of 0.54, suggesting moderate 

agreement. Model B based on RIPsum performed better with 

a Cohen’s kappa of 0.61 while Model C using SpO2 obtained 

0.68.  

In addition to using single sensors, model D and E 

combined 3DRespMvt and RIPsum with SpO2 respectively. 

Model D showed an increase in performance compared to 

using SpO2 or 3DRespMvt alone with Cohen’s kappa of 0.71. 

The structure of model D made use of 2 parallel bidirectional 

LSTM layers, shown in Fig. 5. Model E obtained a Cohen’s 

kappa of 0.71. 

We calculated the LRI of model A as shown in Fig. 6, 

where it has a Pearson’s correlation = 0.74 (p < 0.001) when 

Table I 

8-fold cross validation results of LSTM models. 

Model Mean (Standard Deviation) 

 Accuracy Sensitivity Specificity Cohen’s kappa 

A 0.79 (0.03) 0.76 (0.07) 0.80 (0.06) 0.54 (0.05) 

B 0.82 (0.04) 0.82 (0.07) 0.82 (0.07) 0.61 (0.09) 

C 0.86 (0.03) 0.85 (0.07) 0.86 (0.04) 0.68 (0.06) 

D 0.87 (0.03) 0.86 (0.06) 0.87 (0.04) 0.71 (0.05) 

E 0.87 (0.02) 0.86 (0.06) 0.87 (0.04) 0.71 (0.05) 
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Fig. 5   LSTM Model using 3RespMvt and SpO2 as training data 
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compared to the AHI, computed based on the reference 

annotations. LRI of model D compared to reference AHI, as 

shown in Fig. 7, scored a Pearson’s correlation of 0.82 (p < 

0.001). 

IV. DISCUSSION AND CONCLUSION 

The results show that using 3DRespMvt alone can provide 

good results with Cohen’s kappa = 0.54. In addition, LRI 

based on 3DRespMvt showed a positive moderate Pearson’s 

correlation with AHI.  However, compared to other detection 

models using single sensors, it performed worse. Our 

RIPsum-based detection resulted in a Cohen’s kappa = 0.61. 

In addition, our SpO2 based model scored a Cohen’s kappa = 

0.68 and an accuracy of 0.86. In the literature, SpO2 based 

detection using deep belief network has been reported with an 

accuracy of > 86% [10]. In comparison to using another 

single sensor such as ECG to detect sleep disordered 

breathing (SDB), LSTM and GRU models developed by [8] 

has a high F1 score of > 98%.  

Using 3DRespMvt alone did not provide the same accuracy 

as using SpO2 or RIPsum individually. However, by 

combining 3DRespMvt with SpO2, there was a significant 

improvement in the results with Cohen’s kappa of 0.71 and 

87% accuracy. This is comparable to the reported results of 

[5] using recurrent and convolutional neural networks (CNN) 

with 88.2% accuracy. Another model using CNN reported 

79% accuracy in classifying between normal, apnea, and 

hypopnea [6].  We also showed the possibility of combining 

3DRespMvt and SpO2 in [4] albeit using a rule-based method. 

In addition, the results of 3DRespMvt and SpO2-based LSTM 

also show that it is comparable to the LSTM model using 

SpO2 and RIPsum. An advantage of 3D TOF camera over RIP 

belts is that it’s less cumbersome to the patient and it doesn’t 

hinder mobility during sleep. Furthermore, the use of a 

learning method such as LSTM instead of traditional rule-

based methods could be advantageous. In the future, we 

expect the addition of more data, possibly from different 

clinics. The update and development of rule-based method 

requires intensive programming to accommodate all 

possibilities in which learning methods can cover. 

In this study, we used features from 3DRespMvt and SpO2 

to train an LSTM model. LSTM are models that are able to 

learn such long-term relationships of the data [17]. Therefore, 

we used LSTM instead of other neural network models or 

other machine learning methods as it is suitable for time-

series data, such as 3DRespMvt and SpO2. In addition, 

respiratory events are events that are at least 10 seconds long 

and its detection is dependent on the pre-event signal. There 

must be a decrease in signal such as in 3DRespMvt and 

RIPsum, compared to its pre-event signal. On the other hand, 

the desaturation in SpO2 occurs only after the onset of the 

respiratory event and the amount of delay may vary.  

AHI and LRI in Fig. 7 are shown to be correlated although 

with two outliers. The two outliers can be explained by the 

difference between TST and TRT. Respiratory events 

occurring during wake periods were excluded from AHI 

calculation. However, in the calculation of LRI, predicted 

events during wake period cannot be filtered out. The LRI 

estimation can be improved by determining the sleep and 

wake periods of the recording to calculate a total sleep time. 

A point of improvement for future work is to utilize the 3D 

camera depth information of the whole body to perform sleep 

and wake staging. In addition, as we used uniform 90s 

segments in the model, it will be a focus on future work to 

label the recordings per second of data in order to provide a 

more precise detection of respiratory events. For further 

improvement of the current models, acquisition of more data 

is needed. 

Our results showed that detection via LSTM of respiratory 

events via a 3D TOF camera is a promising alternative to 

current detection methods, and it can be improved by using it 

in combination with SpO2.  
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Fig. 7 AHI vs LRI (model D), line is x = y 

 
Fig. 6   AHI vs LRI (model A), line is x = y 
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