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Abstract— In many situations, abnormal sounds termed 

adventitious sounds are included as the lung sound of a subject 

suffering from a pulmonary disease.  Thus, we aimed to detect 

abnormal sounds from auscultatory sound automatically.  For 

this purpose, we expressed the acoustic features of normal lung 

sound for healthy subjects and abnormal lung sound for patients 

by using HMMs (Hidden Markov Models) and distinguished 

between normal and abnormal lung sounds.  Furthermore, we 

detected abnormal sounds under a noisy environment including 

heart sounds by using a heart sound model.  However, the 

duration time and the property for segments of respiratory, 

heart, and adventitious sounds varied.  In our previous method, 

we constructed the HMMs with the same number of states and 

mixtures (topology) for all kinds of segments.  Since we did not 

consider an appropriate topology, the classification rate between 

normal and abnormal respiration was low (88.96 %).  In this 

paper, we proposed to construct the appropriate HMMs for each 

segment.  By selecting a suitable topology for each segment, the 

classification rate was increased (91.35 %).  The result showed 

the effectiveness of the proposed method considering the 

topology of HMMs.  

I. INTRODUCTION 

Auscultation of the lungs is a means of detecting patients 

suffering from pulmonary diseases.  Despite other non-

invasive inexpensive methods, the auscultation using a 

stethoscope can obtain valuable information regarding health 

status.  In many cases, abnormal sounds (called adventitious 

sounds [1]) are included in the lung sound of a subject 

suffering from pulmonary disease, and even today the 

auscultation is an effective method to diagnose a pulmonary 

disease.  However, it requires expert knowledge and 

experience.  Therefore, perceiving the difference between 

healthy and ill subjects is difficult for non-medical personnel.  

This may be the reason auscultation does not penetrate 

common households.  Furthermore, it is difficult for the 

elderly or persons in depopulated areas to visit the hospital.  If 

we can discriminate between healthy and ill subjects at home, 

early detection of pulmonary disease can be expected. 

Several studies have been conducted with the aim of 

automatically detecting adventitious sounds from lung sound 

[2-4].  In these studies, a specific adventitious sound was 

detected by either using a wavelet transform or a frame of 

adventitious sound was discriminated by using the short-time 

spectrum.  However, the time of occurrence and duration of 

adventitious sounds vary.  Therefore, it is desirable to 

discriminate the sound using the features of the whole 

respiration and its inflection.  Furthermore, the features of 

adventitious and respiratory sounds depend on the individual 

and the degree of progress of the disease.  Therefore, we 

consider that the features should be expressed statistically.  In 

the previous study, we expressed the time-series of acoustic 

features of the lung sound by constructing the HMMs and 

discriminated between normal and abnormal respiratory 

sounds [5].  In auscultation, noises hinder detecting 

adventitious with high accuracy.  The auscultatory sounds 

often include noises from the body and rustle of the 

stethoscope.  A typical noise from the body is the sound of the 

heart.  Fig. 1 shows examples of respiratory sounds including 

adventitious, heart sounds, and other noises.  The appearance 

frequency of heart sounds auscultated near the heart is high.  

The database used in our study includes many heart sounds; 

consequently, many normal respiratory sounds were identified 

as abnormal respiratory sounds.  

To distinguish adventitious sounds from heart sounds, we 

constructed a heart sound model by using heart sounds for 

model learning.  As a result, normal respiratory sounds were 

identified correctly.  However in the case of abnormal 

respiratory sounds, the accuracy decreased.  

Fig. 1   Example of respiratory sounds including adventitious 

sound, heart sounds and the other noises [7]. 
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We assumed that these models did not befitting.  Therefore, 

we focus on analyzing the topology of the acoustic models.  

In this paper, we propose to construct HMMs for heart sounds 

with high accuracy by selecting a suitable number of states 

and mixtures.  Furthermore, we select a suitable number of 

states and mixtures of HMMs for adventitious sounds. 

II. LUNG SOUND DATABASE 

A. Hand Labeling 

We recorded the lung sounds by using an electronic 

stethoscope.  After that, we manually performed segmentation 

based on recorded sounds, waveform, spectrogram, and power.  

At first, we divided the lung sound into the inspiration and 

expiration sound segments (respiratory sound segment).  Next, 

we divided the respiratory sound segment into adventitious 

sound segments and the other breathing sound segments.  In 

addition, we marked the heart sound segments on the lung 

sounds that were recorded from auscultation points near the 

heart.  As we can observe the first sounds (S1) and second 

sounds (S2) clearly, we marked S1 and S2 as heart sound.  If 

the occurrence interval of adventitious sounds and heart 

sounds were shorter than 100 ms we regarded them as one 

segment.  

B. Definition of Normal and Abnormal Respiration 

Acoustic features of some noises are similar to adventitious 

sounds.  Some respiratory sounds from healthy subjects 

include the adventitious sound.  It is difficult for a non-

medical person to diagnose it.  Conversely, some respiratory 

sounds from the patient do not include adventitious sounds.  

However, we cannot term them as normal respiratory sounds.  

Then, we defined normal and abnormal respiration.  In our 

study, we grouped the respiratory sounds into four categories. 

-Abnormal respirations from patients (AP): respirations 

include adventitious sounds from patients. 

-Abnormal respirations from healthy subjects (AH): 

respirations include noises resembling the adventitious sounds 

from healthy subjects. 

-Normal respirations from patients (NP): respirations do 

not include adventitious sounds or noises resembling the 

adventitious sounds from patients. 

-Normal respirations from healthy subjects (NH): 

respirations do not include adventitious sounds or noises 

resembling the adventitious sounds from patients.  

In our discrimination experiment, we used only NH as 

normal respiration and AP as abnormal respiration.  That is, 

we do not use AH and NP. 

III. DETECTION OF ABNORMAL RESPIRATION 

A. Fundamental of Classification Procedure 

Generally in the field of speech recognition, the acoustic 

models of the phoneme (as smallest unit of speech) and the 

occurrence probability of words are used to construct 

stochastic models.  Then, we applied the technique to the lung 

sound.  Fig. 2 shows the architecture of the classification 

system between normal and abnormal respiration [6].  

The classification procedure consists of the training and test 

processes.  In the training process, the HMMs as the acoustic 

model and the segment sequence model [6] that defines the 

occurrence probability of the divided segments are trained.  In 

the test process, input respiration is discriminated between 

normal and abnormal respiration based on the maximum 

likelihood approach.  If we assume that sample respiration 𝑊 

consists of 𝑁  segments, it can be expressed as 𝑊 =
𝑤1𝑤2 ⋯ 𝑤𝑖 ⋯ 𝑤𝑁 where 𝑤𝑖  is the 𝑖-th segment of 𝑊.  

The training process can be explained as follows.  First, we 

extract acoustic features and train each segment.  In the case 

of normal respiration, if we assume it does not include heart 

sounds it consists of one segment (𝑁=1).  Conversely, in the 

case of abnormal respiration including adventitious sound, it 

consists of at least two segments (𝑁 ≥ 2).  For example, in 

the case of expiration in Fig. 3, it consists of one wheeze 

segment and two breathing segments (𝑁=3).  In the case of 

inspiration in Fig. 3 that does not include adventitious sound, 

it consists of one breathing sound segment ( 𝑁 =1).  The 

training of the segment sequence model can be explained as 

Fig. 2   Architecture of classification system between normal and abnormal respiration. 
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follows.  We calculate the occurrence probability of the 

segments 𝑃(𝑊)  by using segment bigram.  𝑃(𝑊)  can be 

written as  

𝑃(𝑊) = 𝑤1 × ∏ 𝑃(𝑤𝑖|𝑤𝑖−1)𝑁
𝑖=2 .                                   (1) 

Let 𝑃(𝑤𝑖|𝑤𝑖−1) be defined as 

    𝑃(𝑤𝑖|𝑤𝑖−1) = 𝐶(𝑤𝑖|𝑤𝑖−1) 

                           = (𝑤𝑖−1,  𝑤𝑖) 𝐶(𝑤𝑖−1)⁄ ,                                 (2) 

where 𝐶(𝑤𝑖) is the count of 𝑤𝑖 ,  𝐶(𝑤𝑖−1) is the count of 𝑤𝑖−1, 

and 𝐶(𝑤𝑖|𝑤𝑖−1) is the count of segment 𝑤𝑖  after the 𝑤𝑖−1 in 

the database for training. 

The test process can be explained as follows.  The 

maximum likelihood among the calculated likelihoods is 

found and the corresponding segment sequence 𝑊̂ is selected 

to recognize the sample respiration sound.  If the sequence 

includes at least one adventitious sound, we identify the 

sample respiration as abnormal sound.  Conversely, we 

identify the sample respiration as a normal sound.  

𝑊̂ can be written as  

𝑊̂ = argmax𝑊(log𝑃(𝑋|𝑊) + 𝛼log𝑃(𝑊))                     (3) 

where 𝑋 is a sample respiration and log𝑃(𝑋|𝑊) is an acoustic 

likelihood.  The weight factor was obtained experimentally.  

 

 

 

B. Classification Procedure Using Heart Sound Model 

To distinguish the adventitious sounds from heart sounds, 

we constructed a heart sound model in addition to the 

breathing sound model and adventitious models [7, 8].  S1 

and S2 are the subjects of modeling from among four types of 

heart sounds (S1-S4) because they are often observed clearly. 

In the training process, we trained the acoustic models.  In 

the case of normal respiration sound, we trained the normal 

sound model using the breathing and heart sound segments 

(𝑁 ≥ 1).  In the case of abnormal sound, we trained the model 

the same as the fundamental classification procedure.  In the 

test process, the maximum likelihood among the calculated 

likelihoods is found and the corresponding segment sequence 

𝑊̂ is selected to recognize the sample respiration sound the 

same as the fundamental classification procedure.  The 

difference from the fundamental classification procedure is 

that even if the sequence includes some heart sounds, we 

identify the sample respiration as normal sound. 

IV.  CONSTRUCTION OF APPROPRIATE HMMS FOR 

DETECTION OF ABNORMAL RESPIRATION 

In our previous studies [5-8], we set the number of states 

and mixtures of HMMs for each segment as three and 

assumed the models were not suitable.  Therefore, we focus 

on analyzing the topology of acoustic models.  For example, 

the duration of the stationary sound period is significantly 

different between heart and adventitious sounds.  Table 1 
shows the mean and standard deviation (S.D.) of the duration 

of adventitious and heart sounds.  The duration of heart 

sounds is shorter than the adventitious sounds.  Then we focus 

on the model for adventitious and heart sounds. 

To construct the appropriate HMMs for adventitious and 

heart sounds, we assume that the appropriate topologies of 

HMMs depend on the constancy of acoustic features and the 

amount of training data.  Then, we construct the suitable 

HMMs by selecting several numbers of states and mixtures 

for each segment and we investigate whether the accuracy is 

improved or not, when the numbers are changed.  

 
Table 1   Mean and standard deviation of duration 

 for adventitious and heart sounds [8]. (s) 

Source sound Mean S.D. 

Adventitious sound 0.53 0.31 

Heart sound 0.12 0.03 

 

V. EVALUATION EXPERIMENTS 

A. Experimental Conditions 

In every 10 ms, 6 Mel-Frequency Cepstrum Coefficients 

(MFCCs) and power were extracted as acoustic features using 

a 25 ms Hamming window.  The lung sound data were 

sampled at 5 kHz.  Fig. 4 shows the auscultation points.  In 

this study, auscultated lung sounds from three points near the 

heart (A-C) were used for experiments.  The numbers of 

abnormal respiratory sounds were 161, 217, and 206 for each 

point.  As many normal respirations were selected randomly 

for experiments.  The number of observed heart sound 

segments was 4940.  Since there were no significant 

differences between acoustic features of S1 and S2, we 

constructed one heart sound model without distinctions 

between them.  We performed a leave-one-out cross 

validation to construct the subject independent model. 
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Fig. 3   Example of respiratory sounds including adventitious 

sound called wheeze. 

Fig. 4   Auscultation points. 
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B. Classification Experiments 

First, we decided on the number of states of HMMs for the 

adventitious sound segments.  We found a suitable number of 

states from one to five where the number of the mixture was 

three.  Fig. 5 shows the classification rate between normal and 

abnormal respiration for each number of states for the 

adventitious sound segments.  The classification rate was the 

highest when the number of states was three.  Hereafter, we 

set the number of states for the adventitious sound segments 

as three.  Then, we found a suitable number of mixtures from 

one to five.  Fig. 6 shows the classification rate between 

normal and abnormal respiration for each number of mixtures 

for the adventitious sound segments.  The suitable number 

was two.  We considered that when the number was large the 

amount of training data was not sufficient.  That is, the model 

was over-fitting. 

 

 
Fig. 5   Classification rate between normal and abnormal respiration 

for each number of states for adventitious sound segment. 
 

 
Fig. 6   Classification rate between normal and abnormal respiration 

for each number of mixtures for adventitious sound segment. 

 

In the next step, we found a suitable number of states and a 

number of mixtures for HMMs of the heart sound segment.  

Hereafter, we set the number of states for adventitious sounds 

segment to three and set the number of mixtures for 

adventitious sounds segment as two.  This is because the 

values were the best number in the previously mentioned 

experiments.  At first, we decided on the number of states of 

HMMs for the heart sound segment.  We found a suitable 

number of states from one to five where the number of the 

mixture is three.  Fig. 7 shows the classification rate between 

normal and abnormal respiration for each number of states for 

the heart sound segment.  The classification rate was the 

highest where the number of states was two.  Therefore, we 

considered that two states were sufficient to express the heart 

sound segment.  This is because the heart sound segment was 

shorter than the adventitious sound segment and there was not 

much steady-state.  Then we found a suitable number of 

mixtures from one to five where the number of states was two.  

Fig. 8 shows the classification rate between normal and 

abnormal respiration for each number of mixtures for the 

heart sound segment.  The suitable number was two.  We 

considered that when the number was large the amount of 

training data was not sufficient as the adventitious sounds 

segment.  The above result shows the significant effectiveness 

(p = 0.026) of setting the suitable states and mixtures of 

HMMs for adventitious sounds segment and heart sound 

segment. 

 

 
Fig. 7   Classification rate between normal and abnormal respiration 

for each number of states for heart sound segment. 
 

 
Fig. 8   Classification rate between normal and abnormal respiration 

for each number of mixtures for heart sound segment. 

VI. CONCLUSIONS 

In this paper, we proposed to construct an appropriate 

HMM for heart and adventitious sounds with high accuracy 

by selecting a suitable number of states and mixtures to 

distinguish between normal and abnormal respiration sounds. 

As the result of the classification experiment, we confirmed 

the improvement of classification rate by selecting suitable 
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states and mixtures of HMMs for adventitious and heart 

sound segments.  This demonstrated the effectiveness of the 

proposed approach.  When we used a large number of 

mixtures of HMMs the classification rate was low, and it was 

considered that the amount of training data was not sufficient. 

Future work includes the verification of the effect in the 

classification between healthy and ill subjects by using not 

only one respiration sample but a series of respirations.  

Subsequently, we should clarify the suitable number of states, 

mixtures and other parameters by using deep neural network, 

which has been proved effective in the field of speech 

recognition. 
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