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Abstract—Optional image scaling, and hence aliasless image
reconstruction, is feasible using a signal that violates the sampling
theorem in MR phase scrambling Fourier transform imaging.
In this method, the main and aliased image components are
separated in the scaled space when a large scaling factor is
selected. In the present study, a new fast imaging method, in
which aliasing artifacts caused by undersampling of the signal,
are removed in two steps: in the downscaled space introduced
by aliasless reconstruction and through de-aliasing using a deep
convolution neural network. The proposed method is shown to
provide higher PSNR images compared to random sampling
compressed sensing and has an advantage in terms of low-
sampling-rate image acquisition.

I. INTRODUCTION

Magnetic resonance imaging (MRI) requires a long scan
time, which is much longer than that of X-ray CT, and, to
date, numerous techniques have been proposed in order to
speed up the scan time. The recent theory of compressed
sensing (CS)[1], [2] may reduce the number of measurements
required for MR imaging (CS-MRI)[3]. In recent years, the
deep convolutional neural network (CNN) has received a great
deal of attention because of its excellent performance in the
field of CS image reconstruction. The first application of
CNN to MR imaging was de-aliasing of alias-superimposed
images obtained in parallel imaging, which is classified as
image domain learning[4]. Lee et al. proposed a deep learning
network for the reconstruction of MR images in which the
multi-scale network structure called U-Net is used to cope
with globally distributed artifact patterns and phase image
reconstruction[5].

In contrast to image domain learning, there is also k-
space learning, such as in AUTOMAP software [6], in which
transformation from the source signal (k-space signal) to the
target image domain can be obtained by data-driven supervised
learning. Images can be reconstructed directly from the under-
sampled k-space signal with AUTOMAP. However, the prac-
ticality of AUTOMAP remains limited because the required
number of parameters scales quadratically with the input size.
Therefore, training in the image domain is beneficial and
practical in the sense that fewer parameters facilitate training
and are less prone to overfitting. In the present paper, we

propose an imaged-domain-based CS reconstruction method,
in which equi-spaced undersampling is adopted and aliasing
artifacts are removed by aliasing control in the scaled space
introduced by alias-less reconstruction, followed by a deep
convolutional neural network.

We have proposed a new image reconstruction technique, in
which images at optional scaling can be obtained and hence
aliasless images can be reproduced from the data containing
aliasing artifacts in the Fourier transform image reconstruction
technique [7], [8]. Since an aliasless image is realized by
expanding the pseudo FOV, the spatial resolution of that
image must be reduced. In the present study, aliasless image
reconstruction is used to scale the main image components
and the aliased image components in the highly downscaled
image domain. The advantage of the proposed method is
that most aliasing artifacts are removed in this downscaled
image domain and, therefore, it is easier for the CNN to
learn and remove the remaining small artifacts. In order to
clarify the characteristics of the proposed two-step hybrid
reconstruction, it was compared with image domain CNN and
ADMM CS-net[9], which is a kind of k-space learning method
and conventional iterative reconstruction.

II. PHASE SCRAMBLING FOURIER IMAGING

Phase-scrambling Fourier transform (PSFT) imaging is a
technique whereby a quadratic field gradient ∆B = b(x2+y2)
is added to the pulse sequence of conventional FT imaging
in synchronization with the field gradient for phase encoding
[10], [11]. The signal obtained in PSFT is given as:

v(kx,ky)=

∫∫ ∞

−∞

{
ρ(x,y)e−jγbτ(x2+y2)

}
e−j(kxx+kyy)dxdy (1)

where ρ(x, y) represents the spin density distribution in the
subject, γ is the magnetogyric ratio, and b and τ are the coef-
ficient and impressing time, respectively, of the quadratic field
gradient. Equation (1) can be rewritten as the Fresnel transform
equation using the variable substitutions x′ = kx/2γbτ and
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y′ = ky/2γbτ , as follows:

v(x′, y′)e−jγbτ(x′2+y′2)

=

∫∫ ∞

−∞
ρ(x, y)e−jγbτ{(x′−x)2+(y′−y)2}dxdy (2)

= ρ(x, y) ∗ e−jγbτ(x2+y2) = vFR(x
′, y′) (3)

The right-hand side of Eq. (2) is known as the Fresnel
transform equation, which is familiar in optics or sound
wave analysis [12]. Magnetic resonance imaging imposing the
quadratic phase on the subjects, also referred to as nonlinear
encoding, has attracted attention in recent years because of its
flexible image processing and unique features[13], [14], [15].

III. ALIAS-LESS IMAGE RECONSTRUCTION

Object images can be obtained by inverse Fresnel transform
from a signal described by Eq. (2) [7]. Reconstruction involves
1) multiplying a quadratic phase term numerically by the
signal in the PSFT in order to obtain the signal shown in
Eqs. (1) and (2), solving ρ(x, y) using the inverse filtering
technique, as follows:

ρ(x, y) =
γbτ

π
ej

π
2 F−1

[
ej

ω2
x+ω2

y
4γbτ F [vFR(x

′, y′)]

]
(4)

The imaging parameter γbτ , which is the coefficient of
quadratic phase modulation, is necessary for image recon-
struction as shown in Eq. (4). The spatial resolution of
reconstructed images is almost the same as the signal step
of the Fresnel transformed signal:

∆x′ =
π

γbτN∆x
, ∆y′ =

π

γbτN∆y
(5)

Suppose the parameter αγbτ is used in place of the true
γbτ obtained experimentally in the Fresnel reconstruction
equations and substituting the variables u = x/α and v = y/α.
Then, the Fresnel transformed signal vα is written as follows:

vα(x
′, y′)=

∫ ∫ ∞

−∞
s(u,w)e−jαγbτ{(x′−u)2+(y′−w)2}dudw (6)

s(u,w) = α2ρ(αu,αw)e−j
(

α−1
α

)
γbτ{(αu)2+(αw)2} (7)

We can obtain image function ρ(x, y) by Eq.(6) as,

ρ(αu, αw)=
1

α2
s(u,w)ej

(
α−1
α

)
γbτ{(αu)2+(αw)2} (8)

The reconstructed image is scaled by a factor of α. Since α is
given in the reconstruction procedure, we can set an optional
scale to the reconstructed image as α. Consider the case in
which an aliasing artifact occurs in the Fourier-reconstructed
image using the PSFT signal. Fresnel reconstruction by Eq.
(7) then offers an aliasless image reconstruction (ALR) by
shrinking the image using an adequate scaling parameter α,
so as to appear smaller than the FOV.

Fig. 1. Removal of aliasing components using aliasless image reconstruction.
(a) Undersampled phase-scrambling Fourier transform (PSFT) signal
and (b) aliasless images by aliasless image reconstruction (ALR).
Spatial resolution is reduced. (d) Fourier transform image using the
zero-filled PSFT signal. (e) Aliasless image reconstruction image
with high downscaling factor. (f) After removing the main aliased
image components (red square box), a nearly aliasless image can be
obtained.

IV. DE-ALIASING BY ALIASLESS IMAGE RECONSTRUCTION
AND CONVOLUTIONAL NEURAL NETWORK

Figure 1 shows the proposed method. As shown in Fig.
1(a), an aliasless image can be reconstructed using a regularly
undersampled PSFT signal. However, the spatial resolution
is reduced according to the number of sampled points, as
shown in Fig. 1(b). Figure 1(c) shows the zero-filled PSFT
signal, where zero-datum are filled in the skipped sampling
points, and the reconstructed image applying inverse Fourier
transform to the signal. Serious fold-over artifacts appear
on the reconstructed image. Figure 1(e) shows the ALR
images with high downscale factor α. Since the optional
value can be chosen for the scaling factor α in the image
reconstruction process irrespective of the actual parameter
used in the data acquisition, images can be reconstructed,
as shown in Fig. 1(e). When ALR is executed with a high
downscaling factor using a zero-filled undersampled signal,
the main image components and aliasing components will be
separated in the scaled space, as shown in Fig. 1(e). After
removing the main aliasing components indicated by the red
boxes and applying inverse ALR, almost all aliasing artifacts
are removed from the reconstructed image, as shown in Fig.
1(f). Note that, in proposed method, the manner of signal
undersampling is equally spaced skipping, which is not usually
adopted in standard Fourier-transform-based imaging, because
it is impossible to separate the main image and aliasing image
components, in general. Therefore, a high signal reduction
factor is expected in proposed method.

Since some aliasing artifacts are remained in the reduced
aliased image, a deep convolutional neural network (CNN)
is adopted in order to remove the remaining artifacts. We
used a deep CNN, which is known to have high de-aliasing
performance without sacrificing spatial resolution, inspired by
Zhang’s denoising CNN (DnCNN) [16]. The structure of the
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Fig. 2. Deep convolutional neural network (CNN) used for removing the
remaining artifacts.
The input of CNN is the reduced alias image xz = x+v, where x is
the target image, and v are the remaining artifacts on the image. The
CNN learns and estimates the remaining artifacts v on the image (b).

deep CNN is shown in Fig. 2. Letting aliasing artifacts v
remain on image x, reduced alias image xz can be expressed as
xz = x+v. When the original mapping is more like an identity
mapping, the residual mapping will be much easier to optimize
[19]. Image xz is much more like the fully scanned image x
and close to identity mapping. Therefore, residual learning
formulation is more suitable for image de-aliasing. Letting
R(xz) be the residual mapping to predict v (R(xz) ≈ v),
reconstructed image x′ is obtained by x′ = xz − R(xz). The
loss function used to update the network parameter is the mean
squared error between the true and estimated artifacts. Figure
2 shows the network structure used in the present study.

V. EXPERIMENTS

The structure of the CNN is as follows. The receptive field
size is 35, and the network has 17 layers. The filter size is
3 x 3 x 64. Adam was used for the optimizer, and the batch
size of the input dataset is 128. In de-aliasing MR images,
the size of output image should be the same as the input
aliased image. Therefore, simple zero data padding is carried
out at the boundary before the Conv operation, so that the
feature map of the middle layers has the same size as the input
image. A total of 100 images were used for the learning of
the deep CNN network. In simulation experiments, the PSFT
signal is calculated using the MR healthy volunteer image data
according to Eq. (1). Calculated signals were undersampled at
an equal interval at acceleration factors of 2x, 3x, and 4x.
The imaging parameters are set to be αtrue = 1.0 for data
acquisition, and α for reconstruction is 0.125, 0.083, or 0.0625.
Figures 3(a), 3(b), and 3(c) are downscaled images using
aliasless reconstruction for acceleration factor 2x, 3x, and 4x,
respectively. Most of the aliasing artifacts were removed by
removing these separated aliased components surrounded by
the red dashed lines. The parameter α and the dimensions
of the red dashed lines in Figs. 3(a), 3(b), and 3(c) were
determined by preliminary reconstruction experiments. The
obtained reduced aliased images are shown in Figs. 3(d), 3(e),

Fig. 3. Results of reconstruction experiments.
(a), (b), and (c) Scaled images by ALR for acceleration factors of
2x, 3x, and 4x, respectively. (d), (e), and (f) Reduced aliased images
obtained by removing the red rectangular region. (g), (h), and (i)
Obtained images. (j), (k), and (l) Residuals of images (g), (h), and
(i), respectively.

and 3(f) and were used as the input images of the deep CNN.
The output images by the CNN are shown in Figs. 3(g), 3(h),
and 3(i). Figures 3(j), 3(k), and 3(l) are the residuals of output
images (g), (h), and (i). As shown in (g), (h), and (i), the
remaining artifacts are clearly removed by the deep CNN
network without conspicuous degradation of the spatial resolu-
tion. Figure 4 shows the PNSR characteristics with reference to
the signal reduction factor using 20 phase varied images. The
proposed method is compared with a simple image domain
learning CNN using the network shown in Fig. 1 and ADMM-
CSnet[9], as well as CS iterative reconstruction using the
PSFT signal (PSFT-CS) [17]. Random undersampling was
used, except in the proposed method. Figure 4 indicates that
the proposed method shows a higher PSNR, especially for
lower sampling rates of 25% and 33%.
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Fig. 4. Comparison of PSNR with PSFT compressed sensing and Fourier
transform compressed sensing with reference to signal reduction factor.

Figure 5 shows the results of application to the experi-
mentally obtained PSFT signal. The quadratic field gradient
b(x2 + y2) required to realize the PSFT was generated by
a coil designed for line-scan imaging. Fully scanned signal
imaging shown in Fig. 5(a) was acquired using 0.2T MRI,
and then the obtained signal was undersampled in the phase
encoding direction in a computer. The imaging parameters
are N=256, γbτ=1.53 rad/cm2, and the spatial resolution
∆x = ∆y = 0.08 cm. The scaling parameter α shown in Fig.
3 was used in the reconstruction. Figure 5(b) shows the fully
scanned image, and (c), (d), and (e) are reconstructed images
with acceleration factors of 2x, 3x, and 4x, respectively.
Even though aliasing artifacts remained on the images, high-
resolution images were obtained even for an acceleration factor
of 4x, as shown in Fig 5(e).

VI. DISCUSSION

Let the acceleration factor be Xa, then the fold-over artifacts
appear at every 1/Xa of FOV in the scaled space, as shown in
Figs. 3(a), 3(b), and 3(c). This distance is similar to the fold-
over artifacts in the reconstructed images in standard Fourier
transform imaging. However, the scale of the reconstructed
images is much smaller than standard Fourier-transform-based
images, and the main image and aliased image components
are separated in the scaled space. Therefore, it is feasible to
reduce the aliasing artifacts by removing the alias-dominant
components. In general, it is difficult to separate the aliased
image components in any space in standard Fourier-transform-
based imaging, and proposed alias control has significant
advantages over other reconstruction methods. This is the
major reason why the proposed method has a higher PSNR
than other methods, as shown in Fig. 4. Second, it is not
necessary to acquire the signal continuously in k-space central,
as in standard k-space undersampling, and the signal compres-
sion ratio will be increased. Third, the obtained images are
not severely sacrificed by undersampling because equi-space
sampling is performed instead of random undersampling. Re-
cently, several papers have used regular undersampling in the

Fig. 5. Reconstructed images using the experimentally obtained PSFT signal.
(a) Obtained PSFT signal using 0.2 T handmade MRI, (b) fully
scanned (256 x 256) images, and (c), (d), and (e) obtained images for
acceleration factors of 2x, 3x, and 4x, respectively. Although slight
residuals of artifacts were observed, images with good resolution
were obtained.

application of CNN to CS[18], [19]. Regular undersampling
has advantages such that blurring of the reconstructed image
is smaller compared to random undersampling, especially for
lower sampling rates. Previous studies have pointed out that it
is easier for the CNN to learn the rule of the fold-over effect in
regular undersampling than in random undersampling because
the manner of aliasing that occurs is very simple and easy to
recognize. The results shown in Figs. 3 and 5(a) are consistent
with these reports.

VII. CONCLUSION

A new fast imaging method using the equi-spaced under-
sampled PSFT signal is proposed. The aliasing artifacts are
separated from the main image component in the scaled space
introduced by aliasless image reconstruction. The aliasing
artifacts are first reduced in the scaled space, and the remaining
aliases are then removed using the image domain deep CNN.
Reconstruction experiments show superior PSNR compared
to ADMM-CSnet, image domain CNN, and conventional
iterative reconstruction.
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