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Abstract— Decoding auditory stimuli based on brain function

data is of great significance to understand auditory functional

mechanism. At present, there is still controversy about whether

the brain processing mechanism of auditory stimuli is parallel

hierarchical processing or distributed processing [1]. Different

from previous studies that used univariate analysis to study

auditory processing, this study intends to build a decoding model

and study the auditory processing mechanism from the

perspective of multivariate pattern analysis. In this paper, we

analyzed functional MRI data from 27 subjects under perception

of different auditory frequencies and directions, using brain

activation and functional connectivity as features, and using

support vector machine for decoding. The decoding accuracy of

frequencies and directions was 70.7% and 71.6% with brain

activation features. On the other hand, the accuracy rate

reached 73.7% and 77.7% respectively with functional

connectivity features. Then we analyzed the weights and found

that the activation patterns in precuneus and the superior

temporal gyrus (STG) contributed to sound frequency

discrimination, and STG also represented differences in

direction. The connectivity patterns between the bilateral

precuneus showed obvious changes under different frequency

conditions, while the bilateral middle occipital gyrus and STG

showed significant changes under different directions of sound

stimulation. The results support a distributed auditory

processing model.

I. INTRODUCTION

Hearing is an important way for human beings to know the
world and obtain external information. The information
acquired by the auditory pathway is very important for people
to understand surrounding environment.

Similar to the dual-pathway model in visual information
processing, researchers believe that auditory frequency
information and auditory orientation information are
processed through different pathways [2]. That is, the
information processing related to the recognition of sound
type is carried out in the ventral "What" pathway, while the
information processing related to the recognition of sound
orientation is carried out in the dorsal "where" pathway. The
two pathways are parallel and respectively process the sound
information. Although the auditory dual-pathway model has
been supported and verified in many relevant literatures [3-6],
there are still many studies questioning this model. On the one
hand, many studies believe that the two pathways in this
model are not completely independent of each other and deal
with sound information separately. In some cases, the two
pathways interact with each other [7]. On the other hand,
some studies proposed that the brain regions corresponding to
sound recognition and spatial location were widely distributed
in the cortex [8-10].
As we all know, auditory information processing in the

human brain can be studied though a forward encoding way
and also by a backward decoding way. Most previous studies
revealed the processing mechanism of stimulus information
through univariate analysis from the perspective of encoding
[11, 13]. For example, Okada et al. used univariate analysis on
neural mechanism of speech stimuli and proposed a
hierarchical organization of human auditory cortex in an
encoding way [11]. By functional integration analysis,
researchers found a distributive functional connectivity
pattern for auditory direction processing during encoding
[13]. In recent years, the multivariate pattern analysis (MVPA)
method based on decoding model, has a more sensitive
detection ability to reveal the spatial pattern of brain regions
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and their information interaction pattern during responding to
stimuli [12, 13]. Some researchers used multivariate pattern
analysis to decode auditory stimuli and found that besides
auditory regions, visual regions can also represent auditory
semantic information, suggesting a distributive processing
mechanism underlying auditory processing [12]. Considering
auditory frequencies and directions are basic components in
auditory stimuli and they separately occupy the two auditory
pathways, in this study, we aimed to used MVPA based
decoding method to study responding pattern of auditory
frequencies and directions in the human brain more
sensitively from the way of decoding and further investigate
the auditory processing mechanism.

II. EXPERIMENT AND ANALYSIS

A. EXPERIMENT

The experimental materials include functional imaging data
and T1 structural image data. The block experiment paradigm
was adopted in this experiment. The whole experiment
includes direction task and frequency task, and each task
includes 3 function runs. Each run lasts 544s, which starts
with a pre-scan of 8s, followed by 18 blocks, and ends with 8s
of rest. Each block lasts for 18s and presents sounds in the
same direction or frequency. Blocks are spaced 12s apart. A
block contains nine trials, each consisting of a 1s stimulus and
a 1s rest. In this experiment, the stimulus materials included
sounds of high, medium and low frequencies and sounds of
left, middle and right directions. The experimental paradigm
is shown in Fig. 1.

Fig.1 Experimental paradigm design

B. DATA COLLECTION

All the imaging data is collected in a 3.0 T Siements Tim
Trio MRI scanner. The experiment recruited 28 healthy
College students. (Data from one of the subjects was not
available and was removed from subsequent experiments)
There were 14 male and 14 female, with an average age of
22.3 years (SD=1.1). All subjects were born right-handed, had

normal hearing and had no mental or neurological problems.
Foam pads and earplugs were used for all participants;
besides that, eyeshade was worn to prevent vision effect.
T1-weighted anatomical images were acquired with a
three-dimensional magnetization-prepared rapid acquisition
gradient echo (3D MPRAGE) sequence with the following
parameters: TR = 1900 ms, TE = 2.52 ms, TI = 1100 ms,
voxel size = 1 × 1 × 1 mm3, matrix size = 256 × 256.
T2*-weighted images were acquired using a gradient
echoplanar imaging (EPI) sequence with the follow
parameters: TR = 2000 ms, TE = 30 ms, FOV = 192 ×

192mm2, matrix size = 64 × 64, slices = 33, slices thickness
= 4 mm, slice gap = 0.6 mm.

C. DATA PREPROCESSING

Unified processing of fMRI data is required prior to
analysis. First, data format was converted into NII format.
Then, the first 8 seconds of fMRI data in each run were
removed because they were dummy scan. SPM8 toolbox
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) was
employed to preprocess the structural and functional images
in the following steps: (1) time slice correction, (2)
headmotion correction, (3) coregistration of functional images
with structural images, (4) structural images segmentation, (5)
spatial normalization to make sure each subject in the same
MNI space, (6) spatial smoothing to improve signal-to-noise
ratio. Through these steps of data preprocessing, the errors
caused by the physiological characteristics of the subjects as
well as the errors generated in the data collection process can
be reduced as far as possible.

D. DECODING BASED ON BRAIN ACTIVATION FEATURE

Firstly, the activity intensity of each voxel was used as
feature when building the decoding model on sound
frequencies and directions. The preprocessed 4-D data were
converted into a two-dimensional matrix with each row
represents the stimuli samples and each column is the spatial
voxels in the brain. As there is a certain delay between the
generation of stimulus signals and the hemodynamic response,
the relative positions of all samples and labels should be
moved back 4s as a whole. The excess data from the sample,
such as the rest time between stimuli, were removed.
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In this experiment, F-score was used to select features.
F-score is a method to measure the distinguishing ability of
different spatial voxels between two categories, which can
effectively realize feature selection. The formula is as follows:
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The higher the F-score, the better the discrimination. After
calculating the F value of all features, the top 200 features
with the highest F value are selected for the final training and
testing. The support vector machine (SVM) was used as
classifier. The k-fold cross-validation strategy is adopted. The
data of 27 subjects were divided into 9 groups on average. For
each training, 8 groups of data were used as the training set,
and the remaining 1 group was used as the test set. This
process was repeated for 9 times.

E. DECODING BASED ON FUNCTIONAL CONNECTIVITY

FEATURES

A brain template (AAL) with 116 nodes were used and time
series of each node was extracted from the preprocessing
fMRI data. The whole brain functional connection matrix for
each subject was constructed by Pearson correlation of time
series in each brain region node, which represents the
functional connection mode of a subject under a category
condition. Before classification, the functional connection
matrix needs to go through a series of processes. The first step
is to eliminate redundant information from the functional
connection matrix. In this experiment, the data of lower
triangular matrix is retained and represented by
one-dimensional vector. The vectors of all subjects are
formed into two matrices corresponding to the direction and
frequency. Each row of the matrix represents a category. In
addition, according to previous research results, the internal
mechanism of negative functional connections is not clear so
far [14, 15]. So we removed the negative connections. Next,
the calculated F value is used to select 200 connections that
differ significantly between different categories. Similar
classifier and cross-validation frame was used as in the
aforementioned section.

III. RESULT

The classification results are shown in the table below.
Higher classification accuracy is obtained based on functional
connectivity features.

Table 1 Classification results based on brain activation and functional connectivity features

Brain activation

features

Brain connectivity

features

Frequency

decoding
70.7% 73.7%

Direction

decoding
71.6% 77.7%

The weights of SVM are read to get the most representative
support vectors in the sa-mple. The BrainNet Viewer
(http://www.nitrc.org/projects/bnv/) is used to draw weight
maps.
According to the distribution of weights in SVM shown in

Fig. 2 and Fig. 3, we can see activation strengths in superior
temporal gyrus and cuneus were significantly contributive in
classify different frequencies of stimulation. For the different
direction of the sound categories, the significant contribution
of the region is mainly concentrated in the superior temporal
gyrus. Other regions in frontal cortex also contribute to the
auditory decoding based on brain activations.

Fig.2 Brain activation features that contributed to auditory frequency

decoding (cluster size>20, p<0.001)
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Fig.3 Brain

activation features that contributed to direction decoding (cluster size>20,

p<0.001)

Figure 4 and figure 5 show the functional connections that
have significant contributions to differentiating sounds of
different frequencies and directions. Each subject had 13456
functional connections under each condition. We chose the
top 200 distinctive connections as features in auditory
decoding. The results show that the cuneus and precuneus
have obvious weights in discrimination of different frequency
conditions. The more significant connections are those
between bilateral precuneus and bilateral cuneus and their
connection to left superior temporal gyrus, middle occipital
gyrus, and right superior frontal gyrus. Under the directional
condition, bilateral middle occipital gyrus and left superior
temporal gyrus showed significant contributions. The
contributing connections are primarily distributed in the
connections between left superior temporal gyrus and middle
occipital gyrus and their connections to paracentral lobe,
cuneus and precuneus.

Fig.4 Function connection features that contributed to auditory frequency

decoding

Fig.5 Function connection features that contributed to auditory direction

decoding

IV. SUMMARY AND PROSPECT

Previous auditory studies were mostly carried out to sp
ecify the regions, and most of them are based on univariate
analysis of stimuli encoding process. The univariate analysis
hypothesizes that each voxel in the brain is independent.
However, more and more evidence shows that the cognitive
behavior of human brain usually requires the cooperative
participation of multiple brain regions. Studies based on
individual brain regions fail to identify the intrinsic
connections between brain regions. In order to fully explore
the information interaction of multiple brain regions under
auditory stimulation, this experiment studied the processing
mechanism of auditory information in the brain from
activation characteristics and connection characteristics,
respectively. We used a decoding model to study the
multi-variate representative pattern of auditory stimuli, which
can more sensitively detect the recruited activation regions
and connection patterns during auditory processing compared
with univariate encoding analysis.
Based on the results of statistical analysis and functional

connection analysis, two decoding models of different
frequencies and different directions were constructed by using
lib-SVM. Significant decoding accuracies were obtained,
suggesting the effectiveness of decoding models. In decoding
research based on brain activation, the results showed that the
activation of the superior temporal gyrus and the cuneus
region was the main change of different frequency
information. Compared with the activation results based on
encoding analysis [17], it was found that the cuneus was also
significantly activated under this condition. Results from
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different directions also showed significant effects on the
superior temporal gyrus region. In the decoding research
based on connection characteristics, for frequency conditions,
three significant regions were obtained, namely, the cuneus,
the precuneus and the superior temporal gyrus. The region of
the superior temporal gyrus was found in addition to
connection results based on coding analysis. For directional
conditions, the regions with significant changes include the
middle occipital gyrus, the cuneus and the superior temporal
gyrus. From these contributed regions and connections in
auditory decoding, we can see they not only include regions
in the auditory dual-pathway but also recruit regions outside
the dual-pathway, demonstrating that the auditory stimuli may
be represented in a more distributive way.
In future research, the following questions can be further

discussed. First of all, the processing patterns of different
kinds of sounds by human brain can be further discussed, so
as to find more characteristics and rules [16]. Secondly, there
is noise in fMRI collection of auditory signals, which may
affect the decoding results. In the future research, sparse
acquisition can be considered to improve the SNR. Finally, we
can study the temporal process of auditory information
processing. High time-resolution acquisition technology
combined with dynamic analysis method can be considered in
the future study.

ACKNOWLEDGEMENT

This study was supported by the National Nature Science
Foundation of China (No. 61503278).

REFERENCES

[1] Bizley JK,Cohen YE.The what, where and ho-w of auditor

y-object perception.Nat Rev Neu-rosci 14(10):693-707.

[2] Ida C.Zündorf,Jörg Lewald,Hans-Otto Karnath.Testing the d

ual-pathway model for auditory processing in human cortex

[J]. Neuroimage,2016,124(Pt A):672-681.

[3] J. Fridriksson J,Yourganov G,Bonilha L,et al.Revealing the

dual streams of speech processi-ng[J].Proceedings of the Na

tional Academy o-f Sciences,2016,113(52):15108-15113.

[4] Arnott S R,Binns M A,Grady C L, et al.Asse-ssing the au

ditory dual-pathway model in hu-mans[J].Neuroimage,2004,2

2(1):401-408.

[5] Clarke S,Thiran A B,Maeder P,et al.What andWhere in hu

man audition: selective deficits fo-llowing focal hemispheric

lesions[J].Experime-ntal Brain Research,2002,147(1):8-15.

[6] Alain C,Arnott S R,Hevenor S,et al."What" a-nd "where" i

n the human auditory system[J].Proc Natl Acad Sci USA,

2001,98(21):12301-12306.

[7] Bizley J K,Cohen Y E.The what, where and how of audito

ry-object perception[J].Nature R-eviews Neuroscience,2013,1

4(10):693-707.

[8] Furukawa S.Coding of sound-source location by ensembles

of cortical neurons[J].J.Neurosci.2000（20）.

[9] J. C. Middlebrooks,A. Clock,L. Xu,et al.A pa-noramic code

for sound location by cortical n-eurons[J].Science.1994（26

4）:842-844.

[10] Zimmer U,Lewald J,Erb M,et al.Processing ofauditory spati

al cues in human cortex: An fM-RI study[J].Neuropsycholo

gia,2006(3):454-461.

[11] Okada K, Rong F, Venezia J, Matchin, Hsieh IH, Saberi

K, Serences JT, Hickok G. (2010): Hierachical Organizatio

n of Human Audito-ry Cortex: Evidence from Acoustic Inv

arianc-e in the Response to Intelligible Speech. Cere-bral C

ortex 20(10): 2486-2495.

[12] Vetter P, Smith FW, Muckli L. (2014): Deco-ding sound a

nd imagery content in early vis-ual cortex: Current Biology

24(11):1256-1262.

[13] Haynes JD,Rees G.Decoding mental states fro-m brain activ

ity in humans.Nat Rev Neurosci- 7(7):523-534.

[14] Fox M D,Zhang D,Ssnyder,et al.The Global S-ingal and O

bserved Anticorrelated Resting State Brain Networks. Jou

rnal of Neurophysio-logy[J],2009,101（6）:3270-3283.

[15] Tal Z,Geva R,Amedi A.The Origins of Meta-modality in V

isual Object Area Lo:Bodily To-pographical Biases and Inc

reased Functional Connectivity to SI.Neuroimage[J],2016,12

7:363-375.

[16] Zhou Y, Xiang H, Chen J Y, et al. Functiona-l magnetic re

sonance imaging of brain durin-g Stroop task in adolescent

s with online gami-ng disorder [J]. Chin J Psychiatry, 2008,

51(5):329-334.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

892



[17] Liang Yaping. Study on the processing mecha-nism of soun

d in human brain [D]. Tianjin: Tianjin University,2019.

[18] Jinliang Zhang,Gaoyan Zhang,Xianglin Li,et al.Decoding so

und categories based on whole-br-ain functional connectivit

y patterns[J].Brain I-maging and Behavior,2018.

[19] Zhang haimin, Chen shengzu. A new methodof brain functi

on imaging: statistical parametri-c graph (SPM). Chin med

imaging technolog-y,2002,18 (7) :711-3.

[20] Lei Wei, Yang Zhi, Zhan Minye et al. Neura-l characteriza

tion of cognitive decoding usingbrain imaging multi-voxel

model: Principles a-nd applications. Advances in Psychologi

cal S-cience, (12) :1934-41.

[21] Xiang jie, Chen junjie. SVM based fMRI dat-a classificatio

n: a method for decoding thinki-ng. Computer research and

development,2010,47 (2) :286-291.

[22] Francisco Pereira,Tom Mitchell,Matthew Botvi-nick.Machine

learning classifiers and fMRI:Atutorial overview.NeuroImag

e,2009,45（2009）:199-209.

[23] Li Hang. Statistical methods [D]. Beijing: Tsi-nghua Univer

sity Press,2012.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

893


