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Abstract—The low signal-to-noise ratio (SNR) of a neural
recording is typically improved by averaging the neural response
over repeated trials. However, it is not applicable when studying
neural entrainment to speech stimuli, in which stimuli are
presented only once. Alternatively, multiple subjects’ neural
responses to the same stimuli can be averaged to decrease
unexpected noises caused by breathing, lack of attentiveness etc.,
excluding those caused by heartbeats and blinking during long
auditory tasks. However, individual differences such as varying
latency times of the neural response to the stimulus and electrode
positioning in the setup reduce the effectiveness of this method. To
eliminate individual differences, we first estimated the importance
(weight) of each electrode using a spatial filter and maximized
the SNR by adjusting the latency of the neural response. Then we
extracted the common response for all subjects and constructed
neural entrainment models accordingly. The correlations between
the predicted and actual neural responses obtained in this study
were much higher than that in other methods in the forward
neural encoding process. In the decoding process, the correlation
between the reconstructed speech envelope and the original
also increased significantly in both the delta and theta bands
compared with previous studies.

I. INTRODUCTION

Speech perception, which links auditory and cognitive pro-
cesses, is the acquisition of communicative information from
speech sounds [1]. One of the main objectives of auditory
neuroscience research is to investigate how ubiquitous neu-
ronal oscillations synchronize with auditory stimuli. Although
invasive methods such as intracranial electrography are ex-
cellent tools for exploring this [2], such methods are not
suitable for healthy subjects. Electroencephalograph (EEG) is
an effective, non-invasive technique for investigating the neural
mechanism behind auditory processing. Oscillations observed
in the EEG signal are direct reflections of neural oscillations
in the cortex [3]. However, the generated electrical fields are
easily contaminated by external noise (e.g., eye movement,
heartbeat) that occur during the transmission from the neural
population to the top layer of the scalp through the brain tissue
and skull. Such a non-invasive technique is often limited by
the low signal-to-noise ratio (SNR) of the recording neural
signal. Event-related potential (ERP) is often used to improve

the SNR [4]. The neural response to a stimulus should be
similar across all trials, and randomly distributed noise should
be considered independent from the response. Thus, the noise
can be decreased as a trial is repeated, and the meaningful
response (the ERP) can be calculated by averaging the repeats.
As such, well-designed trials need to be repeated sufficiently
in order to use ERP to improve the SNR.

However, it may be impossible to repeatedly conduct trials
in certain paradigms. In recent years, studies have extended the
controlled experimental paradigm to a more natural setting [5],
leading to investigations on how neural activity synchronizes
with the acoustic or linguistic information of a continuous nat-
uralistic speech stream (neural entrainment to speech) [6–9].
In neural entrainment research, stimuli are typically long
segments (around 15 s to 120 s) from lectures or stories and
presented to subjects only once to avoid a priming effect. The
main problem of these studies is how to accurately estimate
the temporal response functions (TRFs) of the neural system
[10]. If we treat the neural system as a linear system, TRFs
can help to linearly map speech stimulus representations (e.g.,
speech envelope, fine structure, spectrograms) to the neural
response of the listener. TRFs can enable us to investigate how
neural oscillations modulate the speech signal [11] or localize
the brain regions involved with the speech processing by using
the source reconstruction method [12]. A method of accurately
estimating TRFs is necessary in these studies. As mentioned
above, it is impossible to specify ERPs by averaging more
trials in the neural entrainment studies. TRFs are often esti-
mated from a single trial. It is difficult to reduce environmental
noise when using the single-trial method. Furthermore, in long
listening tasks, it is more difficult to detect unexpected noise
caused by breathing or lack of attentiveness, which negatively
impacts TRF estimation.

Assuming brain functions for speech processing are consis-
tent across individuals, a similar neural response is expected
for the same speech stimulus. In contrast, external noise,
involuntary breathing, and attentiveness differ from individual
to individual. Such noises can be suppressed by averaging
the neural signal of the same stimuli for all subjects. In our
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previous work [13], we have proven the effectiveness of this
idea. However, this is suboptimal to apply due to the lack
of a method to account for the subjects’ differences in the
latencies of the neural response to the stimulus, as well as
differences in setup positions of the electrodes. Addressing
these two problems well before averaging the neural activities
across multiple subjects should result in a more accurate
TRF estimation. Thus, in this study, we propose a temporal-
spatial hyper-alignment method which uses a well-designed
spatial filter to align the latency time at the temporal domain
and finds the common neural response at the spatial domain
for eliminating these effects. Then we constructed a neural
entrainment model to study the neural coherence to speech.

This paper is organized as follows. Section II introduces the
experimental design and describes the proposed hyper-aligned
methods in detail. Our results are reported in Section III, and
our conclusions are given in Section IV.

II. MATERIALS AND METHODS

A. Participants

Twenty-two healthy Mandarin Chinese speakers (mean ±
standard deviation age, 22 ± 2.4 years; nine men; right-
handed) were recruited from Tianjin University and Tianjin
University of Finance and Economics. The experiments were
conducted in accordance with the Declaration of Helsinki [14]
and approved by the local ethics committee. The subjects
signed informed consent forms before the experiment and were
paid for their participation afterward. All the subjects reported
no history of hearing impairment or neurological disorders.

B. Stimuli and experimental procedure

Subjects undertook 24 non-repetitive trials; each trial was a
short story (around 60 s) with a complete storyline, recorded
by a male Chinese announcer in a soundproof room. All

stimuli were mono speech with a 44.1 kHz sampling rate,
and the stimulus amplitudes were normalized to have the
same root mean square (RMS) intensity. The 24 trials were
randomly presented to the subjects. All speech segments were
also modified to truncate the silence gaps to less than 0.5 s
[7].

The experiment was carried out in an electronically and
magnetically shielded soundproof room. In the experiment,
speech sounds were presented to subjects through Etymotic
Research ER-2 insert earphones (Etymotic Research, Elk
Grove Village, IL, USA) at a suitable volume (around 65
dB). During each trial, subjects were instructed to focus on a
crosshair mark in the center of the screen to minimize blinking,
head movements, and other bodily movements. There was a
five-second interval between each trial, and the subjects were
given a five-minute break every ten trials. After each story
trial, subjects were asked immediately to answer multiple-
choice questions about the content of the story to ensure
that they focused on the auditory task. We embedded unique
tones in some trials to draw more of the subjects’ attention to
the stimuli. Subjects were requested to detect the tones and
indicate how many times they appeared after the trial. The
EEG data corresponding to the embedded tones were removed
in further analysis.

C. EEG data acquisition and pre-processing

The scalp EEG signal was recorded with a 128-channel
Neuroscan Synamps system (Neuroscan, USA) at a sam-
pling rate of 1000 Hz. The electrodes were placed accord-
ing to the standard 10-5 system, and six channels were
used for recording a vertical electrooculogram (VEOG), a
horizontal electrooculogram (HEOG), and two mastoid sig-
nals. The impedance of each electrode was kept below 5
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Fig. 1: Pre-processing and training procedures.
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kΩ during data acquisition. Three subjects’ data were dis-
carded in the further analysis because they did not give
a proper answer for the multiple-choice questions or the
electrodes detached during the EEG data recording. The raw
EEG data were pre-processed using the EEGLAB toolbox
(https://sccn.ucsd.edu/eeglab/index.php) in MATLAB (Math-
Works) [15]. This involved removing sinusoidal (i.e., line)
noise and bad channels (i.e., low-frequency drifts, noisy chan-
nels, short-time bursts) and repairing the data segments. Then,
the EEG data was bandpass filtered in the delta band (1–3
Hz), theta band (4–8 Hz), and then downsampled to 64 Hz [6,
16]. As previous research has shown that speech envelopes are
more relevant to 1–8 Hz [10, 17], we focused on the delta and
theta bands in this study.

The broadband temporal speech envelopes were obtained
from Hilbert transforms. For the following modeling approach,
the envelope was then decimated to the same sampling rate
as EEG, enabling us to relate their dynamics to the EEG
signals. During the experiment, we marked the time trigger
for the EEG signal according to the stimuli onset and offset.
In the offline analysis, the 24 data epochs (24 story trials) were
extracted on the basis of the time trigger for each subject (19
subjects × 24 trials). We assume that all of the subjects use
the same neural mechanism to process the stimulus speech so
their TRFs are nearly the same. The averaged alignment data
on all subjects is expected to reduce the noises which may be
caused by breathing, inattentiveness, etc., through averaging
processing. Before averaging, a spatial filter was designed to
align the latency of neural responses for accurately extracting
the common neural response across subjects.

D. Procedure of proposed method

Consider x(t, n) is the observed EEG raw data of channel
n at time index t and r(t, n) is the stimuli related neural
response. Thus, x(t, n) can be expressed as:

x(t, n) = r(t, n) + rest(t, n), (1)

where rest(t, n) is the residual noise unrelated to the stimuli,
including environmental noise and noise caused by breathing,
inattentiveness, and unexpected events. As we assumed that
different subjects’ brains are functionally similar, the similar
stimuli related neural responses rj(t, n) can be expected.
And the residual noises restj(t, n) differ from individual
to individual. After averaging the observed EEG raw data
x(t, n) of the same stimuli for all subjects, such noise can
be effectively suppressed [13]. However, due to the subjects’
differences in the latencies of the neural response to the
stimulus. Before averaging, the latency of neural responses
for the subjects should be aligned.

Given two different subjects’ observed EEG raw data
x1(t, n) and x2(t, n), our proposed method produces spatial
filters (transform matrices) p1 and p2 to align the latency
of neural responses. According to our hypothesis, after we
optimize the latency of neural responses, the transform result
r̃1(t, n) = p1x1(t, n) and r̃2(t, n) = p2x2(t, n) should be

similar, and both of them have the highest correlation with
the stimuli. More importantly, corresponding columns from
r̃1(t, n) and r̃2(t, n) are also maximally correlated with each
other so that they can be averaged and not be affected by
the different electrodes’ location. Therefore, our proposed
method can also align the different position of electrode across
subjects.

Accordingly, Our purpose is to make the x(t, n) most
relevant to the real response r(t, n), which also means to
eliminate noises unrelated to the stimuli to obtain the true
neural response r(t, n) from the observed x(t, n). Here, we
try to explain how to use spatial filters to reduce the unrelated
residual noise. Spatial filters were constructed by optimizing
the importance (weights) for each electrode. Assuming a
spatial filter p exists, most of the noise rest(t, n) can be
denoised by multiplying x(t, n) with p; in other words, the
SNR of x(t, n) is maximized by the spatial filter p,

arg max
p

E{[pT r(t, n)]2}
E{[pT rest(t, n)]2}

= arg max
p

pTRrrp

pTRrestrestp
. (2)

The neural response r(t, n) and rest(t, n) are independent.
Therefore, (2) is equivalent to the new equation which max-
imizes the ratio of neural response to the observation signal
[18],

arg max
p

pTRrrp

pT (Rrr +Rrestrest)p
= arg max

p

pTRrrp

pTRxxp
. (3)

In other words, multiplying p (the solution for p will be
explained in a later subsection) is equivalent to minimizing the
mean-squared error (MSE) between the true neural response
r(t, n) and the observed x(t, n),

r̃(t, n) = arg min
r
E{

∑
t

[x(t, n)− r(t, n)]2}. (4)

Here, we need to estimate the unknown r(t, n). As men-
tioned above, brain functions are considered to be a linear
time-invariant (LTI) system where the output (neural response)
of the system is the convolution of the input and a TRF of
the brain. The TRF can be considered a filter that linearly
transfers the continuous speech envelope to the dynamic neural
response. The TRF of the channel n is a function of ω(t, n)
of time t and the output of the neural system is r(t, n) for the
same channel n. For an input speech stimulus s(t), the output
can be described as:

r(t, n) =
∑
τ

ω(τ, n)s(t− τ), (5)

as the latency of the neural response differs between subjects.
The optimal latency can be used to obtain the best solution
for ω̃(t, n). Therefore, (4) can be changed to

ω̃optj (t, n) = arg min
ω
E{

∑
t

[xj(t, n)−
∑
τ

ω(τ, n)

s(t− τ − lag)]2} (0 ≤ lag ≤ 400ms),

(6)
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ω̃optj (t, n) is the optimal TRF function with a response latency
optimized for subject j. Thus, the neural response r̃optj (t, n),
n can be used to approximate the true response of subject j.

Next, we summate the neural response r̃optj (t, n) of all
subjects. The spatial transformation eliminates the effects of
electrode position in the device setup so that the subjects’ data
can be summated or averaged. Thus, the summation enables
us to identify the common neural response and decrease most
noises caused by individual differences such as breathing or
inattentiveness.

r̃sum(t, n) = rcom(t, n) + restnoise(t, n), (7)

where the r̃sum(t, n) is the summation of the subjects’ neural
response. rcom(t, n) is the common neural response related
to the stimuli across all subjects, and restnoise(t, n) is the
residual noise from the previous estimation procedure. As a
result, Eq. (8) has a similar structure to (1). We can apply
another spatial filter pcom to reduce restnoise(t, n). Then,
the common neural response rcom(t, n), which maximizes the
ratio to r̃sum(t, n), can be obtained by the same procedure
in (2). We reduced both the effect of latency in the temporal
domain and electrode position in the spatial domain. We call
our proposed approach the temporal-spatial hyper-alignment
method. The pre-processing procedure of our proposed method
is shown in the left-hand side of Fig. 1.

E. Training procedure for neural entrainment modeling

In this study, we used an mTRF toolbox
(https://github.com/mickcrosse/mTRF-Toolbox) to linearly
map the speech envelope and the neural response [19]. The

main principle is to treat the brain as an LTI system. Then,
the forward model ω(t, n) is defined to predict the neural
response r(t, n) for an input speech stimulus s(t) in (5).
Here, the solution of ω(t, n) is:

ω̃(t, n) = [s(t)sT (t)]−1s(t)rT (t, n). (8)

In a hypothetical LTI system, a backward approach can
be modeled using a decoder g(t, n), which is the inverse
function of ω(t, n). Thus, the input speech stimulus s(t) can
be reconstructed by filtering the neural response r(t, n) using
the decoder function g(t, n). This can be expressed as:

s(t) =
∑
n

∑
τ

g(τ, n)r(t− τ, n), (9)

where s̃(t) is the reconstructed speech stimuli. The optimal
decoder g(t, n) is acquired by minimizing the MSE between
the original and reconstructed speech stimuli. The solution of
g(t, n) is:

g̃(t, n) = [r(t, n)rT (t, n)]−1r(t, n)sT (t). (10)

To evaluate our method, we used the temporal-spatial hyper-
aligned EEG to predict the neural response and reconstruct
the speech envelope by the forward and backward model, re-
spectively. Then, we compared the neural response prediction
and speech envelope reconstruction accuracy of the proposed
hyper-alignment method with those of the single-trial based
method. From pre-processing the hyper-alignment neural re-
sponse rcomi (t, n) was obtained, where i is the number of trials

Time (s)
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p
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e 

Fig. 2: Examples of neural responses predicted by different methods.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

884



(1 ≤ i ≤ m). For all training processes, we used a leave-one-
out cross-validation procedure, where 23 trials were used for
training, and the remaining one trial was used for testing in
each fold. Because the parameters of ω̃(t, n) and g̃(t, n) were
different in each trial, we used the averaged parameters of the
forward filter ω̃(t, n) and backward filter g̃(t, n) trained on the
other 23 trials [20].

In the single-trial based method, the forward and backward
model was trained based on the subject’s neural data. Since
each subject took part in 24 trials, the procedure was repeated
24 times for each subject. Our proposed method was trained
based on the averaged subject hyper-alignment data, which
was repeated for 24 iterations for the hyper-alignment data.
Our training procedure is shown in the right-hand side of Fig.
1.

F. Estimation for spatial filter p

As stated in subsection D, Rrr can be easily estimated from
the TRFs model. Rxx can be calculated from the recorded raw
EEG data. Only the spatial filter p is unknown in (3). Accord-
ing to previous research [18, 21], to obtain the maximum SNR,
the stationary points of (3) must satisfy

Rrrp = λRxxp, (11)

which defines a generalized eigenvalue problem (GEVP) for
the matrix pencil (Rrr, Rxx). All λ and p that can be substi-
tuted into (11) are denoted as the generalized eigenvalues and
eigenvectors [18]. When multiplying the spatial filter pT on
both sides of (11), we can get

pTRrrp = λpTRxxp, (12)

where

λ =
pTRrrp

pTRxxp
, (13)

which implies that λ is proportional to the output SNR of
the (3). Therefore, in order to maximize the SNR, spatial
filter p should be set to be the generalized eigenvector which
corresponds to the maximum eigenvalues λ.

III. RESULTS

A. Behavioral results

To verify the situation of subjects during the experiment, we
asked the subjects to answer multiple-choice questions about
the story presented in the listening task after each trial. The
accuracy of the answers was 88.25 ± 4.62%, indicating that
most of the subjects concentrated on the listening task during
the experiment. We removed three subjects’ data since their
answers were not sufficiently accurate.
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Fig. 3: Comparison of neural response prediction accuracies
between proposed hyper-aligned method and other two

methods.

B. Neural response prediction results

In the forward process, we used the forward TRF to predict
the 122 channels’ neural activity response to the speech enve-
lope. The prediction accuracy was evaluated by measuring the
Pearson correlation coefficient between the predicted neural
signals and the original ones (for our proposed method, the
original signal is the averaged one of all subjects). Fig. 2
shows examples of the predicted neural responses obtained
in our study. The correlation coefficients of our proposed
method are 0.81 and 0.46 in the delta band (1–3 Hz) and
theta band (4–8Hz) respectively, which is significantly higher
than that of other methods. Fig. 3 shows the comparisons
of the averaged correlation of 122 channels for the proposed
method and the other two methods in the delta and theta bands.
To quantitatively compare the three methods, the correlation
coefficient was firstly transformed into a z value by Fisher’s z
transformation to satisfy a normal distribution [22]. Then, an
analysis-of-variance (ANOVA) of the z values with factors
of frequency (different frequency bands) and the method
(proposed method and the other two methods) revealed a
significant effect on both frequencies (F = 49847, p < 0.001)
and reconstruction methods (F = 90479, p < 0.001). The
results of ANOVA demonstrated that the prediction accuracy
of our proposed method is higher than that of the other two
methods. We used a permutation test to compare the predicted
accuracy and the chance level and found that our prediction
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Fig. 4: Examples of original speech envelopes and the reconstructed ones using different methods.

value is 288 times larger than that of the chance level.

C. Speech envelope reconstruction results

In the backward process, the speech envelope was recon-
structed from the neural response. The reconstruction accuracy
is represented by the correlation between the reconstructed
speech envelope and the original one. Fig. 4 shows examples
of the reconstructed envelopes obtained in our study. The
correlation coefficients for the reconstructed speech envelope
of our proposed method are 0.80 and 0.50 in the delta
band (1–3 Hz) and theta band (4–8Hz) respectively, which
is also significantly higher than that of other methods. Fig.
5 shows the comparisons of reconstruction accuracies for
the proposed and the other two methods in delta and theta
bands. The reconstruction accuracy was significantly higher
than the chance level in the delta (1–3 Hz) and theta (4–8 Hz)
bands (Fig. 5). Similar to the previous section, the values of
correlation coefficients were also converted to z values using
Fisher’s z transformation to satisfy a normal distribution. An
ANOVA of the z values with the main factors of frequency
and reconstruction method revealed a significant effect caused
by the reconstruction methods (F = 830.39, p < 0.001), indi-
cating that the accuracy of speech envelope reconstruction of
our hyper-aligned method is higher than that of the other two
methods in the two frequency bands (F = 887.89, p < 0.001).

D. Robustness of proposed method

To verify whether or not the proposed method is data
dependent, we used an open dataset for testing (Dryad,
https://datadryad.org/stash/dataset/doi:10.5061/dryad.070jc)
which was used in previous studies [6, 8]. Our proposed
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Fig. 5: Comparison of speech envelope reconstruction
accuracies in each trial between proposed hyper-aligned

method and other two methods.

method obtained an average accuracy of 0.18 and 0.31 for
predicting the neural response in 1–15 Hz and 1–4 Hz,
respectively, which are much higher than the previous average
accuracy of 0.06 and 0.04 [6, 8]. Since our proposed method
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eliminates individual differences, it is difficult to use the
TRF model based on our method to investigate individual
properties. Rather, our method can obtain a more general
neural entrainment TRF model with high accuracy.

IV. CONCLUSIONS

In this study, we assumed that brain functions for speech
processing are consistent across individuals. Based on this
assumption, averaging responses over multiple subjects is
expected to be an efficient way to improve the accuracy of TRF
estimation. However, individual differences in brain anatomy
and device setup in the experiment are difficult to account
for in the TRF modeling approach, so the subject-averaged
method is a sub-optimal solution. Inspired by the multiway
canonical correlation analysis [23] and data-driven stimulus-
related neural activity selection method [18], we proposed a
multi-subject hyper-alignment method to reduce those indi-
vidual differences. Compared with the single-trial based and
subject-averaged methods, our hyper-aligned method obtained
the highest accuracy for the predicted neural response and
reconstructed speech envelope. The mean correlation between
the reconstructed speech envelope and the original increased
to about 0.73 in the delta band (Fig. 5). Compared with the
single-trial based envelope reconstruction accuracy of 0.32, the
error reduction rate was around 60%. The prediction accuracy
was also improved in the theta band. The robustness and
universality of our proposed method were also verified by
using a different EEG dataset.

In this study, we used a coarse speech feature – the speech
envelope. In future work, we intend to integrate more detailed
features to investigate the neural mechanisms of speech pro-
cessing.
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